metal-organic compounds
Poly[{μ10-[(phosphonomethyl)iminodimethylene]diphosphonato}dithallium(I)]
aDepartment of Chemistry, Tarbiat Modares University, PO Box 14115-175 Tehran, Iran
*Correspondence e-mail: gholi_kh@modares.ac.ir, arfmhf@yahoo.com
The title compound, [Tl2(C3H10NO9P3)]n, a TlI organic–inorganic hybrid complex, was synthesized by the reaction of nitrilotris(methylenephosphonic acid) with thallium(I) nitrate. There are two types of Tl+ ions in the complex, with coordination numbers of eight and seven and with stereochemically active and inactive lone-pair electrons, respectively. In the crystal, the doubly deprotonated ligands form two-dimensional hydrogen-bonded layers through O—H⋯O hydrogen bonds. The NH group is involved in a trifurcated intramolecular hydrogen bond. Coordination of the phosphonate ligands to the Tl+ ions creates a three-dimensional structure.
Related literature
For related metal phosphonate complexes of the same ligand, see: Sharma et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536809031006/su2128sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809031006/su2128Isup2.hkl
Thallium(I)nitrate (0.133 g, 0.5 mmol) was added in several portions to a solution of nitrilotris(methylenephosphonicacid) (H6L) (0.104 g, 0.35 mmol) in 12 ml of a deionized water-ethanol mixture (3:5). The solution was stirred for seven days and a white precipitate was obtained. This was filtered off and recrystallized from deionized water at rt. Colorless prism-like crystals of the title compound were obtained in 68% yield (based on the Tl atom). Elemental analysis for Tl2(H4L), C3H10NO9P3Tl2:C, 5.06; H, 1.36; N, 2.03%. Calc.: C, 5.10; H, 1.41; N, 1.98%.
The NH and OH H-atoms were located in a difference electron-density map and were refined with distance restraints: O—H = 0.82 (2) and N—H = 0.86 (2) Å, with Uiso(H) = 1.2Ueq(N,O). The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.99 Å, with Uiso(H) = 1.2 times Ueq(C).
Metal phosphonate complexes of the ligand nitrilotris(methylenephosphonic acid (H6L), giving two different types of 1:1 (M/L) metal phosphonate complexes, M[NH(CH2PO3H)3(H2O)3](M = Mn, Co, Ni, Cu, Zn, Cd), with two-dimensional hydrogen-bonded layered structures, have been prepared previously by (Sharma et al., 2001).
In the structure of the title compound, synthesized by the reaction of the same ligand with thallium(I) nitrate, the nitrilotris(methylenephosphonate) (H4L2-) group is doublely deprotonated and two different environments for the Thallium atoms are observed, as shown in Figs. 1 and 2. Eight O-atoms of five H4L2- phosphonate ligands are coordinated to the Tl1 ion (Fig. 1), while seven oxygen atoms of five H4L2- phosphonate ligands are coordinated to the Tl2 ion (Fig. 2).
The conformation of the doublely deprotonated nitrilotris(methylenephosphonate) ligand is illustrated in Fig. 3. The hydrogen atoms on atoms O1 and O2 are positionally disordered with relative occupancies of 0.5:0.5. Each H4L2- dianion links to five Tl1 and five Tl2 ions (Fig. 4).
The doublely deprotonated H4L2- ligand forms two-dimensional hydrogen bonded layers via O—H···O hydrogen bonds involving hydroxyl groups O1, O2, O6 and O7 (Table 1 and Fig. 5). Atoms O3, O5 and O8 do not contribute in this type of hydrogen bond, rather they coordinate only to the Tl+ions. The NH group is involved in a 4-centre trifurcated intramolecular hydrogen bond with O-atoms O3, O5 and O8 (Table 1). Coordination of the ligand to the metal ions in the interlayer space creates a three-dimensional structure (Fig. 6).
For related metal phosphonate complexes of the same ligand, see: Sharma et al. (2001).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Environment of the Tl1 atom. | |
Fig. 2. Environment of the Tl2 atom. | |
Fig. 3. The conformation of the doubly deprotonated nitrilotris(methylenephosphonate) ligand. | |
Fig. 4. Each H4L2- dianion links to five Tl1 and five Tl2 ions. | |
Fig. 5. Two-dimensional hydrogen-bonded layers formed via O—H···O hydrogen bonds involving hydroxyl groups. | |
Fig. 6. The three-dimensional structure resulting from the coordination of the ligand to the metal ions in the interlayer space. | |
Fig. 7. Reaction scheme. |
[Tl2(C3H10NO9P3)] | Z = 2 |
Mr = 705.77 | F(000) = 628 |
Triclinic, P1 | Dx = 3.691 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9236 (6) Å | Cell parameters from 266 reflections |
b = 8.0932 (6) Å | θ = 3–26° |
c = 10.9136 (8) Å | µ = 25.76 mm−1 |
α = 81.422 (1)° | T = 100 K |
β = 79.023 (1)° | Prism, colorless |
γ = 68.085 (1)° | 0.16 × 0.14 × 0.10 mm |
V = 635.06 (8) Å3 |
Bruker APEXII CCD area-detector diffractometer | 2744 independent reflections |
Radiation source: fine-focus sealed tube | 2437 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω scans | θmax = 27.0°, θmin = 1.9° |
Absorption correction: numerical (XPREP; Bruker, 2007) | h = −10→10 |
Tmin = 0.104, Tmax = 0.183 | k = −10→10 |
6627 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0225P)2 + 1.104P] where P = (Fo2 + 2Fc2)/3 |
2744 reflections | (Δ/σ)max = 0.003 |
163 parameters | Δρmax = 1.72 e Å−3 |
12 restraints | Δρmin = −1.83 e Å−3 |
[Tl2(C3H10NO9P3)] | γ = 68.085 (1)° |
Mr = 705.77 | V = 635.06 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9236 (6) Å | Mo Kα radiation |
b = 8.0932 (6) Å | µ = 25.76 mm−1 |
c = 10.9136 (8) Å | T = 100 K |
α = 81.422 (1)° | 0.16 × 0.14 × 0.10 mm |
β = 79.023 (1)° |
Bruker APEXII CCD area-detector diffractometer | 2744 independent reflections |
Absorption correction: numerical (XPREP; Bruker, 2007) | 2437 reflections with I > 2σ(I) |
Tmin = 0.104, Tmax = 0.183 | Rint = 0.029 |
6627 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 12 restraints |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.72 e Å−3 |
2744 reflections | Δρmin = −1.83 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Tl1 | 0.29076 (3) | −0.05875 (3) | 0.25484 (2) | 0.01064 (7) | |
Tl2 | 0.23248 (3) | 0.24843 (3) | 0.54672 (2) | 0.01703 (8) | |
P1 | 0.7521 (3) | 0.2462 (3) | 0.42352 (16) | 0.0201 (4) | |
P2 | 0.7554 (2) | −0.0669 (2) | 0.10302 (14) | 0.0090 (3) | |
P3 | 0.2557 (2) | 0.4329 (2) | 0.20298 (14) | 0.0091 (3) | |
O1 | 0.6684 (8) | 0.4387 (7) | 0.4597 (5) | 0.0331 (13) | |
H1O | 0.5753 | 0.4894 | 0.5072 | 0.040* | 0.50 |
O2 | 0.9424 (7) | 0.1622 (8) | 0.4631 (5) | 0.0311 (12) | |
H2O | 0.9828 | 0.0586 | 0.4936 | 0.037* | 0.50 |
O3 | 0.6291 (6) | 0.1391 (5) | 0.4655 (4) | 0.0119 (9) | |
O4 | 0.7469 (6) | −0.1263 (6) | −0.0199 (4) | 0.0148 (9) | |
O5 | 0.6365 (6) | −0.1126 (6) | 0.2173 (4) | 0.0151 (9) | |
O6 | 0.9564 (6) | −0.1194 (5) | 0.1274 (4) | 0.0129 (9) | |
H6O | 1.0047 | −0.2157 | 0.1660 | 0.015* | |
O7 | 0.2360 (6) | 0.4303 (6) | 0.0624 (4) | 0.0145 (9) | |
H7O | 0.2418 | 0.3313 | 0.0485 | 0.017* | |
O8 | 0.2641 (6) | 0.2594 (5) | 0.2794 (4) | 0.0108 (8) | |
O9 | 0.1203 (6) | 0.6039 (6) | 0.2530 (4) | 0.0141 (9) | |
N1 | 0.6274 (7) | 0.2583 (6) | 0.2032 (4) | 0.0086 (10) | |
H1N | 0.5590 | 0.2094 | 0.2560 | 0.010* | |
C1 | 0.7944 (8) | 0.2553 (8) | 0.2523 (6) | 0.0116 (12) | |
H1A | 0.8225 | 0.3638 | 0.2177 | 0.014* | |
H1B | 0.9018 | 0.1497 | 0.2251 | 0.014* | |
C2 | 0.6768 (8) | 0.1763 (8) | 0.0791 (5) | 0.0089 (11) | |
H2A | 0.7749 | 0.2130 | 0.0257 | 0.011* | |
H2B | 0.5677 | 0.2209 | 0.0351 | 0.011* | |
C3 | 0.4836 (8) | 0.4433 (8) | 0.1986 (6) | 0.0111 (12) | |
H3A | 0.5140 | 0.5133 | 0.1209 | 0.013* | |
H3B | 0.4828 | 0.5047 | 0.2708 | 0.013* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tl1 | 0.00946 (12) | 0.01138 (12) | 0.01117 (12) | −0.00463 (9) | −0.00049 (9) | −0.00006 (9) |
Tl2 | 0.01643 (14) | 0.01862 (14) | 0.00967 (13) | −0.00101 (10) | 0.00066 (10) | 0.00088 (10) |
P1 | 0.0291 (10) | 0.0340 (10) | 0.0090 (8) | −0.0260 (9) | −0.0018 (7) | 0.0005 (7) |
P2 | 0.0088 (7) | 0.0092 (7) | 0.0072 (7) | −0.0023 (6) | 0.0003 (6) | 0.0001 (6) |
P3 | 0.0081 (7) | 0.0095 (7) | 0.0080 (7) | −0.0021 (6) | 0.0001 (6) | 0.0003 (6) |
O1 | 0.048 (3) | 0.031 (2) | 0.028 (2) | −0.026 (2) | 0.006 (2) | −0.0084 (19) |
O2 | 0.023 (2) | 0.051 (3) | 0.027 (2) | −0.0233 (19) | −0.0095 (18) | 0.0074 (19) |
O3 | 0.011 (2) | 0.012 (2) | 0.013 (2) | −0.0062 (17) | −0.0001 (18) | 0.0018 (17) |
O4 | 0.023 (2) | 0.010 (2) | 0.011 (2) | −0.0034 (18) | −0.0045 (19) | −0.0010 (17) |
O5 | 0.010 (2) | 0.020 (2) | 0.011 (2) | −0.0038 (18) | 0.0011 (18) | 0.0028 (18) |
O6 | 0.010 (2) | 0.010 (2) | 0.015 (2) | −0.0028 (17) | −0.0031 (18) | 0.0090 (17) |
O7 | 0.020 (2) | 0.012 (2) | 0.011 (2) | −0.0045 (19) | −0.0062 (19) | 0.0013 (17) |
O8 | 0.010 (2) | 0.009 (2) | 0.012 (2) | −0.0033 (17) | 0.0013 (17) | −0.0001 (16) |
O9 | 0.011 (2) | 0.013 (2) | 0.014 (2) | 0.0010 (18) | −0.0017 (18) | −0.0027 (18) |
N1 | 0.009 (2) | 0.011 (2) | 0.007 (2) | −0.005 (2) | 0.0031 (19) | −0.0031 (19) |
C1 | 0.009 (3) | 0.016 (3) | 0.014 (3) | −0.007 (2) | −0.001 (2) | −0.004 (2) |
C2 | 0.006 (3) | 0.011 (3) | 0.007 (3) | −0.001 (2) | 0.002 (2) | −0.001 (2) |
C3 | 0.010 (3) | 0.012 (3) | 0.009 (3) | −0.003 (2) | 0.004 (2) | −0.006 (2) |
Tl1—O8 | 2.555 (4) | P3—C3 | 1.830 (6) |
Tl1—O5 | 2.569 (4) | O1—Tl2iii | 2.906 (5) |
Tl1—O4i | 2.778 (4) | O1—H1O | 0.8200 |
Tl1—O3ii | 3.159 (4) | O2—Tl2vi | 2.965 (5) |
Tl2—O5ii | 2.870 (4) | O2—H2O | 0.8201 |
Tl2—O8 | 2.871 (4) | O3—Tl2ii | 2.926 (4) |
Tl2—O1iii | 2.906 (5) | O3—Tl1ii | 3.159 (4) |
Tl2—O3 | 2.922 (4) | O4—Tl1i | 2.778 (4) |
Tl2—O3ii | 2.926 (4) | O5—Tl2ii | 2.870 (4) |
Tl2—O2iv | 2.965 (5) | O6—H6O | 0.8200 |
Tl2—O9v | 3.159 (4) | O7—H7O | 0.8201 |
P1—O3 | 1.501 (4) | O9—Tl2v | 3.159 (4) |
P1—O2 | 1.522 (5) | N1—C3 | 1.506 (7) |
P1—O1 | 1.529 (6) | N1—C1 | 1.510 (7) |
P1—C1 | 1.829 (6) | N1—C2 | 1.517 (7) |
P2—O5 | 1.502 (5) | N1—H1N | 0.8699 |
P2—O4 | 1.512 (4) | C1—H1A | 0.9900 |
P2—O6 | 1.552 (4) | C1—H1B | 0.9900 |
P2—C2 | 1.823 (6) | C2—H2A | 0.9900 |
P3—O9 | 1.503 (4) | C2—H2B | 0.9900 |
P3—O8 | 1.507 (4) | C3—H3A | 0.9900 |
P3—O7 | 1.576 (4) | C3—H3B | 0.9900 |
O8—Tl1—O5 | 82.65 (14) | O9—P3—O7 | 109.6 (2) |
O8—Tl1—O4i | 73.72 (13) | O8—P3—O7 | 112.4 (2) |
O5—Tl1—O4i | 90.64 (13) | O9—P3—C3 | 105.9 (3) |
O8—Tl1—O3ii | 84.83 (12) | O8—P3—C3 | 104.2 (3) |
O5—Tl1—O3ii | 80.14 (12) | O7—P3—C3 | 105.6 (3) |
O4i—Tl1—O3ii | 157.62 (11) | P1—O1—Tl2iii | 140.5 (3) |
O8—Tl1—Tl2 | 42.43 (9) | P1—O1—H1O | 131.2 |
O5—Tl1—Tl2 | 88.38 (10) | Tl2iii—O1—H1O | 87.0 |
O4i—Tl1—Tl2 | 115.70 (8) | P1—O2—Tl2vi | 142.9 (3) |
O3ii—Tl1—Tl2 | 44.31 (7) | P1—O2—H2O | 122.8 |
O5ii—Tl2—O8 | 153.26 (12) | Tl2vi—O2—H2O | 91.4 |
O5ii—Tl2—O1iii | 90.93 (14) | P1—O3—Tl2 | 131.5 (2) |
O8—Tl2—O1iii | 94.48 (13) | P1—O3—Tl2ii | 121.5 (2) |
O5ii—Tl2—O3 | 79.76 (12) | Tl2—O3—Tl2ii | 106.77 (13) |
O8—Tl2—O3 | 76.90 (12) | P1—O3—Tl1ii | 95.14 (19) |
O1iii—Tl2—O3 | 72.87 (14) | Tl2—O3—Tl1ii | 91.85 (11) |
O5ii—Tl2—O3ii | 76.88 (12) | Tl2ii—O3—Tl1ii | 86.74 (11) |
O8—Tl2—O3ii | 84.01 (11) | P2—O4—Tl1i | 130.9 (2) |
O1iii—Tl2—O3ii | 145.49 (14) | P2—O5—Tl1 | 130.2 (2) |
O3—Tl2—O3ii | 73.23 (13) | P2—O5—Tl2ii | 122.6 (2) |
O5ii—Tl2—O2iv | 123.69 (14) | Tl1—O5—Tl2ii | 106.85 (15) |
O8—Tl2—O2iv | 66.41 (13) | P2—O6—H6O | 119.1 |
O1iii—Tl2—O2iv | 137.28 (16) | P3—O7—H7O | 111.0 |
O3—Tl2—O2iv | 132.04 (14) | P3—O8—Tl1 | 141.1 (2) |
O3ii—Tl2—O2iv | 73.22 (14) | P3—O8—Tl2 | 118.2 (2) |
O5ii—Tl2—O9v | 76.06 (12) | Tl1—O8—Tl2 | 100.67 (13) |
O8—Tl2—O9v | 129.64 (11) | P3—O9—Tl2v | 141.9 (3) |
O1iii—Tl2—O9v | 92.73 (14) | C3—N1—C1 | 111.4 (4) |
O3—Tl2—O9v | 151.59 (11) | C3—N1—C2 | 112.6 (4) |
O3ii—Tl2—O9v | 114.72 (11) | C1—N1—C2 | 112.4 (4) |
O2iv—Tl2—O9v | 74.91 (13) | C3—N1—H1N | 95.5 |
O5ii—Tl2—Tl1 | 125.55 (9) | C1—N1—H1N | 113.9 |
O8—Tl2—Tl1 | 36.90 (8) | C2—N1—H1N | 109.9 |
O1iii—Tl2—Tl1 | 129.09 (10) | N1—C1—P1 | 110.2 (4) |
O3—Tl2—Tl1 | 79.78 (8) | N1—C1—H1A | 109.6 |
O3ii—Tl2—Tl1 | 48.95 (8) | P1—C1—H1A | 109.6 |
O2iv—Tl2—Tl1 | 52.33 (11) | N1—C1—H1B | 109.6 |
O9v—Tl2—Tl1 | 126.82 (8) | P1—C1—H1B | 109.6 |
O3—P1—O2 | 115.2 (3) | H1A—C1—H1B | 108.1 |
O3—P1—O1 | 114.5 (3) | N1—C2—P2 | 110.9 (4) |
O2—P1—O1 | 108.2 (3) | N1—C2—H2A | 109.5 |
O3—P1—C1 | 106.0 (3) | P2—C2—H2A | 109.5 |
O2—P1—C1 | 104.8 (3) | N1—C2—H2B | 109.5 |
O1—P1—C1 | 107.4 (3) | P2—C2—H2B | 109.5 |
O5—P2—O4 | 117.4 (3) | H2A—C2—H2B | 108.1 |
O5—P2—O6 | 111.2 (2) | N1—C3—P3 | 110.7 (4) |
O4—P2—O6 | 112.0 (3) | N1—C3—H3A | 109.5 |
O5—P2—C2 | 106.8 (3) | P3—C3—H3A | 109.5 |
O4—P2—C2 | 104.8 (3) | N1—C3—H3B | 109.5 |
O6—P2—C2 | 103.2 (3) | P3—C3—H3B | 109.5 |
O9—P3—O8 | 118.1 (3) | H3A—C3—H3B | 108.1 |
O8—Tl1—Tl2—O5ii | −151.22 (18) | O5—P2—O4—Tl1i | 132.5 (3) |
O5—Tl1—Tl2—O5ii | −70.36 (17) | O6—P2—O4—Tl1i | −97.0 (3) |
O4i—Tl1—Tl2—O5ii | −160.29 (15) | C2—P2—O4—Tl1i | 14.2 (4) |
O3ii—Tl1—Tl2—O5ii | 7.15 (15) | O4—P2—O5—Tl1 | −51.5 (4) |
O5—Tl1—Tl2—O8 | 80.86 (17) | O6—P2—O5—Tl1 | 177.6 (3) |
O4i—Tl1—Tl2—O8 | −9.07 (17) | C2—P2—O5—Tl1 | 65.7 (4) |
O3ii—Tl1—Tl2—O8 | 158.37 (18) | O4—P2—O5—Tl2ii | 136.2 (3) |
O8—Tl1—Tl2—O1iii | −23.9 (2) | O6—P2—O5—Tl2ii | 5.3 (3) |
O5—Tl1—Tl2—O1iii | 56.95 (18) | C2—P2—O5—Tl2ii | −106.6 (3) |
O4i—Tl1—Tl2—O1iii | −32.99 (19) | O8—Tl1—O5—P2 | −77.8 (3) |
O3ii—Tl1—Tl2—O1iii | 134.46 (19) | O4i—Tl1—O5—P2 | −4.3 (3) |
O8—Tl1—Tl2—O3 | −81.77 (16) | O3ii—Tl1—O5—P2 | −163.8 (3) |
O5—Tl1—Tl2—O3 | −0.90 (12) | Tl2—Tl1—O5—P2 | −120.0 (3) |
O4i—Tl1—Tl2—O3 | −90.84 (13) | O8—Tl1—O5—Tl2ii | 95.39 (16) |
O3ii—Tl1—Tl2—O3 | 76.60 (15) | O4i—Tl1—O5—Tl2ii | 168.88 (15) |
O8—Tl1—Tl2—O3ii | −158.37 (18) | O3ii—Tl1—O5—Tl2ii | 9.39 (13) |
O5—Tl1—Tl2—O3ii | −77.51 (15) | Tl2—Tl1—O5—Tl2ii | 53.19 (12) |
O4i—Tl1—Tl2—O3ii | −167.44 (15) | O9—P3—O8—Tl1 | 137.8 (3) |
O8—Tl1—Tl2—O2iv | 100.75 (19) | O7—P3—O8—Tl1 | 8.7 (5) |
O5—Tl1—Tl2—O2iv | −178.39 (16) | C3—P3—O8—Tl1 | −105.1 (4) |
O4i—Tl1—Tl2—O2iv | 91.67 (17) | O9—P3—O8—Tl2 | −39.7 (3) |
O3ii—Tl1—Tl2—O2iv | −100.88 (17) | O7—P3—O8—Tl2 | −168.8 (2) |
O8—Tl1—Tl2—O9v | 109.29 (17) | C3—P3—O8—Tl2 | 77.3 (3) |
O5—Tl1—Tl2—O9v | −169.85 (14) | O5—Tl1—O8—P3 | 86.5 (4) |
O4i—Tl1—Tl2—O9v | 100.22 (15) | O4i—Tl1—O8—P3 | −6.3 (4) |
O3ii—Tl1—Tl2—O9v | −92.34 (15) | O3ii—Tl1—O8—P3 | 167.2 (4) |
O3—P1—O1—Tl2iii | 173.5 (4) | Tl2—Tl1—O8—P3 | −177.8 (5) |
O2—P1—O1—Tl2iii | 43.6 (5) | O5—Tl1—O8—Tl2 | −95.68 (14) |
C1—P1—O1—Tl2iii | −69.0 (5) | O4i—Tl1—O8—Tl2 | 171.49 (16) |
O3—P1—O2—Tl2vi | −143.4 (4) | O3ii—Tl1—O8—Tl2 | −14.98 (12) |
O1—P1—O2—Tl2vi | −13.9 (6) | O5ii—Tl2—O8—P3 | −121.0 (3) |
C1—P1—O2—Tl2vi | 100.4 (5) | O1iii—Tl2—O8—P3 | −20.0 (3) |
O2—P1—O3—Tl2 | 144.1 (3) | O3—Tl2—O8—P3 | −91.2 (2) |
O1—P1—O3—Tl2 | 17.7 (4) | O3ii—Tl2—O8—P3 | −165.3 (3) |
C1—P1—O3—Tl2 | −100.5 (3) | O2iv—Tl2—O8—P3 | 120.4 (3) |
O2—P1—O3—Tl2ii | −42.3 (4) | O9v—Tl2—O8—P3 | 77.3 (3) |
O1—P1—O3—Tl2ii | −168.6 (3) | Tl1—Tl2—O8—P3 | 178.4 (3) |
C1—P1—O3—Tl2ii | 73.1 (3) | O5ii—Tl2—O8—Tl1 | 60.5 (3) |
O2—P1—O3—Tl1ii | 47.0 (3) | O1iii—Tl2—O8—Tl1 | 161.60 (16) |
O1—P1—O3—Tl1ii | −79.3 (3) | O3—Tl2—O8—Tl1 | 90.36 (14) |
C1—P1—O3—Tl1ii | 162.5 (2) | O3ii—Tl2—O8—Tl1 | 16.23 (13) |
O5ii—Tl2—O3—P1 | −106.4 (3) | O2iv—Tl2—O8—Tl1 | −58.05 (16) |
O8—Tl2—O3—P1 | 86.7 (3) | O9v—Tl2—O8—Tl1 | −101.10 (16) |
O1iii—Tl2—O3—P1 | −12.2 (3) | O8—P3—O9—Tl2v | −15.8 (5) |
O3ii—Tl2—O3—P1 | 174.3 (4) | O7—P3—O9—Tl2v | 114.7 (4) |
O2iv—Tl2—O3—P1 | 127.0 (3) | C3—P3—O9—Tl2v | −131.9 (4) |
O9v—Tl2—O3—P1 | −74.5 (4) | C3—N1—C1—P1 | 80.8 (5) |
Tl1—Tl2—O3—P1 | 124.3 (3) | C2—N1—C1—P1 | −151.7 (4) |
O5ii—Tl2—O3—Tl2ii | 79.25 (14) | O3—P1—C1—N1 | 33.2 (5) |
O8—Tl2—O3—Tl2ii | −87.61 (13) | O2—P1—C1—N1 | 155.5 (4) |
O1iii—Tl2—O3—Tl2ii | 173.44 (17) | O1—P1—C1—N1 | −89.7 (5) |
O3ii—Tl2—O3—Tl2ii | 0.0 | C3—N1—C2—P2 | −152.4 (4) |
O2iv—Tl2—O3—Tl2ii | −47.3 (2) | C1—N1—C2—P2 | 80.8 (5) |
O9v—Tl2—O3—Tl2ii | 111.2 (2) | O5—P2—C2—N1 | 39.1 (4) |
Tl1—Tl2—O3—Tl2ii | −50.01 (10) | O4—P2—C2—N1 | 164.3 (4) |
O5ii—Tl2—O3—Tl1ii | −7.90 (11) | O6—P2—C2—N1 | −78.3 (4) |
O8—Tl2—O3—Tl1ii | −174.76 (12) | C1—N1—C3—P3 | −156.6 (4) |
O1iii—Tl2—O3—Tl1ii | 86.28 (14) | C2—N1—C3—P3 | 76.0 (5) |
O3ii—Tl2—O3—Tl1ii | −87.15 (13) | O9—P3—C3—N1 | 156.2 (4) |
O2iv—Tl2—O3—Tl1ii | −134.49 (15) | O8—P3—C3—N1 | 31.0 (4) |
O9v—Tl2—O3—Tl1ii | 24.0 (3) | O7—P3—C3—N1 | −87.6 (4) |
Tl1—Tl2—O3—Tl1ii | −137.17 (9) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) −x, −y+1, −z+1; (vi) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3 | 0.87 | 2.39 | 2.882 (5) | 116 |
N1—H1N···O5 | 0.87 | 2.53 | 2.957 (6) | 111 |
N1—H1N···O8 | 0.87 | 2.19 | 2.837 (7) | 131 |
O1—H1O···O1iii | 0.82 | 1.78 | 2.504 (8) | 147 |
O2—H2O···O2vii | 0.82 | 1.68 | 2.497 (7) | 171 |
O6—H6O···O9viii | 0.82 | 1.67 | 2.484 (6) | 171 |
O7—H7O···O4i | 0.82 | 1.70 | 2.521 (6) | 180 |
Symmetry codes: (i) −x+1, −y, −z; (iii) −x+1, −y+1, −z+1; (vii) −x+2, −y, −z+1; (viii) x+1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Tl2(C3H10NO9P3)] |
Mr | 705.77 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.9236 (6), 8.0932 (6), 10.9136 (8) |
α, β, γ (°) | 81.422 (1), 79.023 (1), 68.085 (1) |
V (Å3) | 635.06 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 25.76 |
Crystal size (mm) | 0.16 × 0.14 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Numerical (XPREP; Bruker, 2007) |
Tmin, Tmax | 0.104, 0.183 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6627, 2744, 2437 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.055, 1.05 |
No. of reflections | 2744 |
No. of parameters | 163 |
No. of restraints | 12 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.72, −1.83 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3 | 0.87 | 2.39 | 2.882 (5) | 116 |
N1—H1N···O5 | 0.87 | 2.53 | 2.957 (6) | 111 |
N1—H1N···O8 | 0.87 | 2.19 | 2.837 (7) | 131 |
O1—H1O···O1i | 0.82 | 1.78 | 2.504 (8) | 147 |
O2—H2O···O2ii | 0.82 | 1.68 | 2.497 (7) | 171 |
O6—H6O···O9iii | 0.82 | 1.67 | 2.484 (6) | 171 |
O7—H7O···O4iv | 0.82 | 1.70 | 2.521 (6) | 180 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y, −z+1; (iii) x+1, y−1, z; (iv) −x+1, −y, −z. |
Acknowledgements
Support of this investigation by Tarbiat Modares University Research Council is gratefully acknowledged.
References
Bruker (2007). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sharma, C. V. K., Clearfield, A., Cabeza, A., Aranda, M. A. G. & Bruque, S. (2001). J. Am. Chem. Soc. 123, 2885–2886. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal phosphonate complexes of the ligand nitrilotris(methylenephosphonic acid (H6L), giving two different types of 1:1 (M/L) metal phosphonate complexes, M[NH(CH2PO3H)3(H2O)3](M = Mn, Co, Ni, Cu, Zn, Cd), with two-dimensional hydrogen-bonded layered structures, have been prepared previously by (Sharma et al., 2001).
In the structure of the title compound, synthesized by the reaction of the same ligand with thallium(I) nitrate, the nitrilotris(methylenephosphonate) (H4L2-) group is doublely deprotonated and two different environments for the Thallium atoms are observed, as shown in Figs. 1 and 2. Eight O-atoms of five H4L2- phosphonate ligands are coordinated to the Tl1 ion (Fig. 1), while seven oxygen atoms of five H4L2- phosphonate ligands are coordinated to the Tl2 ion (Fig. 2).
The conformation of the doublely deprotonated nitrilotris(methylenephosphonate) ligand is illustrated in Fig. 3. The hydrogen atoms on atoms O1 and O2 are positionally disordered with relative occupancies of 0.5:0.5. Each H4L2- dianion links to five Tl1 and five Tl2 ions (Fig. 4).
The doublely deprotonated H4L2- ligand forms two-dimensional hydrogen bonded layers via O—H···O hydrogen bonds involving hydroxyl groups O1, O2, O6 and O7 (Table 1 and Fig. 5). Atoms O3, O5 and O8 do not contribute in this type of hydrogen bond, rather they coordinate only to the Tl+ions. The NH group is involved in a 4-centre trifurcated intramolecular hydrogen bond with O-atoms O3, O5 and O8 (Table 1). Coordination of the ligand to the metal ions in the interlayer space creates a three-dimensional structure (Fig. 6).