metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methanol-κO)(perchlorato-κO)bis­­(tri­phenyl­phosphine-κP)silver(I)

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bBeijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 22 June 2010; accepted 14 July 2010; online 21 July 2010)

In the title complex, [Ag(ClO4)(CH3OH)(C18H15P)2], the angles around the central Ag+ ion indicate that it is in a distorted tetrahedral coordination. The coordination sphere of silver is formed by two P atoms of two triphenyl­phosphine ligands, one O atom of a perchlorate anion and one O atom of a methanol mol­ecule. The crystal structure is stablized by a bifurcated inter­molecular O—H⋯O hydrogen bond, involving the O—H donor from methanol and two acceptor O atoms from the perchlorate anion, so forming a zigzag chain propagating in [010].

Related literature

For related structures, see: Cui et al. (2010[Cui, L.-N., Hu, K.-Y., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m871.]); Cingolani et al. (2002[Cingolani, A., Effendy, Pellei, M., Pettinari,C., Santini, C., Skelton, B.W.& White, A.H. (2002). Inorg. Chem. 41, 6633-6645.]); Nicola et al. (2007[Nicola, C.D., Effendy, Marchetti, F., Pettinari, C., Skelton, B.W. & White, A.H. (2007). Inorg. Chim. Acta, 360, 1433-1450.]); Pettinari et al. (2007[Pettinari, C., Ngoune, J., Skelton, B. W. & White, A. H. (2007). Inorg. Chem. Commun. 10, 329-331.]); Effendy et al. (2007a[Effendy, Marchetti, F., Pettinari, C., Skelton, B.W.& White, A.H. (2007a). Inorg. Chim. Acta, 360, 1424-1432.],b[Effendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B.W. & White, A.H. (2007b). Inorg. Chim. Acta, 360, 1451-1465.]); Awaleh et al. (2005[Awaleh, M. O., Badia, A. & Brisse, F. (2005). Inorg. Chem. 44, 7833-7845.]); Balakrishna et al. (2009[Balakrishna, M. S., Venkateswaran, R. & Mobin, S. M. (2009). Inorg. Chim. Acta, 362, 271-276.]). For general backgound to the structural chemistry of silver(I) complexes with ligands containing phosphine groups and nitro­gen atoms, see: Jin et al. (2010[Jin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010). Polyhedron, 29, 441-445.]); Wu et al. (2009[Wu, J.-Q., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2009). Acta Cryst. E65, m1096-m1097.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(ClO4)(CH4O)(C18H15P)2]

  • Mr = 763.90

  • Monoclinic, P 21 /n

  • a = 13.6426 (15) Å

  • b = 12.8444 (14) Å

  • c = 19.714 (2) Å

  • β = 92.602 (1)°

  • V = 3450.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 298 K

  • 0.33 × 0.22 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.779, Tmax = 0.897

  • 17113 measured reflections

  • 6073 independent reflections

  • 3802 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.08

  • 6073 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.82 2.42 3.157 (6) 151
O5—H5⋯O3i 0.82 2.30 3.033 (6) 150
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a part of our studies on the systematic structural chemistry of silver(I) complexes with ligands containing phosphine and nitrogen atoms (Jin et al., 2010; Wu et al.,2009), we synthesized the new title complex, (1), under catalysis of 2-aminopyrimidine. A similar complex ([Ag(PPh3)3(ClO4)] (2) (Cui et al., 2010) was synthesized by the same reaction as for complex (1), but with a longer evaporation time. It can be assumed that during the long period of crystal growth, a PPh3 group replaces the coordinated CH3OH molecule in (1), resulting in the transformation to complex (2).

The molecular structure of the title complex, (1), is depicted in Fig. 1. The Ag+ ion is four coordinated by two phosphorus atoms from the two PPh3 ligands, one oxygen atom (O1) from a ClO4 anion and one O-atom (O5) from a molecule of methanol. The Ag—P distances of 2.4308 (11) Å and 2.4276 (11) Å are shorter than those observed in complex (2), where the Ag-P distances vary between 2.5047 (13) - 2.5641 (14) Å. They are however longer than those in complexes AgNO2:PPh3(1:1) [2.3918 (4) Å], and AgNO2:PPh3(1:2) [2.412 (1)–2.440 (1) Å] (Cingolani et al., 2002). In complex (1) the Ag—O1(perchlorate) distance of 2.540 (4) Å is shorter than that in complex (2) [2.668 (14) Å], and distance Ag—O5(methanol) is 2.414 (4) Å.

In complex (1) the P—Ag—O angles are in the range 97.68 (10) - 114.20 (9) °, the P—Ag—P angle is 133.15 (4) ° and angle O1—Ag—O5 is 92.22 (13) °. This comfirms the distored tetrahedral environment around the silver atom. In complex (2) the P—Ag—O angles are in the range of 87.1 (4) - 118.1 (4) °, while the P—Ag—P angles are in the range of 114.70 (4) - 119.17 (5)°. Other similar complexes include adducts AgX:PPh3:L where X is a simple inorganic or organic anion, including nitrate (Jin et al., 2010; Nicola et al., 2007), nitrite (Pettinari et al.,2007), acetate (Effendy et al.,2007a), perchlorate (Effendy et al.,2007b), and trifluoroacetate (Awaleh et al., 2005; Balakrishna et al.; 2009; Wu et al., 2009).

In the crystal structure of the title complex, (1), symmetry related molecules are linked via a bifocated O-H···O hydrogen bond involving the methanol OH group and two perchlorate O-atoms, O2 and O3 (Table 1). In this manner zigzag chains are formed propagating along [010].

Related literature top

For related structures, see: Cui et al. (2010); Cingolani et al. (2002); Nicola et al. (2007); Pettinari et al. (2007); Effendy et al. (2007a,b); Awaleh et al. (2005); Balakrishna et al. (2009). For general backgound to the structural chemistry of silver(I) complexes with ligands containing phosphine ligands and nitrogen atoms, see: Jin et al. (2010); Wu et al. (2009).

Experimental top

A mixture of AgClO4, PPh3 and 2-aminopyrimidine, in the molar ratio of 1:1:2, in CH2Cl2 and MeOH (10 ml,V/V=1/1) was stirred for 2 h at room temperature, then filtered. Subsequent slow evaporation of the filtrate resulted in the formation of colorless crystals of the title complex (1). Crystals, suitable for single-crystal X-ray diffraction, were selected directly from the sample as prepared. Analysis Found (%): C 58.50, H 5.02; calculated: C 58.19, H 4.45.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H 0.93 - 0.96 Å with Uiso(H) = k × Ueq(parent O or C-atom), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Structure description top

As a part of our studies on the systematic structural chemistry of silver(I) complexes with ligands containing phosphine and nitrogen atoms (Jin et al., 2010; Wu et al.,2009), we synthesized the new title complex, (1), under catalysis of 2-aminopyrimidine. A similar complex ([Ag(PPh3)3(ClO4)] (2) (Cui et al., 2010) was synthesized by the same reaction as for complex (1), but with a longer evaporation time. It can be assumed that during the long period of crystal growth, a PPh3 group replaces the coordinated CH3OH molecule in (1), resulting in the transformation to complex (2).

The molecular structure of the title complex, (1), is depicted in Fig. 1. The Ag+ ion is four coordinated by two phosphorus atoms from the two PPh3 ligands, one oxygen atom (O1) from a ClO4 anion and one O-atom (O5) from a molecule of methanol. The Ag—P distances of 2.4308 (11) Å and 2.4276 (11) Å are shorter than those observed in complex (2), where the Ag-P distances vary between 2.5047 (13) - 2.5641 (14) Å. They are however longer than those in complexes AgNO2:PPh3(1:1) [2.3918 (4) Å], and AgNO2:PPh3(1:2) [2.412 (1)–2.440 (1) Å] (Cingolani et al., 2002). In complex (1) the Ag—O1(perchlorate) distance of 2.540 (4) Å is shorter than that in complex (2) [2.668 (14) Å], and distance Ag—O5(methanol) is 2.414 (4) Å.

In complex (1) the P—Ag—O angles are in the range 97.68 (10) - 114.20 (9) °, the P—Ag—P angle is 133.15 (4) ° and angle O1—Ag—O5 is 92.22 (13) °. This comfirms the distored tetrahedral environment around the silver atom. In complex (2) the P—Ag—O angles are in the range of 87.1 (4) - 118.1 (4) °, while the P—Ag—P angles are in the range of 114.70 (4) - 119.17 (5)°. Other similar complexes include adducts AgX:PPh3:L where X is a simple inorganic or organic anion, including nitrate (Jin et al., 2010; Nicola et al., 2007), nitrite (Pettinari et al.,2007), acetate (Effendy et al.,2007a), perchlorate (Effendy et al.,2007b), and trifluoroacetate (Awaleh et al., 2005; Balakrishna et al.; 2009; Wu et al., 2009).

In the crystal structure of the title complex, (1), symmetry related molecules are linked via a bifocated O-H···O hydrogen bond involving the methanol OH group and two perchlorate O-atoms, O2 and O3 (Table 1). In this manner zigzag chains are formed propagating along [010].

For related structures, see: Cui et al. (2010); Cingolani et al. (2002); Nicola et al. (2007); Pettinari et al. (2007); Effendy et al. (2007a,b); Awaleh et al. (2005); Balakrishna et al. (2009). For general backgound to the structural chemistry of silver(I) complexes with ligands containing phosphine ligands and nitrogen atoms, see: Jin et al. (2010); Wu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the basic unit of the title complex, (1), with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.
(Methanol-κO)(perchlorato-κO)bis(triphenylphosphine- κP)silver(I) top
Crystal data top
[Ag(ClO4)(CH4O)(C18H15P)2]F(000) = 1560
Mr = 763.90Dx = 1.470 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4281 reflections
a = 13.6426 (15) Åθ = 2.6–23.6°
b = 12.8444 (14) ŵ = 0.80 mm1
c = 19.714 (2) ÅT = 298 K
β = 92.602 (1)°Block, colourless
V = 3450.9 (7) Å30.33 × 0.22 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6073 independent reflections
Radiation source: fine-focus sealed tube3802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 916
Tmin = 0.779, Tmax = 0.897k = 1513
17113 measured reflectionsl = 2319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0349P)2 + 2.0561P]
where P = (Fo2 + 2Fc2)/3
6073 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ag(ClO4)(CH4O)(C18H15P)2]V = 3450.9 (7) Å3
Mr = 763.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6426 (15) ŵ = 0.80 mm1
b = 12.8444 (14) ÅT = 298 K
c = 19.714 (2) Å0.33 × 0.22 × 0.14 mm
β = 92.602 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6073 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3802 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.897Rint = 0.040
17113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.08Δρmax = 0.49 e Å3
6073 reflectionsΔρmin = 0.32 e Å3
415 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.35069 (2)0.19066 (3)0.13302 (2)0.0492 (1)
Cl10.23718 (9)0.06402 (9)0.15761 (6)0.0563 (5)
P10.51164 (8)0.18659 (9)0.19116 (6)0.0434 (4)
P20.28652 (8)0.27792 (9)0.03118 (6)0.0402 (4)
O10.3162 (3)0.0036 (3)0.1356 (2)0.1009 (19)
O20.2245 (3)0.0476 (3)0.2273 (2)0.104 (2)
O30.2556 (3)0.1698 (3)0.1447 (2)0.105 (2)
O40.1519 (3)0.0337 (4)0.1199 (2)0.116 (2)
O50.2320 (4)0.2257 (3)0.2172 (2)0.117 (2)
C10.5365 (3)0.0933 (3)0.2592 (2)0.0441 (17)
C20.6309 (3)0.0626 (4)0.2795 (2)0.0595 (17)
C30.6456 (4)0.0130 (4)0.3280 (3)0.068 (2)
C40.5684 (5)0.0585 (4)0.3573 (3)0.072 (2)
C50.4755 (4)0.0293 (4)0.3378 (3)0.073 (2)
C60.4585 (4)0.0467 (4)0.2894 (2)0.0567 (17)
C70.5424 (3)0.3148 (3)0.2245 (2)0.0461 (16)
C80.5697 (4)0.3343 (4)0.2909 (3)0.071 (2)
C90.5893 (5)0.4351 (5)0.3125 (3)0.097 (3)
C100.5824 (4)0.5160 (5)0.2679 (4)0.084 (3)
C110.5531 (4)0.4978 (4)0.2022 (3)0.079 (3)
C120.5331 (4)0.3987 (4)0.1808 (3)0.065 (2)
C130.6084 (3)0.1580 (3)0.1335 (2)0.0432 (17)
C140.5900 (4)0.0818 (4)0.0847 (3)0.0598 (19)
C150.6607 (4)0.0530 (4)0.0408 (3)0.073 (2)
C160.7508 (4)0.0993 (4)0.0451 (3)0.068 (2)
C170.7709 (4)0.1730 (4)0.0933 (3)0.067 (2)
C180.7004 (3)0.2023 (4)0.1375 (2)0.0563 (17)
C190.3053 (3)0.4171 (3)0.0383 (2)0.0445 (17)
C200.2879 (3)0.4642 (4)0.0994 (3)0.0593 (19)
C210.2911 (4)0.5714 (4)0.1062 (3)0.074 (2)
C220.3139 (4)0.6310 (4)0.0518 (4)0.082 (3)
C230.3348 (5)0.5859 (4)0.0079 (3)0.090 (3)
C240.3307 (4)0.4786 (4)0.0151 (3)0.070 (2)
C250.1556 (3)0.2673 (3)0.0099 (2)0.0397 (17)
C260.0983 (3)0.3488 (4)0.0128 (2)0.0544 (17)
C270.0012 (3)0.3347 (4)0.0322 (3)0.061 (2)
C280.0394 (4)0.2396 (5)0.0299 (3)0.070 (2)
C290.0159 (4)0.1583 (4)0.0061 (4)0.095 (3)
C300.1122 (4)0.1719 (4)0.0146 (3)0.074 (2)
C310.3441 (3)0.2409 (3)0.0468 (2)0.0430 (17)
C320.2929 (4)0.2312 (4)0.1076 (3)0.070 (2)
C330.3389 (5)0.1985 (5)0.1648 (3)0.086 (3)
C340.4358 (5)0.1776 (4)0.1622 (3)0.075 (3)
C350.4887 (4)0.1880 (4)0.1021 (3)0.076 (2)
C360.4426 (3)0.2193 (4)0.0450 (3)0.063 (2)
C370.1331 (5)0.2035 (5)0.2160 (3)0.100 (3)
H20.684500.093500.260000.0720*
H30.709100.033200.341000.0810*
H40.578900.109300.390400.0870*
H50.244200.271800.245200.1760*
H5A0.422500.061100.357500.0880*
H60.394600.066500.277100.0680*
H80.575100.279600.321700.0860*
H90.607300.447700.357800.1170*
H100.597700.583300.282300.1010*
H110.546700.553000.171800.0940*
H120.512800.387400.135700.0780*
H140.528900.049600.081700.0720*
H150.647100.002100.008200.0870*
H160.798500.080500.015200.0810*
H170.832600.203800.096500.0800*
H180.715200.252600.170400.0680*
H200.273800.423300.136700.0710*
H210.277800.602500.147300.0890*
H220.315100.703100.055800.0980*
H230.352000.627100.044200.1080*
H240.345200.448200.056300.0840*
H260.125700.414900.015100.0650*
H270.036600.391300.047100.0740*
H280.104500.229500.044500.0840*
H290.012100.092400.003900.1140*
H300.148400.115800.032000.0880*
H320.226300.246800.110500.0830*
H330.302600.190800.205600.1040*
H340.466400.156400.201000.0900*
H350.555700.173900.099800.0910*
H360.479100.226000.004200.0760*
H37A0.100400.253100.243500.1490*
H37B0.123600.134700.233500.1490*
H37C0.106500.207300.170100.1490*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0433 (2)0.0591 (2)0.0444 (2)0.0019 (2)0.0073 (2)0.0065 (2)
Cl10.0676 (9)0.0462 (7)0.0551 (8)0.0017 (6)0.0021 (6)0.0027 (6)
P10.0402 (7)0.0533 (7)0.0360 (7)0.0027 (6)0.0063 (5)0.0034 (6)
P20.0383 (7)0.0454 (7)0.0363 (7)0.0003 (5)0.0036 (5)0.0033 (5)
O10.119 (3)0.070 (3)0.117 (4)0.039 (2)0.041 (3)0.014 (2)
O20.143 (4)0.122 (4)0.048 (3)0.005 (3)0.019 (2)0.002 (2)
O30.130 (4)0.040 (2)0.147 (4)0.002 (2)0.020 (3)0.012 (2)
O40.104 (3)0.131 (4)0.111 (4)0.025 (3)0.029 (3)0.001 (3)
O50.121 (4)0.120 (4)0.116 (4)0.037 (3)0.068 (3)0.067 (3)
C10.048 (3)0.051 (3)0.033 (3)0.005 (2)0.001 (2)0.001 (2)
C20.053 (3)0.073 (3)0.052 (3)0.001 (3)0.004 (2)0.014 (3)
C30.075 (4)0.071 (4)0.057 (4)0.017 (3)0.011 (3)0.009 (3)
C40.111 (5)0.059 (3)0.047 (4)0.017 (3)0.003 (3)0.009 (3)
C50.088 (4)0.067 (4)0.067 (4)0.012 (3)0.023 (3)0.011 (3)
C60.059 (3)0.060 (3)0.051 (3)0.003 (3)0.002 (2)0.004 (3)
C70.035 (2)0.052 (3)0.051 (3)0.001 (2)0.001 (2)0.002 (2)
C80.092 (4)0.064 (4)0.056 (4)0.004 (3)0.018 (3)0.010 (3)
C90.135 (6)0.076 (5)0.077 (5)0.006 (4)0.031 (4)0.027 (4)
C100.081 (4)0.059 (4)0.111 (6)0.003 (3)0.007 (4)0.024 (4)
C110.089 (4)0.060 (4)0.087 (5)0.001 (3)0.009 (3)0.003 (3)
C120.082 (4)0.063 (4)0.049 (3)0.006 (3)0.003 (3)0.001 (3)
C130.047 (3)0.047 (3)0.035 (3)0.000 (2)0.004 (2)0.003 (2)
C140.058 (3)0.061 (3)0.060 (4)0.001 (3)0.000 (3)0.007 (3)
C150.082 (4)0.066 (4)0.070 (4)0.006 (3)0.010 (3)0.017 (3)
C160.075 (4)0.065 (4)0.065 (4)0.015 (3)0.023 (3)0.005 (3)
C170.058 (3)0.076 (4)0.068 (4)0.005 (3)0.018 (3)0.006 (3)
C180.059 (3)0.062 (3)0.048 (3)0.007 (3)0.004 (2)0.007 (2)
C190.041 (3)0.052 (3)0.040 (3)0.002 (2)0.002 (2)0.002 (2)
C200.066 (3)0.057 (3)0.055 (4)0.007 (2)0.003 (2)0.007 (3)
C210.075 (4)0.072 (4)0.075 (4)0.002 (3)0.007 (3)0.033 (3)
C220.082 (4)0.051 (4)0.112 (6)0.008 (3)0.011 (4)0.014 (4)
C230.128 (6)0.055 (4)0.090 (5)0.018 (3)0.030 (4)0.004 (4)
C240.101 (4)0.054 (3)0.056 (4)0.007 (3)0.017 (3)0.002 (3)
C250.038 (3)0.043 (3)0.038 (3)0.000 (2)0.0021 (19)0.001 (2)
C260.051 (3)0.051 (3)0.060 (3)0.000 (2)0.009 (2)0.009 (2)
C270.046 (3)0.072 (4)0.065 (4)0.008 (3)0.009 (2)0.014 (3)
C280.038 (3)0.090 (4)0.081 (4)0.002 (3)0.007 (3)0.000 (3)
C290.054 (4)0.058 (4)0.170 (7)0.018 (3)0.011 (4)0.007 (4)
C300.053 (3)0.050 (3)0.117 (5)0.001 (3)0.010 (3)0.015 (3)
C310.043 (3)0.042 (3)0.044 (3)0.002 (2)0.002 (2)0.003 (2)
C320.056 (3)0.103 (4)0.049 (4)0.019 (3)0.007 (3)0.014 (3)
C330.082 (5)0.129 (6)0.048 (4)0.017 (4)0.002 (3)0.020 (4)
C340.090 (5)0.074 (4)0.064 (4)0.009 (3)0.032 (3)0.019 (3)
C350.048 (3)0.088 (4)0.092 (5)0.004 (3)0.015 (3)0.026 (4)
C360.044 (3)0.082 (4)0.063 (4)0.003 (3)0.000 (3)0.016 (3)
C370.096 (5)0.095 (5)0.110 (6)0.016 (4)0.032 (4)0.003 (4)
Geometric parameters (Å, º) top
Ag1—P12.4309 (12)C27—C281.343 (8)
Ag1—P22.4277 (12)C28—C291.359 (8)
Ag1—O12.540 (4)C29—C301.369 (8)
Ag1—O52.413 (5)C31—C361.371 (6)
Cl1—O11.413 (4)C31—C321.365 (7)
Cl1—O21.408 (4)C32—C331.381 (8)
Cl1—O31.407 (4)C33—C341.348 (10)
Cl1—O41.407 (4)C34—C351.366 (8)
P1—C11.819 (4)C35—C361.374 (8)
P1—C71.815 (4)C2—H20.9300
P1—C131.818 (4)C3—H30.9300
P2—C191.811 (4)C4—H40.9300
P2—C251.821 (4)C5—H5A0.9300
P2—C311.821 (4)C6—H60.9300
O5—C371.378 (9)C8—H80.9300
O5—H50.8200C9—H90.9300
C1—C21.388 (6)C10—H100.9300
C1—C61.379 (7)C11—H110.9300
C2—C31.371 (7)C12—H120.9300
C3—C41.356 (8)C14—H140.9300
C4—C51.360 (9)C15—H150.9300
C5—C61.377 (7)C16—H160.9300
C7—C121.382 (7)C17—H170.9300
C7—C81.368 (7)C18—H180.9300
C8—C91.385 (8)C20—H200.9300
C9—C101.362 (9)C21—H210.9300
C10—C111.358 (10)C22—H220.9300
C11—C121.365 (7)C23—H230.9300
C13—C141.387 (7)C24—H240.9300
C13—C181.377 (6)C26—H260.9300
C14—C151.376 (8)C27—H270.9300
C15—C161.365 (8)C28—H280.9300
C16—C171.360 (8)C29—H290.9300
C17—C181.379 (7)C30—H300.9300
C19—C241.373 (7)C32—H320.9300
C19—C201.378 (7)C33—H330.9300
C20—C211.384 (7)C34—H340.9300
C21—C221.365 (9)C35—H350.9300
C22—C231.354 (9)C36—H360.9300
C23—C241.386 (7)C37—H37A0.9600
C25—C261.370 (6)C37—H37B0.9600
C25—C301.366 (7)C37—H37C0.9600
C26—C271.374 (6)
P1—Ag1—P2133.15 (4)C31—C32—C33120.8 (5)
P1—Ag1—O197.68 (10)C32—C33—C34120.7 (6)
P1—Ag1—O5107.44 (12)C33—C34—C35119.5 (6)
P2—Ag1—O1114.20 (9)C34—C35—C36119.7 (5)
P2—Ag1—O5104.75 (11)C31—C36—C35121.5 (5)
O1—Ag1—O592.22 (13)C1—C2—H2120.00
O1—Cl1—O2110.3 (2)C3—C2—H2120.00
O1—Cl1—O3109.3 (2)C2—C3—H3120.00
O1—Cl1—O4108.1 (3)C4—C3—H3120.00
O2—Cl1—O3110.6 (2)C3—C4—H4120.00
O2—Cl1—O4109.8 (2)C5—C4—H4120.00
O3—Cl1—O4108.8 (3)C4—C5—H5A120.00
Ag1—P1—C1119.74 (14)C6—C5—H5A119.00
Ag1—P1—C7109.89 (14)C1—C6—H6120.00
Ag1—P1—C13112.05 (14)C5—C6—H6120.00
C1—P1—C7107.36 (18)C7—C8—H8120.00
C1—P1—C13102.22 (19)C9—C8—H8120.00
C7—P1—C13104.31 (19)C8—C9—H9120.00
Ag1—P2—C19110.32 (14)C10—C9—H9120.00
Ag1—P2—C25117.97 (13)C9—C10—H10120.00
Ag1—P2—C31115.11 (14)C11—C10—H10120.00
C19—P2—C25103.04 (19)C10—C11—H11120.00
C19—P2—C31104.97 (18)C12—C11—H11120.00
C25—P2—C31104.01 (19)C7—C12—H12119.00
Ag1—O1—Cl1133.7 (2)C11—C12—H12119.00
Ag1—O5—C37129.5 (3)C13—C14—H14119.00
C37—O5—H5109.00C15—C14—H14120.00
Ag1—O5—H5118.00C14—C15—H15120.00
P1—C1—C6118.9 (3)C16—C15—H15120.00
P1—C1—C2122.6 (3)C15—C16—H16120.00
C2—C1—C6118.4 (4)C17—C16—H16120.00
C1—C2—C3120.4 (4)C16—C17—H17120.00
C2—C3—C4120.7 (5)C18—C17—H17120.00
C3—C4—C5119.5 (5)C13—C18—H18120.00
C4—C5—C6121.1 (5)C17—C18—H18120.00
C1—C6—C5119.8 (5)C19—C20—H20120.00
P1—C7—C12117.9 (3)C21—C20—H20119.00
P1—C7—C8124.1 (3)C20—C21—H21120.00
C8—C7—C12117.9 (4)C22—C21—H21120.00
C7—C8—C9120.4 (5)C21—C22—H22120.00
C8—C9—C10120.5 (6)C23—C22—H22120.00
C9—C10—C11119.5 (6)C22—C23—H23120.00
C10—C11—C12120.1 (5)C24—C23—H23120.00
C7—C12—C11121.6 (5)C19—C24—H24120.00
P1—C13—C14117.5 (3)C23—C24—H24120.00
C14—C13—C18117.8 (4)C25—C26—H26119.00
P1—C13—C18124.5 (3)C27—C26—H26119.00
C13—C14—C15121.1 (5)C26—C27—H27120.00
C14—C15—C16119.9 (5)C28—C27—H27120.00
C15—C16—C17119.9 (5)C27—C28—H28120.00
C16—C17—C18120.5 (5)C29—C28—H28120.00
C13—C18—C17120.7 (4)C28—C29—H29119.00
P2—C19—C24123.3 (3)C30—C29—H29120.00
P2—C19—C20118.2 (3)C25—C30—H30120.00
C20—C19—C24118.5 (4)C29—C30—H30120.00
C19—C20—C21121.0 (5)C31—C32—H32120.00
C20—C21—C22119.3 (5)C33—C32—H32120.00
C21—C22—C23120.5 (5)C32—C33—H33120.00
C22—C23—C24120.4 (5)C34—C33—H33120.00
C19—C24—C23120.3 (5)C33—C34—H34120.00
P2—C25—C26123.9 (3)C35—C34—H34120.00
C26—C25—C30117.7 (4)C34—C35—H35120.00
P2—C25—C30118.4 (3)C36—C35—H35120.00
C25—C26—C27121.3 (5)C31—C36—H36119.00
C26—C27—C28120.3 (5)C35—C36—H36119.00
C27—C28—C29119.2 (5)O5—C37—H37A109.00
C28—C29—C30121.0 (5)O5—C37—H37B109.00
C25—C30—C29120.5 (5)O5—C37—H37C109.00
P2—C31—C32122.8 (4)H37A—C37—H37B110.00
C32—C31—C36117.8 (4)H37A—C37—H37C109.00
P2—C31—C36119.4 (4)H37B—C37—H37C110.00
P2—Ag1—P1—C1169.50 (15)C31—P2—C25—C3084.1 (4)
P2—Ag1—P1—C765.60 (15)Ag1—P2—C31—C32142.6 (3)
P2—Ag1—P1—C1349.87 (15)Ag1—P2—C31—C3635.9 (4)
O1—Ag1—P1—C135.61 (18)C19—P2—C31—C3295.9 (4)
O1—Ag1—P1—C7160.50 (17)C19—P2—C31—C3685.6 (4)
O1—Ag1—P1—C1384.02 (17)C25—P2—C31—C3212.0 (4)
O5—Ag1—P1—C159.18 (18)C25—P2—C31—C36166.5 (4)
O5—Ag1—P1—C765.72 (17)P1—C1—C2—C3175.7 (4)
O5—Ag1—P1—C13178.80 (17)C6—C1—C2—C30.6 (7)
P1—Ag1—P2—C1956.81 (16)P1—C1—C6—C5175.6 (4)
P1—Ag1—P2—C25174.79 (15)C2—C1—C6—C50.8 (7)
P1—Ag1—P2—C3161.73 (16)C1—C2—C3—C40.5 (8)
O1—Ag1—P2—C19174.72 (17)C2—C3—C4—C50.6 (8)
O1—Ag1—P2—C2556.74 (18)C3—C4—C5—C60.9 (8)
O1—Ag1—P2—C3166.74 (18)C4—C5—C6—C11.0 (8)
O5—Ag1—P2—C1975.38 (18)P1—C7—C8—C9178.2 (4)
O5—Ag1—P2—C2542.60 (19)C12—C7—C8—C91.4 (8)
O5—Ag1—P2—C31166.08 (18)P1—C7—C12—C11178.8 (4)
P1—Ag1—O1—Cl1127.5 (3)C8—C7—C12—C111.9 (8)
P2—Ag1—O1—Cl187.7 (3)C7—C8—C9—C100.5 (9)
O5—Ag1—O1—Cl119.6 (3)C8—C9—C10—C112.1 (9)
P1—Ag1—O5—C37156.7 (4)C9—C10—C11—C121.6 (9)
P2—Ag1—O5—C3757.9 (5)C10—C11—C12—C70.4 (8)
O1—Ag1—O5—C3757.9 (5)P1—C13—C14—C15177.6 (4)
O2—Cl1—O1—Ag160.3 (4)C18—C13—C14—C151.3 (7)
O3—Cl1—O1—Ag1177.9 (3)P1—C13—C18—C17177.3 (4)
O4—Cl1—O1—Ag159.7 (4)C14—C13—C18—C171.3 (7)
Ag1—P1—C1—C2158.6 (3)C13—C14—C15—C160.3 (8)
Ag1—P1—C1—C617.7 (4)C14—C15—C16—C170.8 (8)
C7—P1—C1—C275.3 (4)C15—C16—C17—C180.8 (8)
C7—P1—C1—C6108.4 (4)C16—C17—C18—C130.3 (8)
C13—P1—C1—C234.1 (4)P2—C19—C20—C21173.3 (4)
C13—P1—C1—C6142.2 (3)C24—C19—C20—C213.1 (7)
Ag1—P1—C7—C8126.0 (4)P2—C19—C24—C23173.8 (4)
Ag1—P1—C7—C1250.8 (4)C20—C19—C24—C232.5 (8)
C1—P1—C7—C85.8 (5)C19—C20—C21—C221.4 (8)
C1—P1—C7—C12177.5 (4)C20—C21—C22—C231.1 (9)
C13—P1—C7—C8113.7 (4)C21—C22—C23—C241.8 (9)
C13—P1—C7—C1269.5 (4)C22—C23—C24—C190.1 (9)
Ag1—P1—C13—C1441.4 (4)P2—C25—C26—C27175.8 (4)
Ag1—P1—C13—C18142.6 (3)C30—C25—C26—C272.0 (7)
C1—P1—C13—C1488.1 (4)P2—C25—C30—C29174.7 (5)
C1—P1—C13—C1888.0 (4)C26—C25—C30—C293.2 (8)
C7—P1—C13—C14160.2 (4)C25—C26—C27—C280.7 (8)
C7—P1—C13—C1823.8 (4)C26—C27—C28—C292.1 (9)
Ag1—P2—C19—C2042.0 (4)C27—C28—C29—C300.8 (10)
Ag1—P2—C19—C24141.7 (4)C28—C29—C30—C251.9 (10)
C25—P2—C19—C2084.8 (4)P2—C31—C32—C33177.1 (4)
C25—P2—C19—C2491.5 (4)C36—C31—C32—C331.4 (7)
C31—P2—C19—C20166.6 (3)P2—C31—C36—C35178.0 (4)
C31—P2—C19—C2417.1 (4)C32—C31—C36—C350.6 (7)
Ag1—P2—C25—C26137.5 (3)C31—C32—C33—C341.5 (9)
Ag1—P2—C25—C3044.7 (4)C32—C33—C34—C350.6 (9)
C19—P2—C25—C2615.7 (4)C33—C34—C35—C360.2 (8)
C19—P2—C25—C30166.5 (4)C34—C35—C36—C310.2 (8)
C31—P2—C25—C2693.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.822.423.157 (6)151
O5—H5···O3i0.822.303.033 (6)150
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(ClO4)(CH4O)(C18H15P)2]
Mr763.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)13.6426 (15), 12.8444 (14), 19.714 (2)
β (°) 92.602 (1)
V3)3450.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.33 × 0.22 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.779, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
17113, 6073, 3802
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.08
No. of reflections6073
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.32

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.822.423.157 (6)151
O5—H5···O3i0.822.303.033 (6)150
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Keystone Basic Research Program (973 Program) under grants Nos. 2007CB310408 and 2006CB302901, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the jurisdiction of Beijing Municipality, and the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

References

First citationAwaleh, M. O., Badia, A. & Brisse, F. (2005). Inorg. Chem. 44, 7833–7845.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBalakrishna, M. S., Venkateswaran, R. & Mobin, S. M. (2009). Inorg. Chim. Acta, 362, 271–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCingolani, A., Effendy, Pellei, M., Pettinari,C., Santini, C., Skelton, B.W.& White, A.H. (2002). Inorg. Chem. 41, 6633–6645.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCui, L.-N., Hu, K.-Y., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEffendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B.W. & White, A.H. (2007b). Inorg. Chim. Acta, 360, 1451–1465.  Web of Science CSD CrossRef CAS Google Scholar
First citationEffendy, Marchetti, F., Pettinari, C., Skelton, B.W.& White, A.H. (2007a). Inorg. Chim. Acta, 360, 1424–1432.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010). Polyhedron, 29, 441–445.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicola, C.D., Effendy, Marchetti, F., Pettinari, C., Skelton, B.W. & White, A.H. (2007). Inorg. Chim. Acta, 360, 1433–1450.  Google Scholar
First citationPettinari, C., Ngoune, J., Skelton, B. W. & White, A. H. (2007). Inorg. Chem. Commun. 10, 329–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J.-Q., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2009). Acta Cryst. E65, m1096–m1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds