organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,5-Di­ethyl-1H-pyrazol-1-yl)-3-phenyl­iso­quinoline

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 2 July 2010; accepted 14 July 2010; online 21 July 2010)

In the title mol­ecule, C22H21N3, the isoquinoline ring is almost planar [maximum deviation = 0.046 (1) Å] and makes dihedral angles of 52.01 (4) and 14.61 (4)° with the pyrazole and phenyl rings, respectively. The phenyl ring and the pyrazole ring are twisted by 44.20 (6)° with respect to each other. The terminal C atoms of both of the ethyl groups attached to the pyrazole ring are disordered over two sites with occupancy ratios of 0.164 (7):0.836 (7) and 0.447 (16):0.553 (16). A weak intra­molecular C—H⋯N contact may influence the mol­ecular conformation. The crystal structure is stabilized by C—H⋯π contacts involving the phenyl and pyrazole rings, and by ππ stacking inter­actions involving the pyridine and benzene rings [centroid–centroid distance = 3.5972 (10) Å].

Related literature

For the biological actvity of pyrazoles, see: Huang et al. (1996[Huang, R. Q., Song, J. & Feng, L. (1996). Chem. J. Chin. Univ. 17, 1089-1091.]); Li et al. (2005[Li, M., Wang, S. W., Wen, L. R., Qi, W. Y. & Yang, H. Z. (2005). Chin. J. Struct. Chem. 24, 64-68.]); Patel et al. (1990[Patel, H. V., Fernandes, P. S. & Vyas, K. A. (1990). Indian J. Chem. Sect. B, 29, 135-141.]); Zhao et al. (2001[Zhao, W. G., Li, Z. M., Yuan, P. W., Yuan, D. K., Wang, W. Y. & Wang, S. H. (2001). Chin. J. Org. Chem. 21, 593-598.]). For the crystal structures of pyrazoles, see: Manivel et al. (2009[Manivel, P. R., Hathwar, V., Maiyalagan, T., Krishnakumar, V. & Khan, F. N. (2009). Acta Cryst. E65, o1798.]); Khan et al. (2010a[Khan, F. N., Manivel, P., Kone, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o368.],b[Khan, F. N., Manivel, P., Krishnakumar, V., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o369.],c[Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010c). Acta Cryst. E66, o370.]). For the crystal structure of an isoquinazole, see: Hathwar et al. (2008[Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21N3

  • Mr = 327.42

  • Monoclinic, C 2/c

  • a = 16.0736 (17) Å

  • b = 20.819 (2) Å

  • c = 10.8579 (11) Å

  • β = 91.071 (3)°

  • V = 3632.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.25 × 0.21 × 0.15 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • 17963 measured reflections

  • 3389 independent reflections

  • 2379 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.06

  • 3389 reflections

  • 264 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2/N3/C16–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N3 0.93 2.50 3.001 (2) 114
C14—H14⋯Cg1i 0.93 2.88 3.755 (2) 158
Symmetry code: (i) [-x+2, y, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED.Oxford Diffraction Ltd, Yarnton,England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED.Oxford Diffraction Ltd, Yarnton,England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST (Nardelli, 1983[Nardelli, M. (1983). Comput. Chem. 7, 95-98.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole and its derivatives are a class of important five-membered heterocycle compounds with two adjacent nitrogen atoms. During the past years considerable evidence has been accumulated to demonstrate the biological efficacy of pyrazole derivatives, including antibacterial (Patel et al., 1990), antifungal (Zhao et al., 2001), herbicidal (Li et al., 2005), insectcidal (Huang et al., 1996) and other biological activities. A number of pyrazole-containing compounds have been successfully commercialized, such as the blockbuster drugs Viagra, Celebrex, and Acomplia. In view of the diverse applications of this class of compounds, and continuing our research on the synthesis and crystal structure analysis of similar compounds (Manivel et al., 2009; Khan et al., 2010a,b,c; Hathwar et al., 2008), we report herein on the crystal structure of the new title isoquinoline pyrazole.

In the title molecule (Fig. 1) the isoquinoline ring (N1/C1–C9) is essentially planar, with a maximum deviation of 0.046 (1) Å for atom C1 and makes dihedral angles of 52.01 (4) and 14.61 (4) ° with the pyrazole (N2/N3/C16–C18) and phenyl (C10–C15) rings, respectively. The phenyl ring and the pyrazole ring are twisted by 44.20 (6)° with respect to each other. There are weak intramolecular C—H···N contacts which may influence the molecular conformation of the molecule (Table 1).

The crystal packing of the title compound is illustrated in Fig. 2. The crystal structure is stabilized by C—H···π contacts involving both the phenyl and pyrazole rings (Table 1), and by π-π stacking interactions between the pyridine and benzene rings; Cg2···Cg3i (symmetry code: (i) = 3/2 - x, 1/2 - y, 1 - z), with a centroid-to-centroid distance of 3.5972 (10) Å [Cg2 and Cg3 are the centroids of the pyridine (N1/C1/C2/C7–C9) and benzene (C2–C7) rings, respectively, of the isoquinoline group].

Related literature top

For the biological actvity of pyrazoles, see: Huang et al. (1996); Li et al. (2005); Patel et al. (1990); Zhao et al. (2001). For the crystal structures of pyrazoles, see: Manivel et al. (2009); Khan et al. (2010a,b,c). For the crystal structure of an isoquinazole, see: Hathwar et al. (2008).

Experimental top

1-(3-phenylisoquinolin-1-yl)hydrazine (2.35 g, 10 mmol) and heptane-3,5-dione (1.28 g, 10 mmol) were dissolved in ethanol (30 ml). The solution was heated for 12 h under a nitrogen atmosphere. The reaction was quenched with water; the product was extracted with ethyl acetate. This phase was then washed with water, dried, concentrated and purified by column chromatography to yield a white powder. Crystals, suitable for X-ray diffraction analysis, were obtained upon recrystallization from dichloromethane.

Refinement top

The C-atoms of the two ethyl groups (C19/C20 and C21/C22) are positionally disordered. The ratio of the site occupancies of the major and minor components (A:B) are 0.164 (7):0.836 (7) and 0.447 (16):0.553 (16), respectively. The positional and thermal displacement parameters for atom C20A were refined isotropically with Uiso(C)= 0.168 (10) Å-2. H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation: C-H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and 1.2 for all other H-atoms.

Structure description top

Pyrazole and its derivatives are a class of important five-membered heterocycle compounds with two adjacent nitrogen atoms. During the past years considerable evidence has been accumulated to demonstrate the biological efficacy of pyrazole derivatives, including antibacterial (Patel et al., 1990), antifungal (Zhao et al., 2001), herbicidal (Li et al., 2005), insectcidal (Huang et al., 1996) and other biological activities. A number of pyrazole-containing compounds have been successfully commercialized, such as the blockbuster drugs Viagra, Celebrex, and Acomplia. In view of the diverse applications of this class of compounds, and continuing our research on the synthesis and crystal structure analysis of similar compounds (Manivel et al., 2009; Khan et al., 2010a,b,c; Hathwar et al., 2008), we report herein on the crystal structure of the new title isoquinoline pyrazole.

In the title molecule (Fig. 1) the isoquinoline ring (N1/C1–C9) is essentially planar, with a maximum deviation of 0.046 (1) Å for atom C1 and makes dihedral angles of 52.01 (4) and 14.61 (4) ° with the pyrazole (N2/N3/C16–C18) and phenyl (C10–C15) rings, respectively. The phenyl ring and the pyrazole ring are twisted by 44.20 (6)° with respect to each other. There are weak intramolecular C—H···N contacts which may influence the molecular conformation of the molecule (Table 1).

The crystal packing of the title compound is illustrated in Fig. 2. The crystal structure is stabilized by C—H···π contacts involving both the phenyl and pyrazole rings (Table 1), and by π-π stacking interactions between the pyridine and benzene rings; Cg2···Cg3i (symmetry code: (i) = 3/2 - x, 1/2 - y, 1 - z), with a centroid-to-centroid distance of 3.5972 (10) Å [Cg2 and Cg3 are the centroids of the pyridine (N1/C1/C2/C7–C9) and benzene (C2–C7) rings, respectively, of the isoquinoline group].

For the biological actvity of pyrazoles, see: Huang et al. (1996); Li et al. (2005); Patel et al. (1990); Zhao et al. (2001). For the crystal structures of pyrazoles, see: Manivel et al. (2009); Khan et al. (2010a,b,c). For the crystal structure of an isoquinazole, see: Hathwar et al. (2008).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule with the atom numbering scheme and displacement ellipsoids drawn at the 30% probability level. Only the major components of the disordered ethyl goups are shown.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound viewed along the c axis. Only the major components of the disordered ethyl goups are shown (H-atoms have been omitted for clarity).
1-(3,5-Diethyl-1H-pyrazol-1-yl)-3-phenylisoquinoline top
Crystal data top
C22H21N3F(000) = 1392
Mr = 327.42Dx = 1.197 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1236 reflections
a = 16.0736 (17) Åθ = 1.9–20.4°
b = 20.819 (2) ŵ = 0.07 mm1
c = 10.8579 (11) ÅT = 295 K
β = 91.071 (3)°Block, colourless
V = 3632.8 (6) Å30.25 × 0.21 × 0.15 mm
Z = 8
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
2379 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.029
Graphite monochromatorθmax = 25.5°, θmin = 1.6°
ω scansh = 1919
17963 measured reflectionsk = 2524
3389 independent reflectionsl = 1113
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.6171P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3389 reflectionsΔρmax = 0.15 e Å3
264 parametersΔρmin = 0.15 e Å3
10 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (5)
Crystal data top
C22H21N3V = 3632.8 (6) Å3
Mr = 327.42Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.0736 (17) ŵ = 0.07 mm1
b = 20.819 (2) ÅT = 295 K
c = 10.8579 (11) Å0.25 × 0.21 × 0.15 mm
β = 91.071 (3)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
2379 reflections with I > 2σ(I)
17963 measured reflectionsRint = 0.029
3389 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04410 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
3389 reflectionsΔρmin = 0.15 e Å3
264 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.85495 (7)0.13529 (6)0.57519 (11)0.0503 (4)
N20.74093 (8)0.08848 (6)0.66680 (12)0.0543 (4)
N30.67528 (9)0.11249 (7)0.73249 (14)0.0693 (5)
C10.77419 (9)0.12658 (7)0.57018 (13)0.0469 (5)
C20.71957 (8)0.15187 (7)0.47772 (13)0.0452 (5)
C30.63356 (9)0.13837 (7)0.46657 (15)0.0560 (5)
C40.58747 (10)0.16524 (8)0.37411 (17)0.0641 (6)
C50.62327 (10)0.20691 (9)0.28960 (16)0.0651 (6)
C60.70590 (9)0.22017 (8)0.29663 (15)0.0581 (5)
C70.75675 (9)0.19240 (7)0.39001 (13)0.0467 (5)
C80.84337 (9)0.20270 (7)0.39824 (14)0.0513 (5)
C90.89063 (9)0.17344 (7)0.48754 (13)0.0474 (5)
C100.98262 (9)0.18012 (8)0.49702 (13)0.0517 (5)
C111.02486 (10)0.22715 (9)0.43174 (15)0.0619 (6)
C121.11065 (10)0.23165 (10)0.43877 (16)0.0692 (7)
C131.15577 (11)0.18965 (10)0.51142 (17)0.0719 (7)
C141.11534 (11)0.14448 (11)0.57762 (19)0.0815 (8)
C151.02943 (11)0.13958 (10)0.57140 (17)0.0711 (7)
C160.65965 (12)0.06812 (10)0.81487 (18)0.0749 (7)
C170.71487 (13)0.01688 (9)0.80421 (18)0.0781 (7)
C180.76646 (11)0.03038 (8)0.70880 (16)0.0642 (6)
C19B0.5866 (3)0.0755 (2)0.8999 (4)0.0936 (16)0.836 (7)
C20B0.6107 (2)0.0648 (2)1.0302 (3)0.1248 (16)0.836 (7)
C21B0.8444 (7)0.0011 (5)0.6591 (13)0.074 (3)0.553 (16)
C22B0.8635 (6)0.0631 (3)0.7263 (6)0.092 (2)0.553 (16)
C20A0.5561 (14)0.0333 (11)0.945 (3)0.168 (10)*0.164 (7)
C21A0.8228 (9)0.0155 (7)0.6459 (16)0.084 (4)0.447 (16)
C22A0.8969 (7)0.0292 (9)0.7276 (10)0.130 (5)0.447 (16)
C19A0.6194 (13)0.0870 (14)0.936 (2)0.139 (15)0.164 (7)
H80.868600.229800.342000.0620*
H110.994900.256000.382700.0740*
H60.729300.247800.239500.0700*
H30.608500.111100.522600.0670*
H40.531100.155700.367000.0770*
H50.590400.225700.228100.0780*
H170.716400.019800.853100.0940*
H19C0.563600.118300.890800.1120*0.836 (7)
H19D0.543600.044900.876200.1120*0.836 (7)
H20D0.638200.024001.038300.1870*0.836 (7)
H20E0.561900.065101.079800.1870*0.836 (7)
H20F0.647800.098301.057100.1870*0.836 (7)
H21C0.836500.009800.571900.0890*0.553 (16)
H21D0.891100.028100.668700.0890*0.553 (16)
H22D0.872900.054300.812200.1380*0.553 (16)
H22E0.912400.082300.692700.1380*0.553 (16)
H22F0.817300.092000.716700.1380*0.553 (16)
H121.137900.263200.394200.0830*
H131.213500.192200.515100.0860*
H141.145700.116500.627800.0980*
H151.002900.108500.618000.0850*
H19A0.659100.086601.004000.1650*0.164 (7)
H19B0.593000.128800.930200.1650*0.164 (7)
H20A0.525600.029500.868900.2520*0.164 (7)
H20B0.518400.042901.010400.2520*0.164 (7)
H20C0.584300.006300.963000.2520*0.164 (7)
H21A0.840900.002900.568800.1010*0.447 (16)
H21B0.793200.055100.627700.1010*0.447 (16)
H22A0.925400.010200.746500.1950*0.447 (16)
H22B0.933900.057900.686200.1950*0.447 (16)
H22C0.878800.048800.802600.1950*0.447 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0470 (7)0.0557 (7)0.0482 (7)0.0026 (6)0.0025 (6)0.0012 (6)
N20.0520 (8)0.0535 (7)0.0577 (8)0.0024 (6)0.0082 (6)0.0090 (6)
N30.0609 (9)0.0738 (9)0.0739 (10)0.0036 (7)0.0235 (8)0.0165 (8)
C10.0466 (9)0.0467 (8)0.0477 (8)0.0033 (6)0.0064 (7)0.0005 (6)
C20.0424 (8)0.0442 (8)0.0491 (8)0.0010 (6)0.0030 (7)0.0040 (6)
C30.0480 (9)0.0535 (9)0.0665 (10)0.0083 (7)0.0045 (8)0.0003 (8)
C40.0432 (9)0.0714 (11)0.0773 (12)0.0063 (8)0.0060 (8)0.0004 (9)
C50.0521 (10)0.0808 (12)0.0620 (10)0.0031 (8)0.0076 (8)0.0060 (9)
C60.0487 (9)0.0719 (10)0.0536 (9)0.0018 (8)0.0000 (8)0.0078 (8)
C70.0451 (8)0.0500 (8)0.0449 (8)0.0005 (6)0.0021 (7)0.0019 (6)
C80.0448 (8)0.0628 (9)0.0466 (8)0.0065 (7)0.0053 (7)0.0054 (7)
C90.0434 (8)0.0565 (9)0.0424 (8)0.0033 (7)0.0034 (7)0.0021 (7)
C100.0447 (9)0.0683 (10)0.0421 (8)0.0025 (7)0.0027 (7)0.0056 (7)
C110.0463 (9)0.0835 (12)0.0561 (10)0.0064 (8)0.0049 (7)0.0028 (8)
C120.0506 (10)0.0963 (14)0.0611 (10)0.0153 (9)0.0103 (8)0.0099 (10)
C130.0421 (9)0.1042 (15)0.0694 (12)0.0041 (10)0.0004 (9)0.0195 (11)
C140.0522 (11)0.1047 (15)0.0868 (14)0.0059 (10)0.0162 (10)0.0089 (12)
C150.0517 (10)0.0917 (13)0.0698 (11)0.0019 (9)0.0046 (9)0.0154 (10)
C160.0676 (12)0.0825 (13)0.0752 (12)0.0030 (10)0.0185 (10)0.0225 (10)
C170.0911 (14)0.0724 (12)0.0713 (12)0.0081 (10)0.0117 (11)0.0263 (10)
C180.0743 (12)0.0581 (10)0.0602 (10)0.0020 (8)0.0034 (9)0.0118 (8)
C19B0.073 (3)0.117 (3)0.092 (2)0.000 (2)0.034 (2)0.0342 (19)
C20B0.135 (3)0.159 (3)0.082 (2)0.045 (3)0.042 (2)0.017 (2)
C21B0.085 (5)0.056 (4)0.082 (4)0.005 (3)0.008 (4)0.022 (3)
C22B0.122 (5)0.067 (3)0.086 (3)0.021 (3)0.000 (3)0.010 (3)
C21A0.093 (7)0.061 (6)0.099 (6)0.011 (5)0.021 (6)0.010 (5)
C22A0.107 (6)0.132 (10)0.151 (7)0.046 (6)0.026 (5)0.020 (7)
C19A0.058 (12)0.21 (3)0.15 (3)0.034 (13)0.004 (12)0.093 (19)
Geometric parameters (Å, º) top
N1—C11.3108 (18)C3—H30.9300
N1—C91.3733 (19)C4—H40.9300
N2—N31.379 (2)C5—H50.9300
N2—C11.4271 (19)C6—H60.9300
N2—C181.354 (2)C8—H80.9300
N3—C161.313 (3)C11—H110.9300
C1—C21.422 (2)C12—H120.9300
C2—C31.4137 (19)C13—H130.9300
C2—C71.413 (2)C14—H140.9300
C3—C41.357 (2)C15—H150.9300
C4—C51.395 (2)C17—H170.9300
C5—C61.357 (2)C19A—H19A0.9700
C6—C71.414 (2)C19A—H19B0.9700
C7—C81.410 (2)C19B—H19C0.9700
C8—C91.364 (2)C19B—H19D0.9700
C9—C101.487 (2)C20A—H20A0.9600
C10—C111.393 (2)C20A—H20B0.9600
C10—C151.381 (2)C20A—H20C0.9600
C11—C121.383 (2)C20B—H20D0.9600
C12—C131.375 (3)C20B—H20F0.9600
C13—C141.357 (3)C20B—H20E0.9600
C14—C151.385 (3)C21A—H21B0.9700
C16—C171.394 (3)C21A—H21A0.9700
C16—C19B1.515 (5)C21B—H21C0.9700
C16—C19A1.53 (2)C21B—H21D0.9700
C17—C181.368 (3)C22A—H22A0.9600
C18—C21B1.522 (12)C22A—H22B0.9600
C18—C21A1.491 (15)C22A—H22C0.9600
C19A—C20A1.52 (3)C22B—H22D0.9600
C19B—C20B1.477 (5)C22B—H22E0.9600
C21A—C22A1.499 (19)C22B—H22F0.9600
C21B—C22B1.511 (13)
N1···C21B2.988 (11)H3···N32.5000
N1···C21A3.275 (15)H3···N22.6600
N3···C33.001 (2)H3···H20Bix2.5100
N1···H21D2.5200H3···H20Ciii2.3100
N1···H152.4800H4···H20Eix2.4800
N1···H21A2.7700H6···H82.5100
N2···H32.6600H6···C13x3.0200
N2···H14i2.9100H8···C112.6800
N3···H32.5000H8···H62.5100
C1···C6ii3.515 (2)H8···H112.1400
C2···C7ii3.564 (2)H8···C12vi3.0700
C2···C8ii3.472 (2)H11···C82.6800
C3···N33.001 (2)H11···H82.1400
C4···C11ii3.587 (2)H12···H19Bvii2.4000
C5···C9ii3.483 (2)H14···N2i2.9100
C6···C9ii3.597 (2)H14···C18i2.8700
C6···C1ii3.515 (2)H15···H21D2.5200
C7···C8ii3.575 (2)H15···N12.4800
C7···C7ii3.395 (2)H17···C20A2.9900
C7···C2ii3.564 (2)H17···C22B2.9000
C8···C7ii3.575 (2)H17···H20D2.5600
C8···C22Biii3.473 (7)H17···C2v3.0600
C8···C2ii3.472 (2)H17···C3v3.0700
C9···C6ii3.597 (2)H17···H20C2.4700
C9···C5ii3.483 (2)H19B···H12xi2.4000
C11···C4ii3.587 (2)H19B···C12xi2.9200
C20A···C20Aiv2.59 (4)H20A···C20Aiv2.7600
C21A···N13.275 (15)H20A···H20Biv2.1300
C21B···N12.988 (11)H20B···H3ix2.5100
C22A···C22Ai3.341 (16)H20B···C20Aiv2.0500
C22B···C8v3.473 (7)H20B···H20Civ1.8500
C1···H21C3.0100H20B···H20Aiv2.1300
C1···H21A2.7900H20B···H20Biv1.8900
C1···H21D2.9700H20C···C20Aiv2.5500
C2···H17iii3.0600H20C···H3v2.3100
C3···H17iii3.0700H20C···H20Biv1.8500
C3···H20Ciii2.8600H20C···C3v2.8600
C7···H22Fiii2.9900H20C···H172.4700
C8···H22Fiii3.0600H20C···C172.7800
C8···H112.6800H20D···C172.8500
C11···H82.6800H20D···H172.5600
C12···H8vi3.0700H20D···C18v2.9700
C12···H19Bvii2.9200H20E···H4ix2.4800
C13···H6viii3.0200H21A···C12.7900
C17···H22C2.9700H21A···N12.7700
C17···H20C2.7800H21C···C13.0100
C17···H20D2.8500H21D···C12.9700
C17···H22F2.9700H21D···H152.5200
C17···H22D2.9400H21D···N12.5200
C18···H20Diii2.9700H22A···C22Ai2.9800
C18···H14i2.8700H22A···H22Ai2.4000
C20A···H172.9900H22B···H22Bi2.5100
C20A···H20Civ2.5500H22B···C22Ai2.9200
C20A···H20Biv2.0500H22C···C172.9700
C20A···H20Aiv2.7600H22D···C172.9400
C22A···H22Bi2.9200H22F···C172.9700
C22A···H22Ai2.9800H22F···C7v2.9900
C22B···H172.9000H22F···C8v3.0600
C1—N1—C9118.51 (12)C12—C11—H11120.00
N3—N2—C1118.67 (12)C11—C12—H12120.00
N3—N2—C18112.33 (13)C13—C12—H12120.00
C1—N2—C18128.97 (13)C12—C13—H13120.00
N2—N3—C16104.80 (14)C14—C13—H13120.00
N1—C1—N2115.51 (13)C13—C14—H14120.00
N1—C1—C2125.16 (13)C15—C14—H14120.00
N2—C1—C2119.33 (13)C10—C15—H15120.00
C1—C2—C3125.21 (13)C14—C15—H15119.00
C1—C2—C7115.69 (12)C16—C17—H17126.00
C3—C2—C7119.09 (13)C18—C17—H17126.00
C2—C3—C4120.05 (14)C16—C19A—H19A112.00
C3—C4—C5121.12 (15)C16—C19A—H19B112.00
C4—C5—C6120.32 (16)C20A—C19A—H19A112.00
C5—C6—C7120.60 (15)C20A—C19A—H19B112.00
C2—C7—C6118.77 (13)H19A—C19A—H19B110.00
C2—C7—C8118.53 (13)C16—C19B—H19D109.00
C6—C7—C8122.70 (13)C20B—C19B—H19C109.00
C7—C8—C9120.88 (14)C16—C19B—H19C109.00
N1—C9—C8121.11 (13)H19C—C19B—H19D108.00
N1—C9—C10115.71 (12)C20B—C19B—H19D109.00
C8—C9—C10123.18 (13)C19A—C20A—H20B109.00
C9—C10—C11121.61 (14)C19A—C20A—H20A110.00
C9—C10—C15120.90 (14)H20A—C20A—H20B110.00
C11—C10—C15117.50 (14)H20A—C20A—H20C110.00
C10—C11—C12120.97 (16)C19A—C20A—H20C109.00
C11—C12—C13120.21 (17)H20B—C20A—H20C109.00
C12—C13—C14119.47 (17)C19B—C20B—H20D109.00
C13—C14—C15120.81 (19)C19B—C20B—H20E110.00
C10—C15—C14121.01 (18)H20E—C20B—H20F110.00
N3—C16—C17110.58 (17)C19B—C20B—H20F109.00
N3—C16—C19B120.3 (2)H20D—C20B—H20E109.00
N3—C16—C19A119.7 (11)H20D—C20B—H20F109.00
C17—C16—C19B129.1 (2)C18—C21A—H21B110.00
C17—C16—C19A123.3 (10)C22A—C21A—H21A110.00
C16—C17—C18107.55 (17)C22A—C21A—H21B110.00
N2—C18—C17104.74 (15)C18—C21A—H21A110.00
N2—C18—C21B120.8 (5)H21A—C21A—H21B108.00
N2—C18—C21A127.0 (6)C18—C21B—H21C109.00
C17—C18—C21B134.0 (5)C22B—C21B—H21C109.00
C17—C18—C21A126.7 (6)C22B—C21B—H21D109.00
C16—C19A—C20A99.3 (19)C18—C21B—H21D109.00
C16—C19B—C20B112.1 (3)H21C—C21B—H21D108.00
C18—C21A—C22A109.5 (12)C21A—C22A—H22B109.00
C18—C21B—C22B111.0 (9)C21A—C22A—H22C109.00
C2—C3—H3120.00C21A—C22A—H22A110.00
C4—C3—H3120.00H22A—C22A—H22C109.00
C3—C4—H4119.00H22B—C22A—H22C109.00
C5—C4—H4119.00H22A—C22A—H22B110.00
C4—C5—H5120.00C21B—C22B—H22D109.00
C6—C5—H5120.00C21B—C22B—H22E109.00
C5—C6—H6120.00C21B—C22B—H22F109.00
C7—C6—H6120.00H22D—C22B—H22E109.00
C7—C8—H8120.00H22D—C22B—H22F109.00
C9—C8—H8120.00H22E—C22B—H22F110.00
C10—C11—H11120.00
C9—N1—C1—N2177.66 (12)C4—C5—C6—C70.5 (3)
C9—N1—C1—C22.3 (2)C5—C6—C7—C21.6 (2)
C1—N1—C9—C81.1 (2)C5—C6—C7—C8177.46 (16)
C1—N1—C9—C10178.72 (13)C2—C7—C8—C91.1 (2)
C1—N2—N3—C16178.86 (14)C6—C7—C8—C9177.98 (15)
C18—N2—N3—C160.80 (19)C7—C8—C9—N12.8 (2)
N3—N2—C1—N1128.12 (15)C7—C8—C9—C10177.06 (14)
N3—N2—C1—C251.86 (19)N1—C9—C10—C11166.37 (14)
C18—N2—C1—N149.6 (2)N1—C9—C10—C1513.7 (2)
C18—N2—C1—C2130.45 (17)C8—C9—C10—C1113.8 (2)
N3—N2—C18—C170.31 (19)C8—C9—C10—C15166.20 (16)
N3—N2—C18—C21B172.9 (6)C9—C10—C11—C12178.17 (16)
C1—N2—C18—C17178.12 (15)C15—C10—C11—C121.8 (3)
C1—N2—C18—C21B5.0 (6)C9—C10—C15—C14178.09 (17)
N2—N3—C16—C171.0 (2)C11—C10—C15—C141.9 (3)
N2—N3—C16—C19B175.9 (2)C10—C11—C12—C130.4 (3)
N1—C1—C2—C3174.67 (15)C11—C12—C13—C141.1 (3)
N1—C1—C2—C73.9 (2)C12—C13—C14—C151.0 (3)
N2—C1—C2—C35.4 (2)C13—C14—C15—C100.5 (3)
N2—C1—C2—C7176.11 (13)N3—C16—C17—C180.8 (2)
C1—C2—C3—C4179.85 (15)C19B—C16—C17—C18175.7 (3)
C7—C2—C3—C41.4 (2)N3—C16—C19B—C20B130.4 (3)
C1—C2—C7—C6178.91 (14)C17—C16—C19B—C20B53.4 (4)
C1—C2—C7—C82.0 (2)C16—C17—C18—N20.3 (2)
C3—C2—C7—C62.5 (2)C16—C17—C18—C21B172.1 (7)
C3—C2—C7—C8176.61 (14)N2—C18—C21B—C22B175.9 (5)
C2—C3—C4—C50.7 (2)C17—C18—C21B—C22B5.1 (12)
C3—C4—C5—C61.6 (3)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+3/2, y+1/2, z+1; (iii) x, y, z1/2; (iv) x+1, y, z+2; (v) x, y, z+1/2; (vi) x+2, y, z+1/2; (vii) x+1/2, y+1/2, z1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1, y, z+3/2; (x) x1/2, y+1/2, z1/2; (xi) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/N3/C16–C18 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N30.932.503.001 (2)114
C15—H15···N10.932.482.807 (2)101
C14—H14···Cg1i0.932.883.755 (2)158
Symmetry code: (i) x+2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H21N3
Mr327.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)16.0736 (17), 20.819 (2), 10.8579 (11)
β (°) 91.071 (3)
V3)3632.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.21 × 0.15
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17963, 3389, 2379
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.06
No. of reflections3389
No. of parameters264
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/N3/C16–C18 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N30.932.503.001 (2)114
C15—H15···N10.932.482.807 (2)101
C14—H14···Cg1i0.932.883.755 (2)158
Symmetry code: (i) x+2, y, z+3/2.
 

Acknowledgements

We thank the Department of Science and Technology (DST), India, and Professor T. N. Guru Row, IISc, Bangalore, for use of the CCD facility set up under the IRHPA–DST program at IISc. FNK thanks the DST for Fast Track Proposal funding.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, R. Q., Song, J. & Feng, L. (1996). Chem. J. Chin. Univ. 17, 1089–1091.  CAS Google Scholar
First citationKhan, F. N., Manivel, P., Kone, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Manivel, P., Krishnakumar, V., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010c). Acta Cryst. E66, o370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, M., Wang, S. W., Wen, L. R., Qi, W. Y. & Yang, H. Z. (2005). Chin. J. Struct. Chem. 24, 64–68.  Google Scholar
First citationManivel, P. R., Hathwar, V., Maiyalagan, T., Krishnakumar, V. & Khan, F. N. (2009). Acta Cryst. E65, o1798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Comput. Chem. 7, 95–98.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED.Oxford Diffraction Ltd, Yarnton,England.  Google Scholar
First citationPatel, H. V., Fernandes, P. S. & Vyas, K. A. (1990). Indian J. Chem. Sect. B, 29, 135–141.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, W. G., Li, Z. M., Yuan, P. W., Yuan, D. K., Wang, W. Y. & Wang, S. H. (2001). Chin. J. Org. Chem. 21, 593–598.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds