organic compounds
1-(3,5-Diethyl-1H-pyrazol-1-yl)-3-phenylisoquinoline
aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title molecule, C22H21N3, the isoquinoline ring is almost planar [maximum deviation = 0.046 (1) Å] and makes dihedral angles of 52.01 (4) and 14.61 (4)° with the pyrazole and phenyl rings, respectively. The phenyl ring and the pyrazole ring are twisted by 44.20 (6)° with respect to each other. The terminal C atoms of both of the ethyl groups attached to the pyrazole ring are disordered over two sites with occupancy ratios of 0.164 (7):0.836 (7) and 0.447 (16):0.553 (16). A weak intramolecular C—H⋯N contact may influence the molecular conformation. The is stabilized by C—H⋯π contacts involving the phenyl and pyrazole rings, and by π–π stacking interactions involving the pyridine and benzene rings [centroid–centroid distance = 3.5972 (10) Å].
Related literature
For the biological actvity of pyrazoles, see: Huang et al. (1996); Li et al. (2005); Patel et al. (1990); Zhao et al. (2001). For the crystal structures of pyrazoles, see: Manivel et al. (2009); Khan et al. (2010a,b,c). For the of an isoquinazole, see: Hathwar et al. (2008).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810028059/su2194sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810028059/su2194Isup2.hkl
1-(3-phenylisoquinolin-1-yl)hydrazine (2.35 g, 10 mmol) and heptane-3,5-dione (1.28 g, 10 mmol) were dissolved in ethanol (30 ml). The solution was heated for 12 h under a nitrogen atmosphere. The reaction was quenched with water; the product was extracted with ethyl acetate. This phase was then washed with water, dried, concentrated and purified by
to yield a white powder. Crystals, suitable for X-ray were obtained upon recrystallization from dichloromethane.The C-atoms of the two ethyl groups (C19/C20 and C21/C22) are positionally disordered. The ratio of the site occupancies of the major and minor components (A:B) are 0.164 (7):0.836 (7) and 0.447 (16):0.553 (16), respectively. The positional and thermal displacement parameters for atom C20A were refined isotropically with Uiso(C)= 0.168 (10) Å-2. H-atoms were placed in calculated positions and were included in the
in the riding model approximation: C-H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and 1.2 for all other H-atoms.Pyrazole and its derivatives are a class of important five-membered heterocycle compounds with two adjacent nitrogen atoms. During the past years considerable evidence has been accumulated to demonstrate the biological efficacy of pyrazole derivatives, including antibacterial (Patel et al., 1990), antifungal (Zhao et al., 2001), herbicidal (Li et al., 2005), insectcidal (Huang et al., 1996) and other biological activities. A number of pyrazole-containing compounds have been successfully commercialized, such as the blockbuster drugs Viagra, Celebrex, and Acomplia. In view of the diverse applications of this class of compounds, and continuing our research on the synthesis and
analysis of similar compounds (Manivel et al., 2009; Khan et al., 2010a,b,c; Hathwar et al., 2008), we report herein on the of the new title isoquinoline pyrazole.In the title molecule (Fig. 1) the isoquinoline ring (N1/C1–C9) is essentially planar, with a maximum deviation of 0.046 (1) Å for atom C1 and makes dihedral angles of 52.01 (4) and 14.61 (4) ° with the pyrazole (N2/N3/C16–C18) and phenyl (C10–C15) rings, respectively. The phenyl ring and the pyrazole ring are twisted by 44.20 (6)° with respect to each other. There are weak intramolecular C—H···N contacts which may influence the
of the molecule (Table 1).The crystal packing of the title compound is illustrated in Fig. 2. The π contacts involving both the phenyl and pyrazole rings (Table 1), and by π-π stacking interactions between the pyridine and benzene rings; Cg2···Cg3i (symmetry code: (i) = 3/2 - x, 1/2 - y, 1 - z), with a centroid-to-centroid distance of 3.5972 (10) Å [Cg2 and Cg3 are the centroids of the pyridine (N1/C1/C2/C7–C9) and benzene (C2–C7) rings, respectively, of the isoquinoline group].
is stabilized by C—H···For the biological actvity of pyrazoles, see: Huang et al. (1996); Li et al. (2005); Patel et al. (1990); Zhao et al. (2001). For the crystal structures of pyrazoles, see: Manivel et al. (2009); Khan et al. (2010a,b,c). For the
of an isoquinazole, see: Hathwar et al. (2008).Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell
CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).C22H21N3 | F(000) = 1392 |
Mr = 327.42 | Dx = 1.197 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1236 reflections |
a = 16.0736 (17) Å | θ = 1.9–20.4° |
b = 20.819 (2) Å | µ = 0.07 mm−1 |
c = 10.8579 (11) Å | T = 295 K |
β = 91.071 (3)° | Block, colourless |
V = 3632.8 (6) Å3 | 0.25 × 0.21 × 0.15 mm |
Z = 8 |
Oxford Xcalibur Eos (Nova) CCD detector diffractometer | 2379 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.029 |
Graphite monochromator | θmax = 25.5°, θmin = 1.6° |
ω scans | h = −19→19 |
17963 measured reflections | k = −25→24 |
3389 independent reflections | l = −11→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0667P)2 + 0.6171P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3389 reflections | Δρmax = 0.15 e Å−3 |
264 parameters | Δρmin = −0.15 e Å−3 |
10 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0037 (5) |
C22H21N3 | V = 3632.8 (6) Å3 |
Mr = 327.42 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.0736 (17) Å | µ = 0.07 mm−1 |
b = 20.819 (2) Å | T = 295 K |
c = 10.8579 (11) Å | 0.25 × 0.21 × 0.15 mm |
β = 91.071 (3)° |
Oxford Xcalibur Eos (Nova) CCD detector diffractometer | 2379 reflections with I > 2σ(I) |
17963 measured reflections | Rint = 0.029 |
3389 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 10 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.15 e Å−3 |
3389 reflections | Δρmin = −0.15 e Å−3 |
264 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.85495 (7) | 0.13529 (6) | 0.57519 (11) | 0.0503 (4) | |
N2 | 0.74093 (8) | 0.08848 (6) | 0.66680 (12) | 0.0543 (4) | |
N3 | 0.67528 (9) | 0.11249 (7) | 0.73249 (14) | 0.0693 (5) | |
C1 | 0.77419 (9) | 0.12658 (7) | 0.57018 (13) | 0.0469 (5) | |
C2 | 0.71957 (8) | 0.15187 (7) | 0.47772 (13) | 0.0452 (5) | |
C3 | 0.63356 (9) | 0.13837 (7) | 0.46657 (15) | 0.0560 (5) | |
C4 | 0.58747 (10) | 0.16524 (8) | 0.37411 (17) | 0.0641 (6) | |
C5 | 0.62327 (10) | 0.20691 (9) | 0.28960 (16) | 0.0651 (6) | |
C6 | 0.70590 (9) | 0.22017 (8) | 0.29663 (15) | 0.0581 (5) | |
C7 | 0.75675 (9) | 0.19240 (7) | 0.39001 (13) | 0.0467 (5) | |
C8 | 0.84337 (9) | 0.20270 (7) | 0.39824 (14) | 0.0513 (5) | |
C9 | 0.89063 (9) | 0.17344 (7) | 0.48754 (13) | 0.0474 (5) | |
C10 | 0.98262 (9) | 0.18012 (8) | 0.49702 (13) | 0.0517 (5) | |
C11 | 1.02486 (10) | 0.22715 (9) | 0.43174 (15) | 0.0619 (6) | |
C12 | 1.11065 (10) | 0.23165 (10) | 0.43877 (16) | 0.0692 (7) | |
C13 | 1.15577 (11) | 0.18965 (10) | 0.51142 (17) | 0.0719 (7) | |
C14 | 1.11534 (11) | 0.14448 (11) | 0.57762 (19) | 0.0815 (8) | |
C15 | 1.02943 (11) | 0.13958 (10) | 0.57140 (17) | 0.0711 (7) | |
C16 | 0.65965 (12) | 0.06812 (10) | 0.81487 (18) | 0.0749 (7) | |
C17 | 0.71487 (13) | 0.01688 (9) | 0.80421 (18) | 0.0781 (7) | |
C18 | 0.76646 (11) | 0.03038 (8) | 0.70880 (16) | 0.0642 (6) | |
C19B | 0.5866 (3) | 0.0755 (2) | 0.8999 (4) | 0.0936 (16) | 0.836 (7) |
C20B | 0.6107 (2) | 0.0648 (2) | 1.0302 (3) | 0.1248 (16) | 0.836 (7) |
C21B | 0.8444 (7) | −0.0011 (5) | 0.6591 (13) | 0.074 (3) | 0.553 (16) |
C22B | 0.8635 (6) | −0.0631 (3) | 0.7263 (6) | 0.092 (2) | 0.553 (16) |
C20A | 0.5561 (14) | 0.0333 (11) | 0.945 (3) | 0.168 (10)* | 0.164 (7) |
C21A | 0.8228 (9) | −0.0155 (7) | 0.6459 (16) | 0.084 (4) | 0.447 (16) |
C22A | 0.8969 (7) | −0.0292 (9) | 0.7276 (10) | 0.130 (5) | 0.447 (16) |
C19A | 0.6194 (13) | 0.0870 (14) | 0.936 (2) | 0.139 (15) | 0.164 (7) |
H8 | 0.86860 | 0.22980 | 0.34200 | 0.0620* | |
H11 | 0.99490 | 0.25600 | 0.38270 | 0.0740* | |
H6 | 0.72930 | 0.24780 | 0.23950 | 0.0700* | |
H3 | 0.60850 | 0.11110 | 0.52260 | 0.0670* | |
H4 | 0.53110 | 0.15570 | 0.36700 | 0.0770* | |
H5 | 0.59040 | 0.22570 | 0.22810 | 0.0780* | |
H17 | 0.71640 | −0.01980 | 0.85310 | 0.0940* | |
H19C | 0.56360 | 0.11830 | 0.89080 | 0.1120* | 0.836 (7) |
H19D | 0.54360 | 0.04490 | 0.87620 | 0.1120* | 0.836 (7) |
H20D | 0.63820 | 0.02400 | 1.03830 | 0.1870* | 0.836 (7) |
H20E | 0.56190 | 0.06510 | 1.07980 | 0.1870* | 0.836 (7) |
H20F | 0.64780 | 0.09830 | 1.05710 | 0.1870* | 0.836 (7) |
H21C | 0.83650 | −0.00980 | 0.57190 | 0.0890* | 0.553 (16) |
H21D | 0.89110 | 0.02810 | 0.66870 | 0.0890* | 0.553 (16) |
H22D | 0.87290 | −0.05430 | 0.81220 | 0.1380* | 0.553 (16) |
H22E | 0.91240 | −0.08230 | 0.69270 | 0.1380* | 0.553 (16) |
H22F | 0.81730 | −0.09200 | 0.71670 | 0.1380* | 0.553 (16) |
H12 | 1.13790 | 0.26320 | 0.39420 | 0.0830* | |
H13 | 1.21350 | 0.19220 | 0.51510 | 0.0860* | |
H14 | 1.14570 | 0.11650 | 0.62780 | 0.0980* | |
H15 | 1.00290 | 0.10850 | 0.61800 | 0.0850* | |
H19A | 0.65910 | 0.08660 | 1.00400 | 0.1650* | 0.164 (7) |
H19B | 0.59300 | 0.12880 | 0.93020 | 0.1650* | 0.164 (7) |
H20A | 0.52560 | 0.02950 | 0.86890 | 0.2520* | 0.164 (7) |
H20B | 0.51840 | 0.04290 | 1.01040 | 0.2520* | 0.164 (7) |
H20C | 0.58430 | −0.00630 | 0.96300 | 0.2520* | 0.164 (7) |
H21A | 0.84090 | 0.00290 | 0.56880 | 0.1010* | 0.447 (16) |
H21B | 0.79320 | −0.05510 | 0.62770 | 0.1010* | 0.447 (16) |
H22A | 0.92540 | 0.01020 | 0.74650 | 0.1950* | 0.447 (16) |
H22B | 0.93390 | −0.05790 | 0.68620 | 0.1950* | 0.447 (16) |
H22C | 0.87880 | −0.04880 | 0.80260 | 0.1950* | 0.447 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0470 (7) | 0.0557 (7) | 0.0482 (7) | −0.0026 (6) | 0.0025 (6) | 0.0012 (6) |
N2 | 0.0520 (8) | 0.0535 (7) | 0.0577 (8) | −0.0024 (6) | 0.0082 (6) | 0.0090 (6) |
N3 | 0.0609 (9) | 0.0738 (9) | 0.0739 (10) | 0.0036 (7) | 0.0235 (8) | 0.0165 (8) |
C1 | 0.0466 (9) | 0.0467 (8) | 0.0477 (8) | −0.0033 (6) | 0.0064 (7) | −0.0005 (6) |
C2 | 0.0424 (8) | 0.0442 (8) | 0.0491 (8) | −0.0010 (6) | 0.0030 (7) | −0.0040 (6) |
C3 | 0.0480 (9) | 0.0535 (9) | 0.0665 (10) | −0.0083 (7) | 0.0045 (8) | 0.0003 (8) |
C4 | 0.0432 (9) | 0.0714 (11) | 0.0773 (12) | −0.0063 (8) | −0.0060 (8) | −0.0004 (9) |
C5 | 0.0521 (10) | 0.0808 (12) | 0.0620 (10) | 0.0031 (8) | −0.0076 (8) | 0.0060 (9) |
C6 | 0.0487 (9) | 0.0719 (10) | 0.0536 (9) | −0.0018 (8) | 0.0000 (8) | 0.0078 (8) |
C7 | 0.0451 (8) | 0.0500 (8) | 0.0449 (8) | −0.0005 (6) | 0.0021 (7) | −0.0019 (6) |
C8 | 0.0448 (8) | 0.0628 (9) | 0.0466 (8) | −0.0065 (7) | 0.0053 (7) | 0.0054 (7) |
C9 | 0.0434 (8) | 0.0565 (9) | 0.0424 (8) | −0.0033 (7) | 0.0034 (7) | −0.0021 (7) |
C10 | 0.0447 (9) | 0.0683 (10) | 0.0421 (8) | −0.0025 (7) | 0.0027 (7) | −0.0056 (7) |
C11 | 0.0463 (9) | 0.0835 (12) | 0.0561 (10) | −0.0064 (8) | 0.0049 (7) | 0.0028 (8) |
C12 | 0.0506 (10) | 0.0963 (14) | 0.0611 (10) | −0.0153 (9) | 0.0103 (8) | −0.0099 (10) |
C13 | 0.0421 (9) | 0.1042 (15) | 0.0694 (12) | −0.0041 (10) | 0.0004 (9) | −0.0195 (11) |
C14 | 0.0522 (11) | 0.1047 (15) | 0.0868 (14) | 0.0059 (10) | −0.0162 (10) | 0.0089 (12) |
C15 | 0.0517 (10) | 0.0917 (13) | 0.0698 (11) | −0.0019 (9) | −0.0046 (9) | 0.0154 (10) |
C16 | 0.0676 (12) | 0.0825 (13) | 0.0752 (12) | −0.0030 (10) | 0.0185 (10) | 0.0225 (10) |
C17 | 0.0911 (14) | 0.0724 (12) | 0.0713 (12) | −0.0081 (10) | 0.0117 (11) | 0.0263 (10) |
C18 | 0.0743 (12) | 0.0581 (10) | 0.0602 (10) | 0.0020 (8) | 0.0034 (9) | 0.0118 (8) |
C19B | 0.073 (3) | 0.117 (3) | 0.092 (2) | 0.000 (2) | 0.034 (2) | 0.0342 (19) |
C20B | 0.135 (3) | 0.159 (3) | 0.082 (2) | 0.045 (3) | 0.042 (2) | 0.017 (2) |
C21B | 0.085 (5) | 0.056 (4) | 0.082 (4) | 0.005 (3) | 0.008 (4) | 0.022 (3) |
C22B | 0.122 (5) | 0.067 (3) | 0.086 (3) | 0.021 (3) | 0.000 (3) | 0.010 (3) |
C21A | 0.093 (7) | 0.061 (6) | 0.099 (6) | 0.011 (5) | 0.021 (6) | 0.010 (5) |
C22A | 0.107 (6) | 0.132 (10) | 0.151 (7) | 0.046 (6) | −0.026 (5) | −0.020 (7) |
C19A | 0.058 (12) | 0.21 (3) | 0.15 (3) | −0.034 (13) | 0.004 (12) | 0.093 (19) |
N1—C1 | 1.3108 (18) | C3—H3 | 0.9300 |
N1—C9 | 1.3733 (19) | C4—H4 | 0.9300 |
N2—N3 | 1.379 (2) | C5—H5 | 0.9300 |
N2—C1 | 1.4271 (19) | C6—H6 | 0.9300 |
N2—C18 | 1.354 (2) | C8—H8 | 0.9300 |
N3—C16 | 1.313 (3) | C11—H11 | 0.9300 |
C1—C2 | 1.422 (2) | C12—H12 | 0.9300 |
C2—C3 | 1.4137 (19) | C13—H13 | 0.9300 |
C2—C7 | 1.413 (2) | C14—H14 | 0.9300 |
C3—C4 | 1.357 (2) | C15—H15 | 0.9300 |
C4—C5 | 1.395 (2) | C17—H17 | 0.9300 |
C5—C6 | 1.357 (2) | C19A—H19A | 0.9700 |
C6—C7 | 1.414 (2) | C19A—H19B | 0.9700 |
C7—C8 | 1.410 (2) | C19B—H19C | 0.9700 |
C8—C9 | 1.364 (2) | C19B—H19D | 0.9700 |
C9—C10 | 1.487 (2) | C20A—H20A | 0.9600 |
C10—C11 | 1.393 (2) | C20A—H20B | 0.9600 |
C10—C15 | 1.381 (2) | C20A—H20C | 0.9600 |
C11—C12 | 1.383 (2) | C20B—H20D | 0.9600 |
C12—C13 | 1.375 (3) | C20B—H20F | 0.9600 |
C13—C14 | 1.357 (3) | C20B—H20E | 0.9600 |
C14—C15 | 1.385 (3) | C21A—H21B | 0.9700 |
C16—C17 | 1.394 (3) | C21A—H21A | 0.9700 |
C16—C19B | 1.515 (5) | C21B—H21C | 0.9700 |
C16—C19A | 1.53 (2) | C21B—H21D | 0.9700 |
C17—C18 | 1.368 (3) | C22A—H22A | 0.9600 |
C18—C21B | 1.522 (12) | C22A—H22B | 0.9600 |
C18—C21A | 1.491 (15) | C22A—H22C | 0.9600 |
C19A—C20A | 1.52 (3) | C22B—H22D | 0.9600 |
C19B—C20B | 1.477 (5) | C22B—H22E | 0.9600 |
C21A—C22A | 1.499 (19) | C22B—H22F | 0.9600 |
C21B—C22B | 1.511 (13) | ||
N1···C21B | 2.988 (11) | H3···N3 | 2.5000 |
N1···C21A | 3.275 (15) | H3···N2 | 2.6600 |
N3···C3 | 3.001 (2) | H3···H20Bix | 2.5100 |
N1···H21D | 2.5200 | H3···H20Ciii | 2.3100 |
N1···H15 | 2.4800 | H4···H20Eix | 2.4800 |
N1···H21A | 2.7700 | H6···H8 | 2.5100 |
N2···H3 | 2.6600 | H6···C13x | 3.0200 |
N2···H14i | 2.9100 | H8···C11 | 2.6800 |
N3···H3 | 2.5000 | H8···H6 | 2.5100 |
C1···C6ii | 3.515 (2) | H8···H11 | 2.1400 |
C2···C7ii | 3.564 (2) | H8···C12vi | 3.0700 |
C2···C8ii | 3.472 (2) | H11···C8 | 2.6800 |
C3···N3 | 3.001 (2) | H11···H8 | 2.1400 |
C4···C11ii | 3.587 (2) | H12···H19Bvii | 2.4000 |
C5···C9ii | 3.483 (2) | H14···N2i | 2.9100 |
C6···C9ii | 3.597 (2) | H14···C18i | 2.8700 |
C6···C1ii | 3.515 (2) | H15···H21D | 2.5200 |
C7···C8ii | 3.575 (2) | H15···N1 | 2.4800 |
C7···C7ii | 3.395 (2) | H17···C20A | 2.9900 |
C7···C2ii | 3.564 (2) | H17···C22B | 2.9000 |
C8···C7ii | 3.575 (2) | H17···H20D | 2.5600 |
C8···C22Biii | 3.473 (7) | H17···C2v | 3.0600 |
C8···C2ii | 3.472 (2) | H17···C3v | 3.0700 |
C9···C6ii | 3.597 (2) | H17···H20C | 2.4700 |
C9···C5ii | 3.483 (2) | H19B···H12xi | 2.4000 |
C11···C4ii | 3.587 (2) | H19B···C12xi | 2.9200 |
C20A···C20Aiv | 2.59 (4) | H20A···C20Aiv | 2.7600 |
C21A···N1 | 3.275 (15) | H20A···H20Biv | 2.1300 |
C21B···N1 | 2.988 (11) | H20B···H3ix | 2.5100 |
C22A···C22Ai | 3.341 (16) | H20B···C20Aiv | 2.0500 |
C22B···C8v | 3.473 (7) | H20B···H20Civ | 1.8500 |
C1···H21C | 3.0100 | H20B···H20Aiv | 2.1300 |
C1···H21A | 2.7900 | H20B···H20Biv | 1.8900 |
C1···H21D | 2.9700 | H20C···C20Aiv | 2.5500 |
C2···H17iii | 3.0600 | H20C···H3v | 2.3100 |
C3···H17iii | 3.0700 | H20C···H20Biv | 1.8500 |
C3···H20Ciii | 2.8600 | H20C···C3v | 2.8600 |
C7···H22Fiii | 2.9900 | H20C···H17 | 2.4700 |
C8···H22Fiii | 3.0600 | H20C···C17 | 2.7800 |
C8···H11 | 2.6800 | H20D···C17 | 2.8500 |
C11···H8 | 2.6800 | H20D···H17 | 2.5600 |
C12···H8vi | 3.0700 | H20D···C18v | 2.9700 |
C12···H19Bvii | 2.9200 | H20E···H4ix | 2.4800 |
C13···H6viii | 3.0200 | H21A···C1 | 2.7900 |
C17···H22C | 2.9700 | H21A···N1 | 2.7700 |
C17···H20C | 2.7800 | H21C···C1 | 3.0100 |
C17···H20D | 2.8500 | H21D···C1 | 2.9700 |
C17···H22F | 2.9700 | H21D···H15 | 2.5200 |
C17···H22D | 2.9400 | H21D···N1 | 2.5200 |
C18···H20Diii | 2.9700 | H22A···C22Ai | 2.9800 |
C18···H14i | 2.8700 | H22A···H22Ai | 2.4000 |
C20A···H17 | 2.9900 | H22B···H22Bi | 2.5100 |
C20A···H20Civ | 2.5500 | H22B···C22Ai | 2.9200 |
C20A···H20Biv | 2.0500 | H22C···C17 | 2.9700 |
C20A···H20Aiv | 2.7600 | H22D···C17 | 2.9400 |
C22A···H22Bi | 2.9200 | H22F···C17 | 2.9700 |
C22A···H22Ai | 2.9800 | H22F···C7v | 2.9900 |
C22B···H17 | 2.9000 | H22F···C8v | 3.0600 |
C1—N1—C9 | 118.51 (12) | C12—C11—H11 | 120.00 |
N3—N2—C1 | 118.67 (12) | C11—C12—H12 | 120.00 |
N3—N2—C18 | 112.33 (13) | C13—C12—H12 | 120.00 |
C1—N2—C18 | 128.97 (13) | C12—C13—H13 | 120.00 |
N2—N3—C16 | 104.80 (14) | C14—C13—H13 | 120.00 |
N1—C1—N2 | 115.51 (13) | C13—C14—H14 | 120.00 |
N1—C1—C2 | 125.16 (13) | C15—C14—H14 | 120.00 |
N2—C1—C2 | 119.33 (13) | C10—C15—H15 | 120.00 |
C1—C2—C3 | 125.21 (13) | C14—C15—H15 | 119.00 |
C1—C2—C7 | 115.69 (12) | C16—C17—H17 | 126.00 |
C3—C2—C7 | 119.09 (13) | C18—C17—H17 | 126.00 |
C2—C3—C4 | 120.05 (14) | C16—C19A—H19A | 112.00 |
C3—C4—C5 | 121.12 (15) | C16—C19A—H19B | 112.00 |
C4—C5—C6 | 120.32 (16) | C20A—C19A—H19A | 112.00 |
C5—C6—C7 | 120.60 (15) | C20A—C19A—H19B | 112.00 |
C2—C7—C6 | 118.77 (13) | H19A—C19A—H19B | 110.00 |
C2—C7—C8 | 118.53 (13) | C16—C19B—H19D | 109.00 |
C6—C7—C8 | 122.70 (13) | C20B—C19B—H19C | 109.00 |
C7—C8—C9 | 120.88 (14) | C16—C19B—H19C | 109.00 |
N1—C9—C8 | 121.11 (13) | H19C—C19B—H19D | 108.00 |
N1—C9—C10 | 115.71 (12) | C20B—C19B—H19D | 109.00 |
C8—C9—C10 | 123.18 (13) | C19A—C20A—H20B | 109.00 |
C9—C10—C11 | 121.61 (14) | C19A—C20A—H20A | 110.00 |
C9—C10—C15 | 120.90 (14) | H20A—C20A—H20B | 110.00 |
C11—C10—C15 | 117.50 (14) | H20A—C20A—H20C | 110.00 |
C10—C11—C12 | 120.97 (16) | C19A—C20A—H20C | 109.00 |
C11—C12—C13 | 120.21 (17) | H20B—C20A—H20C | 109.00 |
C12—C13—C14 | 119.47 (17) | C19B—C20B—H20D | 109.00 |
C13—C14—C15 | 120.81 (19) | C19B—C20B—H20E | 110.00 |
C10—C15—C14 | 121.01 (18) | H20E—C20B—H20F | 110.00 |
N3—C16—C17 | 110.58 (17) | C19B—C20B—H20F | 109.00 |
N3—C16—C19B | 120.3 (2) | H20D—C20B—H20E | 109.00 |
N3—C16—C19A | 119.7 (11) | H20D—C20B—H20F | 109.00 |
C17—C16—C19B | 129.1 (2) | C18—C21A—H21B | 110.00 |
C17—C16—C19A | 123.3 (10) | C22A—C21A—H21A | 110.00 |
C16—C17—C18 | 107.55 (17) | C22A—C21A—H21B | 110.00 |
N2—C18—C17 | 104.74 (15) | C18—C21A—H21A | 110.00 |
N2—C18—C21B | 120.8 (5) | H21A—C21A—H21B | 108.00 |
N2—C18—C21A | 127.0 (6) | C18—C21B—H21C | 109.00 |
C17—C18—C21B | 134.0 (5) | C22B—C21B—H21C | 109.00 |
C17—C18—C21A | 126.7 (6) | C22B—C21B—H21D | 109.00 |
C16—C19A—C20A | 99.3 (19) | C18—C21B—H21D | 109.00 |
C16—C19B—C20B | 112.1 (3) | H21C—C21B—H21D | 108.00 |
C18—C21A—C22A | 109.5 (12) | C21A—C22A—H22B | 109.00 |
C18—C21B—C22B | 111.0 (9) | C21A—C22A—H22C | 109.00 |
C2—C3—H3 | 120.00 | C21A—C22A—H22A | 110.00 |
C4—C3—H3 | 120.00 | H22A—C22A—H22C | 109.00 |
C3—C4—H4 | 119.00 | H22B—C22A—H22C | 109.00 |
C5—C4—H4 | 119.00 | H22A—C22A—H22B | 110.00 |
C4—C5—H5 | 120.00 | C21B—C22B—H22D | 109.00 |
C6—C5—H5 | 120.00 | C21B—C22B—H22E | 109.00 |
C5—C6—H6 | 120.00 | C21B—C22B—H22F | 109.00 |
C7—C6—H6 | 120.00 | H22D—C22B—H22E | 109.00 |
C7—C8—H8 | 120.00 | H22D—C22B—H22F | 109.00 |
C9—C8—H8 | 120.00 | H22E—C22B—H22F | 110.00 |
C10—C11—H11 | 120.00 | ||
C9—N1—C1—N2 | −177.66 (12) | C4—C5—C6—C7 | −0.5 (3) |
C9—N1—C1—C2 | 2.3 (2) | C5—C6—C7—C2 | −1.6 (2) |
C1—N1—C9—C8 | 1.1 (2) | C5—C6—C7—C8 | 177.46 (16) |
C1—N1—C9—C10 | −178.72 (13) | C2—C7—C8—C9 | 1.1 (2) |
C1—N2—N3—C16 | −178.86 (14) | C6—C7—C8—C9 | −177.98 (15) |
C18—N2—N3—C16 | −0.80 (19) | C7—C8—C9—N1 | −2.8 (2) |
N3—N2—C1—N1 | 128.12 (15) | C7—C8—C9—C10 | 177.06 (14) |
N3—N2—C1—C2 | −51.86 (19) | N1—C9—C10—C11 | −166.37 (14) |
C18—N2—C1—N1 | −49.6 (2) | N1—C9—C10—C15 | 13.7 (2) |
C18—N2—C1—C2 | 130.45 (17) | C8—C9—C10—C11 | 13.8 (2) |
N3—N2—C18—C17 | 0.31 (19) | C8—C9—C10—C15 | −166.20 (16) |
N3—N2—C18—C21B | −172.9 (6) | C9—C10—C11—C12 | −178.17 (16) |
C1—N2—C18—C17 | 178.12 (15) | C15—C10—C11—C12 | 1.8 (3) |
C1—N2—C18—C21B | 5.0 (6) | C9—C10—C15—C14 | 178.09 (17) |
N2—N3—C16—C17 | 1.0 (2) | C11—C10—C15—C14 | −1.9 (3) |
N2—N3—C16—C19B | −175.9 (2) | C10—C11—C12—C13 | −0.4 (3) |
N1—C1—C2—C3 | 174.67 (15) | C11—C12—C13—C14 | −1.1 (3) |
N1—C1—C2—C7 | −3.9 (2) | C12—C13—C14—C15 | 1.0 (3) |
N2—C1—C2—C3 | −5.4 (2) | C13—C14—C15—C10 | 0.5 (3) |
N2—C1—C2—C7 | 176.11 (13) | N3—C16—C17—C18 | −0.8 (2) |
C1—C2—C3—C4 | −179.85 (15) | C19B—C16—C17—C18 | 175.7 (3) |
C7—C2—C3—C4 | −1.4 (2) | N3—C16—C19B—C20B | −130.4 (3) |
C1—C2—C7—C6 | −178.91 (14) | C17—C16—C19B—C20B | 53.4 (4) |
C1—C2—C7—C8 | 2.0 (2) | C16—C17—C18—N2 | 0.3 (2) |
C3—C2—C7—C6 | 2.5 (2) | C16—C17—C18—C21B | 172.1 (7) |
C3—C2—C7—C8 | −176.61 (14) | N2—C18—C21B—C22B | 175.9 (5) |
C2—C3—C4—C5 | −0.7 (2) | C17—C18—C21B—C22B | 5.1 (12) |
C3—C4—C5—C6 | 1.6 (3) |
Symmetry codes: (i) −x+2, y, −z+3/2; (ii) −x+3/2, −y+1/2, −z+1; (iii) x, −y, z−1/2; (iv) −x+1, −y, −z+2; (v) x, −y, z+1/2; (vi) −x+2, y, −z+1/2; (vii) x+1/2, −y+1/2, z−1/2; (viii) x+1/2, −y+1/2, z+1/2; (ix) −x+1, y, −z+3/2; (x) x−1/2, −y+1/2, z−1/2; (xi) x−1/2, −y+1/2, z+1/2. |
Cg1 is the centroid of the N2/N3/C16–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N3 | 0.93 | 2.50 | 3.001 (2) | 114 |
C15—H15···N1 | 0.93 | 2.48 | 2.807 (2) | 101 |
C14—H14···Cg1i | 0.93 | 2.88 | 3.755 (2) | 158 |
Symmetry code: (i) −x+2, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C22H21N3 |
Mr | 327.42 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 16.0736 (17), 20.819 (2), 10.8579 (11) |
β (°) | 91.071 (3) |
V (Å3) | 3632.8 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.25 × 0.21 × 0.15 |
Data collection | |
Diffractometer | Oxford Xcalibur Eos (Nova) CCD detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17963, 3389, 2379 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.130, 1.06 |
No. of reflections | 3389 |
No. of parameters | 264 |
No. of restraints | 10 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.15 |
Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).
Cg1 is the centroid of the N2/N3/C16–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N3 | 0.93 | 2.50 | 3.001 (2) | 114 |
C15—H15···N1 | 0.93 | 2.48 | 2.807 (2) | 101 |
C14—H14···Cg1i | 0.93 | 2.88 | 3.755 (2) | 158 |
Symmetry code: (i) −x+2, y, −z+3/2. |
Acknowledgements
We thank the Department of Science and Technology (DST), India, and Professor T. N. Guru Row, IISc, Bangalore, for use of the CCD facility set up under the IRHPA–DST program at IISc. FNK thanks the DST for Fast Track Proposal funding.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huang, R. Q., Song, J. & Feng, L. (1996). Chem. J. Chin. Univ. 17, 1089–1091. CAS Google Scholar
Khan, F. N., Manivel, P., Kone, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o368. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khan, F. N., Manivel, P., Krishnakumar, V., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010c). Acta Cryst. E66, o370. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, M., Wang, S. W., Wen, L. R., Qi, W. Y. & Yang, H. Z. (2005). Chin. J. Struct. Chem. 24, 64–68. Google Scholar
Manivel, P. R., Hathwar, V., Maiyalagan, T., Krishnakumar, V. & Khan, F. N. (2009). Acta Cryst. E65, o1798. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1983). Comput. Chem. 7, 95–98. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED.Oxford Diffraction Ltd, Yarnton,England. Google Scholar
Patel, H. V., Fernandes, P. S. & Vyas, K. A. (1990). Indian J. Chem. Sect. B, 29, 135–141. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, W. G., Li, Z. M., Yuan, P. W., Yuan, D. K., Wang, W. Y. & Wang, S. H. (2001). Chin. J. Org. Chem. 21, 593–598. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazole and its derivatives are a class of important five-membered heterocycle compounds with two adjacent nitrogen atoms. During the past years considerable evidence has been accumulated to demonstrate the biological efficacy of pyrazole derivatives, including antibacterial (Patel et al., 1990), antifungal (Zhao et al., 2001), herbicidal (Li et al., 2005), insectcidal (Huang et al., 1996) and other biological activities. A number of pyrazole-containing compounds have been successfully commercialized, such as the blockbuster drugs Viagra, Celebrex, and Acomplia. In view of the diverse applications of this class of compounds, and continuing our research on the synthesis and crystal structure analysis of similar compounds (Manivel et al., 2009; Khan et al., 2010a,b,c; Hathwar et al., 2008), we report herein on the crystal structure of the new title isoquinoline pyrazole.
In the title molecule (Fig. 1) the isoquinoline ring (N1/C1–C9) is essentially planar, with a maximum deviation of 0.046 (1) Å for atom C1 and makes dihedral angles of 52.01 (4) and 14.61 (4) ° with the pyrazole (N2/N3/C16–C18) and phenyl (C10–C15) rings, respectively. The phenyl ring and the pyrazole ring are twisted by 44.20 (6)° with respect to each other. There are weak intramolecular C—H···N contacts which may influence the molecular conformation of the molecule (Table 1).
The crystal packing of the title compound is illustrated in Fig. 2. The crystal structure is stabilized by C—H···π contacts involving both the phenyl and pyrazole rings (Table 1), and by π-π stacking interactions between the pyridine and benzene rings; Cg2···Cg3i (symmetry code: (i) = 3/2 - x, 1/2 - y, 1 - z), with a centroid-to-centroid distance of 3.5972 (10) Å [Cg2 and Cg3 are the centroids of the pyridine (N1/C1/C2/C7–C9) and benzene (C2–C7) rings, respectively, of the isoquinoline group].