organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-isonicotinamido­benzoate monohydrate

aShanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
*Correspondence e-mail: xlzhao@chem.ecnu.edu.cn

(Received 23 March 2010; accepted 25 June 2010; online 3 July 2010)

The title compound, C14H12N2O3·H2O, synthesized by the reaction of methyl 4-amino­benzoate with isonicotinoyl chloride hydro­chloride, is relatively planar, with the pyridine ring being inclined by 7.46 (7)° to the benzene ring. In the crystal, the methyl 4-isonicotinamido­benzoate mol­ecules are inter­linked by water mol­ecules via N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, leading to the formation of a double-chain ribbon-like structure.

Related literature

For the synthesis of methyl 4-amino­benzoate and isonicotinoyl chloride hydro­chloride, see: Margiotta et al. (2008[Margiotta, N., Capitelli, F., Ostuni, R. & Natile, G. (2008). J. Inorg. Biochem. 102. 2078-2086]). For the use of such ligands in coordination chemistry, see: Saeed et al. (2010[Saeed, A., Khera, R. A., Siddiq, M. & Simpson, J. (2010). Acta Cryst. E66, o19.]); Kitagawa (2005[Kitagawa, S. (2005). J. Am. Chem. Soc. 129, 2607-2614.]). For standard bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O3·H2O

  • Mr = 274.27

  • Triclinic, [P \overline 1]

  • a = 6.8836 (3) Å

  • b = 8.8810 (4) Å

  • c = 10.9658 (5) Å

  • α = 96.062 (1)°

  • β = 90.896 (1)°

  • γ = 95.854 (1)°

  • V = 662.91 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.48 × 0.37 × 0.27 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.973

  • 7689 measured reflections

  • 2318 independent reflections

  • 1968 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.102

  • S = 1.06

  • 2318 reflections

  • 181 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1Wi 0.86 2.10 2.9014 (14) 155
O1W—H1WA⋯N2ii 0.92 1.94 2.8510 (16) 169
O1W—H1WB⋯O2 0.89 1.96 2.8385 (14) 172
Symmetry codes: (i) -x, -y+2, -z; (ii) x+1, y+1, z-1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The title compound was synthesized as a potential ligand for use in coordination chemistry (Saeed et al., 2010; Kitagawa, 2005). It was synthesized via the reacton of methyl 4-benzoate with isonicotinoyl.HCl and contains both a coordination site [the N atom in the pyridyl ring], and a guest interaction site [the amide group].

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances are normal (Allen et al., 1987), and the molecule is relatively planar with the dihedral angle involving the pyridine and benezene rings being 7.46 (7)°.

In the crystal molecules are connected by hydrogen bonds, with the water molecule H-atoms serving as hydrogen-bond donors and the pyridyl nitrogen and ester oxygen atoms serving as acceptors (Fig. 2 and Table 1). At the same time, the amide nitrogen atom acts as a hydrogen-bond donor and the water oxygen atom as a hydrogen-bond acceptor. In this way a double stranded ribbon-like structure is formed with base vector [11-1].

Related literature top

For the synthesis of methyl 4-aminobenzoate and isonicotinoyl chloride hydrochloride, see: Margiotta et al. (2008). For literature related to the use of such ligands in coordination chemistry, see: Saeed et al. (2010); Kitagawa (2005). For standard bond distances, see: Allen et al. (1987).

Experimental top

Methyl 4-aminobenzoate and isonicotinoyl chloride hydrochloride were synthesized using the literature methods (Margiotta et al., 2008). Methy 4-aminobenzoate (3.02 g, 20 mmol), isonicotinoyl chloride hydrochloride (3.56 g, 20 mmol), and K2CO3 (5.52 g, 49 mmol) were mixed in acetone (100 ml). The mixture was kept at 343 K for 8 h with constant stirring. The white precipitate that formed was filtered off and washed with distilled water and then dried. Colourless block-like crystals, suitable for x-ray analysis, were obtained from a DMF-methanol solution (1:1; v:v) via vapour evaporation at room temperature after two weeks.

Refinement top

The water molecule H-atoms were located in a difference Fourier map and were refined with Uiso(H) = 1.5Ueq(Ow) and a restrained bond distance of 0.85 (2) Å. The remaining H-atoms were positioned geometrically and refined using a riding model: N-H = 0.86 Å, C—H = 0.93–0.96 Å with Uiso(H) = k × Ueq(N,C), where k = 1.2 for NH, CH and CH2 H-atoms, and k = 1.5 for CH3 H-atoms.

Structure description top

The title compound was synthesized as a potential ligand for use in coordination chemistry (Saeed et al., 2010; Kitagawa, 2005). It was synthesized via the reacton of methyl 4-benzoate with isonicotinoyl.HCl and contains both a coordination site [the N atom in the pyridyl ring], and a guest interaction site [the amide group].

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances are normal (Allen et al., 1987), and the molecule is relatively planar with the dihedral angle involving the pyridine and benezene rings being 7.46 (7)°.

In the crystal molecules are connected by hydrogen bonds, with the water molecule H-atoms serving as hydrogen-bond donors and the pyridyl nitrogen and ester oxygen atoms serving as acceptors (Fig. 2 and Table 1). At the same time, the amide nitrogen atom acts as a hydrogen-bond donor and the water oxygen atom as a hydrogen-bond acceptor. In this way a double stranded ribbon-like structure is formed with base vector [11-1].

For the synthesis of methyl 4-aminobenzoate and isonicotinoyl chloride hydrochloride, see: Margiotta et al. (2008). For literature related to the use of such ligands in coordination chemistry, see: Saeed et al. (2010); Kitagawa (2005). For standard bond distances, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing one layer of molecules connected by O—H···N, O—H···O and N—H···O hydrogen bonds (dashed lines) [Symmetry codes: A = x+1, y+1, z-1; B = -x, -y+2, -z].
Methyl 4-isonicotinamidobenzoate monohydrate top
Crystal data top
C14H12N2O3·H2OZ = 2
Mr = 274.27F(000) = 288
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8836 (3) ÅCell parameters from 4652 reflections
b = 8.8810 (4) Åθ = 2.3–28.3°
c = 10.9658 (5) ŵ = 0.10 mm1
α = 96.062 (1)°T = 296 K
β = 90.896 (1)°Block, colourless
γ = 95.854 (1)°0.48 × 0.37 × 0.27 mm
V = 662.91 (5) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2318 independent reflections
Radiation source: fine-focus sealed tube1968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 1.9°
thin–slice ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.952, Tmax = 0.973l = 1312
7689 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.1234P]
where P = (Fo2 + 2Fc2)/3
2318 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.14 e Å3
3 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H12N2O3·H2Oγ = 95.854 (1)°
Mr = 274.27V = 662.91 (5) Å3
Triclinic, P1Z = 2
a = 6.8836 (3) ÅMo Kα radiation
b = 8.8810 (4) ŵ = 0.10 mm1
c = 10.9658 (5) ÅT = 296 K
α = 96.062 (1)°0.48 × 0.37 × 0.27 mm
β = 90.896 (1)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2318 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1968 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.973Rint = 0.015
7689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
2318 reflectionsΔρmin = 0.16 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02099 (15)0.81758 (12)0.39503 (10)0.0431 (3)
H1A0.09560.78300.36980.052*
N20.34705 (19)0.52096 (14)0.70330 (12)0.0576 (3)
O30.61235 (16)1.21607 (13)0.08752 (10)0.0623 (3)
O20.33143 (18)1.24867 (15)0.00513 (11)0.0772 (4)
O10.23987 (15)0.81573 (15)0.55168 (10)0.0713 (4)
O1W0.30526 (15)1.33795 (13)0.24537 (9)0.0662 (3)
H1WA0.42231.39640.25160.099*
H1WB0.31421.31920.16770.099*
C10.7154 (3)1.3157 (2)0.00895 (17)0.0722 (5)
H1B0.85271.32510.02900.108*
H1C0.66851.41420.02070.108*
H1D0.69371.27400.07510.108*
C20.4195 (2)1.19167 (16)0.07065 (12)0.0507 (4)
C30.3244 (2)1.08944 (15)0.15573 (11)0.0440 (3)
C40.1229 (2)1.05719 (15)0.14751 (12)0.0480 (3)
H4A0.05211.09740.08810.058*
C50.0271 (2)0.96663 (15)0.22619 (12)0.0462 (3)
H5A0.10790.94520.21920.055*
C60.13107 (19)0.90658 (14)0.31652 (11)0.0397 (3)
C70.3329 (2)0.93699 (16)0.32434 (12)0.0467 (3)
H7A0.40410.89630.38330.056*
C80.4280 (2)1.02781 (16)0.24441 (13)0.0479 (3)
H8A0.56331.04790.25010.057*
C90.07765 (19)0.78029 (15)0.50566 (12)0.0442 (3)
C100.07614 (19)0.69056 (14)0.57202 (11)0.0408 (3)
C110.2737 (2)0.69375 (16)0.55336 (12)0.0483 (3)
H11A0.32010.75220.49590.058*
C120.4020 (2)0.60887 (18)0.62121 (14)0.0573 (4)
H12A0.53510.61360.60860.069*
C130.1559 (2)0.51992 (17)0.72155 (14)0.0566 (4)
H13A0.11370.45970.77900.068*
C140.0171 (2)0.60287 (16)0.66023 (13)0.0515 (4)
H14A0.11510.60020.67780.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0379 (6)0.0495 (6)0.0418 (6)0.0031 (5)0.0043 (4)0.0129 (5)
N20.0608 (8)0.0573 (7)0.0527 (7)0.0070 (6)0.0120 (6)0.0074 (6)
O30.0606 (7)0.0702 (7)0.0580 (6)0.0041 (5)0.0084 (5)0.0254 (5)
O20.0824 (9)0.0973 (9)0.0553 (7)0.0071 (7)0.0077 (6)0.0408 (6)
O10.0464 (6)0.1138 (10)0.0532 (6)0.0184 (6)0.0125 (5)0.0349 (6)
O1W0.0574 (6)0.0887 (8)0.0504 (6)0.0217 (6)0.0132 (5)0.0287 (5)
C10.0783 (12)0.0701 (11)0.0688 (11)0.0096 (9)0.0164 (9)0.0245 (8)
C20.0648 (9)0.0515 (8)0.0351 (7)0.0004 (7)0.0007 (6)0.0076 (6)
C30.0542 (8)0.0438 (7)0.0331 (6)0.0004 (6)0.0002 (6)0.0052 (5)
C40.0552 (8)0.0509 (8)0.0383 (7)0.0027 (6)0.0103 (6)0.0115 (6)
C50.0428 (7)0.0516 (8)0.0441 (7)0.0010 (6)0.0069 (6)0.0097 (6)
C60.0432 (7)0.0388 (6)0.0369 (6)0.0018 (5)0.0015 (5)0.0053 (5)
C70.0429 (7)0.0545 (8)0.0457 (7)0.0061 (6)0.0028 (6)0.0183 (6)
C80.0420 (7)0.0565 (8)0.0461 (7)0.0018 (6)0.0008 (6)0.0134 (6)
C90.0410 (7)0.0512 (7)0.0401 (7)0.0001 (6)0.0036 (5)0.0090 (6)
C100.0428 (7)0.0423 (7)0.0365 (6)0.0013 (5)0.0017 (5)0.0034 (5)
C110.0458 (8)0.0580 (8)0.0414 (7)0.0048 (6)0.0005 (6)0.0076 (6)
C120.0429 (8)0.0741 (10)0.0522 (8)0.0028 (7)0.0048 (6)0.0027 (7)
C130.0642 (10)0.0536 (8)0.0553 (9)0.0076 (7)0.0097 (7)0.0193 (7)
C140.0473 (8)0.0592 (8)0.0513 (8)0.0093 (6)0.0046 (6)0.0180 (7)
Geometric parameters (Å, º) top
N1—C91.3528 (17)C4—C51.3721 (19)
N1—C61.4078 (16)C4—H4A0.9300
N1—H1A0.8600C5—C61.3946 (17)
N2—C121.327 (2)C5—H5A0.9300
N2—C131.329 (2)C6—C71.3879 (18)
O3—C21.3296 (18)C7—C81.3807 (19)
O3—C11.4422 (17)C7—H7A0.9300
O2—C21.2043 (18)C8—H8A0.9300
O1—C91.2156 (16)C9—C101.5032 (18)
O1W—H1WA0.9207C10—C111.3758 (19)
O1W—H1WB0.8877C10—C141.3853 (19)
C1—H1B0.9600C11—C121.380 (2)
C1—H1C0.9600C11—H11A0.9300
C1—H1D0.9600C12—H12A0.9300
C2—O21.2043 (18)C13—C141.375 (2)
C2—C31.4833 (19)C13—H13A0.9300
C3—C41.387 (2)C14—H14A0.9300
C3—C81.3871 (19)
C9—N1—C6127.41 (11)C7—C6—C5119.24 (12)
C9—N1—H1A116.3C7—C6—N1124.08 (11)
C6—N1—H1A116.3C5—C6—N1116.69 (11)
C12—N2—C13116.54 (12)C8—C7—C6119.91 (12)
C2—O3—C1116.54 (13)C8—C7—H7A120.0
O2—O2—C20 (10)C6—C7—H7A120.0
H1WA—O1W—H1WB100.2C7—C8—C3120.88 (13)
O3—C1—H1B109.5C7—C8—H8A119.6
O3—C1—H1C109.5C3—C8—H8A119.6
H1B—C1—H1C109.5O1—C9—N1124.09 (12)
O3—C1—H1D109.5O1—C9—C10120.49 (12)
H1B—C1—H1D109.5N1—C9—C10115.42 (11)
H1C—C1—H1D109.5C11—C10—C14117.50 (12)
O2—C2—O20.00 (10)C11—C10—C9123.90 (12)
O2—C2—O3123.17 (13)C14—C10—C9118.56 (12)
O2—C2—O3123.17 (13)C10—C11—C12118.98 (13)
O2—C2—C3123.63 (14)C10—C11—H11A120.5
O2—C2—C3123.63 (14)C12—C11—H11A120.5
O3—C2—C3113.20 (12)N2—C12—C11123.99 (14)
C4—C3—C8118.92 (12)N2—C12—H12A118.0
C4—C3—C2118.31 (12)C11—C12—H12A118.0
C8—C3—C2122.76 (13)N2—C13—C14123.67 (14)
C5—C4—C3120.67 (12)N2—C13—H13A118.2
C5—C4—H4A119.7C14—C13—H13A118.2
C3—C4—H4A119.7C13—C14—C10119.26 (13)
C4—C5—C6120.37 (12)C13—C14—H14A120.4
C4—C5—H5A119.8C10—C14—H14A120.4
C6—C5—H5A119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.862.102.9014 (14)155
O1W—H1WA···N2ii0.921.942.8510 (16)169
O1W—H1WB···O20.891.962.8385 (14)172
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z1.

Experimental details

Crystal data
Chemical formulaC14H12N2O3·H2O
Mr274.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8836 (3), 8.8810 (4), 10.9658 (5)
α, β, γ (°)96.062 (1), 90.896 (1), 95.854 (1)
V3)662.91 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.37 × 0.27
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
7689, 2318, 1968
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.06
No. of reflections2318
No. of parameters181
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.862.102.9014 (14)155
O1W—H1WA···N2ii0.921.942.8510 (16)169
O1W—H1WB···O20.891.962.8385 (14)172
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z1.
 

Acknowledgements

The authors thank the National Science Foundation of China (NSFC No. 20801018) and Shanghai Education Development Foundation for financial support (grant No. 2008 C G31).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S. (2005). J. Am. Chem. Soc. 129, 2607–2614.  Google Scholar
First citationMargiotta, N., Capitelli, F., Ostuni, R. & Natile, G. (2008). J. Inorg. Biochem. 102. 2078–2086  Google Scholar
First citationSaeed, A., Khera, R. A., Siddiq, M. & Simpson, J. (2010). Acta Cryst. E66, o19.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds