metal-organic compounds
[μ-1,2-Bis(diphenylphosphino)ethane-κ2P:P′]bis{[1,2-bis(diphenylphosphino)ethane-κ2P,P′]cyanidocopper(I)} methanol disolvate
aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bBeijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com
The title centrosymmetric complex, [Cu2(CN)2(C26H24P2)3]·2CH3OH, consists of two five-membered [Cu(dppe)CN] rings [dppe is 1,2-bis(diphenylphosphino)ethane] bridged by one μ2-dppe ligand, and two methanol solvent molecules. The angles around the central metal atom indicate that each CuI atom is located in the center of a distorted tetrahedron. The coordination sphere of each CuI atom is formed by three P atoms from two dppe ligands, and one C atom from the cyanide ligand. The is stabilized by O—H⋯N hydrogen bonds, which are formed by the O—H donor group from methanol and the N-atom acceptor from a cyanide ligand.
Related literature
For related structures, see: Jin et al. (2009); Effendy et al. (2006); Sivasankar et al. (2004); Di Nicola et al. (2006); Saravanabharathi et al. (2002). For general background to the photophysical properties of similar compounds, see: Cingolani et al. (2005); Song et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810029545/su2196sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810029545/su2196Isup2.hkl
A mixture of CuCN, bis(diphenylphosphinoethane), (NH4)2WS4 and 1,10-Phenanthroline, in the molar ratio of 3:3:1:1 in CH2Cl2 and MeOH (10 ml,V/V=1/1), was stirred for 4 h at RT, then filtered. Subsequent slow evaporation of the filtrate resulted in the formation of yellow crystals of complex (1). Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.
The H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H 0.93 - 0.96 Å with Uiso(H) = k × Ueq(parent O or C-atom), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.
Copper(I) complexes containing the diphosphine ligands bis(diphenylphosphinoethane)(Dppe) are extensively studied because of their interesting structures and photophysical properties (Cingolani et al., 2005; Song et al., 2007). dppe is a very efficient bridging bidentate ligand and its chelating tendency is very suitable to lock the metal atom. As a part of the extension of our study on the systematic structural chemistry of copper(I) complexes with ligands containing phosphine and nitrogen atoms (Jin et al., 2009), we synthesized the new title complex, (1), in the presence of (NH4)2WS4 and 1,10-phenanthroline.
The molecular structure of complex (1) is depicted in Fig. 1. It consists of two five-membered [Cu(dppe)CN] rings that are bridged by one µ2-dppe ligand, and two methanol solvent molecules. The copper atom is four-coordinated by three P-atoms from two dppe ligands, and one C-atom from the cyanide ion. The Cu—P distances of 2.2832 (12) Å, 2.3041 (13) Å and 2.3291 (12) Å are longer than those in complex [Cu2(dppe)3(CN)2].2(CH3CN) (2), which vary from 2.2784 (4) to 2.3158 (4) Å (Effendy et al., 2006), but are almost equal to those in complex [Cu2(dppe)3(CN)2] (3), which vary from 2.2808 (8) to 2.3276 (8) Å (Saravanabharathi et al., 2002). The Cu—C distance of 1.952 (6)Å in complex (1) is shorter than the same distance observed in complexes (2) and (3); 1.975 (2) Å and 1.964 (4) Å, respectively.
In (1) the P—Cu—C angles are in the range 107.59 (14) - 119.11 (14)°, and the P—Cu—P angles are in the range 89.03 (4) - 115.07 (5)°. This confirms the distored tetrahedral environment around the copper(I) atom. These values are very close to those observed for complex (3), where the P—Cu—C angles range from 107.05 (9) to 120.73 (9)°, and the P—Cu—P angles are in the range 89.22 (3) - 115.16 (3) °.
Though both (NH4)2WS4 and 1,10-phenanthroline were starting materials in the prepartion of (1), they do not appear in the final product. This may be related to the solvent methanol because the O—H donor from methanol can form an O—H···N hydrogen bond with the N atom from the cyanide anion (Table 1), and this can stablize the molecular structure of the complex.
The
of complex (1) is similar with that of complex (2). Other similar complexes are adducts CuX:dppe:X, where X is a simple inorganic anion, for example, a halide (Effendy et al., 2006; Di Nicola et al., 2006), thiocyanate (Saravanabharathi et al., 2002), nitrate (Saravanabharathi et al., 2002), perchlorate (Sivasankar et al., 2004; Jin et al., 2009) and tetrafluoroborate (Jin et al., 2009).For related structures, see: Jin et al. (2009); Effendy et al. (2006); Sivasankar et al. (2004); Di Nicola et al. (2006); Saravanabharathi et al. (2002). For general background to the photophysical properties of similar compounds, see: Cingolani et al. (2005); Song et al. (2007).
Data collection: SMART (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(CN)2(C26H24P2)3]·2CH4O | F(000) = 3000 |
Mr = 1438.38 | Dx = 1.299 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 4634 reflections |
a = 23.423 (2) Å | θ = 2.3–27.3° |
b = 17.7912 (16) Å | µ = 0.76 mm−1 |
c = 17.6614 (18) Å | T = 298 K |
β = 92.194 (1)° | Block, yellow |
V = 7354.6 (12) Å3 | 0.44 × 0.40 × 0.25 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 6494 independent reflections |
Radiation source: fine-focus sealed tube | 4140 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
phi and ω scans | θmax = 25.0°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −23→27 |
Tmin = 0.732, Tmax = 0.833 | k = −21→21 |
18242 measured reflections | l = −17→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.149 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.063P)2 + 16.0608P] where P = (Fo2 + 2Fc2)/3 |
6494 reflections | (Δ/σ)max = 0.001 |
425 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
[Cu2(CN)2(C26H24P2)3]·2CH4O | V = 7354.6 (12) Å3 |
Mr = 1438.38 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 23.423 (2) Å | µ = 0.76 mm−1 |
b = 17.7912 (16) Å | T = 298 K |
c = 17.6614 (18) Å | 0.44 × 0.40 × 0.25 mm |
β = 92.194 (1)° |
Bruker SMART CCD area-detector diffractometer | 6494 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 4140 reflections with I > 2σ(I) |
Tmin = 0.732, Tmax = 0.833 | Rint = 0.044 |
18242 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.149 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.063P)2 + 16.0608P] where P = (Fo2 + 2Fc2)/3 |
6494 reflections | Δρmax = 0.63 e Å−3 |
425 parameters | Δρmin = −0.39 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.26534 (2) | 0.24069 (3) | 0.29813 (3) | 0.03662 (18) | |
N1 | 0.3058 (2) | 0.4054 (3) | 0.3181 (3) | 0.0646 (13) | |
O1 | 0.0834 (4) | 0.0342 (6) | 0.6565 (6) | 0.243 (5) | |
H1 | 0.1155 | 0.0494 | 0.6686 | 0.292* | |
P1 | 0.28874 (4) | 0.17964 (6) | 0.40872 (6) | 0.0305 (3) | |
P2 | 0.30147 (5) | 0.18670 (7) | 0.18979 (7) | 0.0372 (3) | |
P3 | 0.17430 (5) | 0.21480 (7) | 0.25132 (7) | 0.0379 (3) | |
C1 | 0.2892 (2) | 0.3452 (3) | 0.3102 (3) | 0.0437 (11) | |
C2 | 0.28034 (17) | 0.2350 (2) | 0.4956 (2) | 0.0332 (10) | |
H2A | 0.2907 | 0.2038 | 0.5391 | 0.040* | |
H2B | 0.3066 | 0.2771 | 0.4954 | 0.040* | |
C3 | 0.25244 (17) | 0.0913 (2) | 0.4259 (2) | 0.0328 (10) | |
C4 | 0.2433 (2) | 0.0433 (3) | 0.3649 (3) | 0.0463 (12) | |
H4 | 0.2558 | 0.0573 | 0.3175 | 0.056* | |
C5 | 0.2161 (2) | −0.0251 (3) | 0.3731 (3) | 0.0608 (15) | |
H5 | 0.2103 | −0.0566 | 0.3315 | 0.073* | |
C6 | 0.1977 (2) | −0.0462 (3) | 0.4427 (4) | 0.0640 (15) | |
H6 | 0.1798 | −0.0924 | 0.4486 | 0.077* | |
C7 | 0.2057 (2) | 0.0011 (3) | 0.5039 (3) | 0.0594 (14) | |
H7 | 0.1926 | −0.0126 | 0.5510 | 0.071* | |
C8 | 0.2332 (2) | 0.0687 (3) | 0.4953 (3) | 0.0460 (12) | |
H8 | 0.2389 | 0.0999 | 0.5372 | 0.055* | |
C9 | 0.36466 (17) | 0.1560 (2) | 0.4211 (2) | 0.0359 (10) | |
C10 | 0.4037 (2) | 0.1964 (3) | 0.3819 (3) | 0.0572 (14) | |
H10 | 0.3912 | 0.2327 | 0.3472 | 0.069* | |
C11 | 0.4621 (2) | 0.1835 (4) | 0.3935 (4) | 0.0745 (18) | |
H11 | 0.4882 | 0.2116 | 0.3670 | 0.089* | |
C12 | 0.4810 (2) | 0.1305 (4) | 0.4432 (3) | 0.0676 (17) | |
H12 | 0.5200 | 0.1215 | 0.4501 | 0.081* | |
C13 | 0.4429 (2) | 0.0898 (3) | 0.4834 (3) | 0.0628 (15) | |
H13 | 0.4559 | 0.0538 | 0.5181 | 0.075* | |
C14 | 0.3848 (2) | 0.1026 (3) | 0.4721 (3) | 0.0504 (13) | |
H14 | 0.3590 | 0.0747 | 0.4993 | 0.060* | |
C15 | 0.23651 (19) | 0.1723 (3) | 0.1290 (3) | 0.0456 (12) | |
H15A | 0.2270 | 0.2188 | 0.1028 | 0.055* | |
H15B | 0.2441 | 0.1345 | 0.0912 | 0.055* | |
C16 | 0.18567 (19) | 0.1475 (3) | 0.1747 (3) | 0.0438 (11) | |
H16A | 0.1929 | 0.0979 | 0.1958 | 0.053* | |
H16B | 0.1516 | 0.1447 | 0.1417 | 0.053* | |
C17 | 0.33868 (19) | 0.0963 (3) | 0.1854 (2) | 0.0412 (11) | |
C18 | 0.3107 (2) | 0.0287 (3) | 0.1734 (3) | 0.0490 (12) | |
H18 | 0.2711 | 0.0283 | 0.1672 | 0.059* | |
C19 | 0.3406 (2) | −0.0385 (3) | 0.1706 (3) | 0.0584 (14) | |
H19 | 0.3209 | −0.0833 | 0.1623 | 0.070* | |
C20 | 0.3982 (3) | −0.0392 (3) | 0.1797 (3) | 0.0651 (16) | |
H20 | 0.4181 | −0.0844 | 0.1777 | 0.078* | |
C21 | 0.4273 (2) | 0.0267 (4) | 0.1920 (4) | 0.0714 (17) | |
H21 | 0.4670 | 0.0264 | 0.1980 | 0.086* | |
C22 | 0.3977 (2) | 0.0938 (3) | 0.1953 (3) | 0.0593 (14) | |
H22 | 0.4177 | 0.1382 | 0.2045 | 0.071* | |
C23 | 0.3481 (2) | 0.2435 (3) | 0.1316 (3) | 0.0455 (12) | |
C24 | 0.3554 (2) | 0.2283 (3) | 0.0564 (3) | 0.0606 (14) | |
H24 | 0.3343 | 0.1901 | 0.0328 | 0.073* | |
C25 | 0.3935 (3) | 0.2691 (4) | 0.0156 (4) | 0.0784 (19) | |
H25 | 0.3973 | 0.2592 | −0.0357 | 0.094* | |
C26 | 0.4252 (3) | 0.3234 (4) | 0.0498 (4) | 0.082 (2) | |
H26 | 0.4515 | 0.3501 | 0.0222 | 0.099* | |
C27 | 0.4192 (2) | 0.3396 (3) | 0.1245 (4) | 0.0757 (18) | |
H27 | 0.4411 | 0.3772 | 0.1478 | 0.091* | |
C28 | 0.3801 (2) | 0.2995 (3) | 0.1655 (3) | 0.0556 (14) | |
H28 | 0.3755 | 0.3106 | 0.2164 | 0.067* | |
C29 | 0.11966 (19) | 0.1722 (3) | 0.3079 (3) | 0.0464 (12) | |
C30 | 0.0944 (3) | 0.1036 (3) | 0.2908 (4) | 0.0761 (18) | |
H30 | 0.1061 | 0.0757 | 0.2496 | 0.091* | |
C31 | 0.0515 (3) | 0.0769 (4) | 0.3358 (5) | 0.101 (2) | |
H31 | 0.0338 | 0.0313 | 0.3240 | 0.122* | |
C32 | 0.0350 (3) | 0.1166 (4) | 0.3970 (4) | 0.098 (2) | |
H32 | 0.0069 | 0.0974 | 0.4274 | 0.117* | |
C33 | 0.0592 (3) | 0.1842 (4) | 0.4141 (4) | 0.084 (2) | |
H33 | 0.0473 | 0.2115 | 0.4555 | 0.101* | |
C34 | 0.1015 (2) | 0.2122 (3) | 0.3699 (3) | 0.0597 (14) | |
H34 | 0.1180 | 0.2584 | 0.3817 | 0.072* | |
C35 | 0.13433 (19) | 0.2891 (3) | 0.2004 (3) | 0.0423 (11) | |
C36 | 0.1637 (2) | 0.3484 (3) | 0.1707 (3) | 0.0548 (13) | |
H36 | 0.2032 | 0.3509 | 0.1779 | 0.066* | |
C37 | 0.1351 (3) | 0.4045 (3) | 0.1302 (3) | 0.0707 (17) | |
H37 | 0.1554 | 0.4440 | 0.1096 | 0.085* | |
C38 | 0.0765 (3) | 0.4017 (3) | 0.1204 (3) | 0.0716 (17) | |
H38 | 0.0573 | 0.4398 | 0.0940 | 0.086* | |
C39 | 0.0469 (2) | 0.3436 (3) | 0.1492 (3) | 0.0648 (16) | |
H39 | 0.0073 | 0.3419 | 0.1419 | 0.078* | |
C40 | 0.0750 (2) | 0.2864 (3) | 0.1895 (3) | 0.0530 (13) | |
H40 | 0.0544 | 0.2467 | 0.2090 | 0.064* | |
C41 | 0.0678 (5) | 0.0611 (8) | 0.5868 (8) | 0.200 (6) | |
H41A | 0.0315 | 0.0859 | 0.5890 | 0.300* | |
H41B | 0.0648 | 0.0202 | 0.5514 | 0.300* | |
H41C | 0.0960 | 0.0961 | 0.5707 | 0.300* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0365 (3) | 0.0446 (3) | 0.0287 (3) | 0.0026 (2) | 0.0002 (2) | 0.0009 (2) |
N1 | 0.084 (4) | 0.054 (3) | 0.057 (3) | −0.012 (3) | 0.006 (2) | −0.007 (2) |
O1 | 0.204 (9) | 0.280 (12) | 0.241 (12) | −0.122 (8) | −0.036 (8) | 0.110 (9) |
P1 | 0.0297 (6) | 0.0359 (6) | 0.0260 (6) | 0.0033 (5) | 0.0006 (4) | −0.0011 (5) |
P2 | 0.0374 (7) | 0.0460 (7) | 0.0284 (6) | 0.0033 (5) | 0.0041 (5) | −0.0016 (5) |
P3 | 0.0319 (6) | 0.0469 (7) | 0.0346 (7) | 0.0047 (5) | −0.0016 (5) | −0.0020 (5) |
C1 | 0.045 (3) | 0.057 (3) | 0.029 (3) | 0.005 (2) | 0.003 (2) | 0.003 (2) |
C2 | 0.036 (2) | 0.036 (2) | 0.027 (2) | 0.0024 (19) | −0.0035 (18) | −0.0043 (18) |
C3 | 0.031 (2) | 0.040 (2) | 0.028 (2) | 0.0052 (18) | −0.0047 (18) | −0.0014 (19) |
C4 | 0.054 (3) | 0.051 (3) | 0.034 (3) | 0.002 (2) | 0.001 (2) | 0.000 (2) |
C5 | 0.074 (4) | 0.052 (3) | 0.056 (4) | −0.009 (3) | −0.010 (3) | −0.014 (3) |
C6 | 0.068 (4) | 0.049 (3) | 0.075 (4) | −0.012 (3) | −0.005 (3) | 0.006 (3) |
C7 | 0.073 (4) | 0.053 (3) | 0.053 (4) | −0.007 (3) | 0.009 (3) | 0.012 (3) |
C8 | 0.057 (3) | 0.044 (3) | 0.037 (3) | −0.004 (2) | 0.003 (2) | −0.002 (2) |
C9 | 0.031 (2) | 0.045 (3) | 0.032 (2) | 0.006 (2) | 0.0013 (19) | −0.008 (2) |
C10 | 0.041 (3) | 0.078 (4) | 0.053 (3) | 0.000 (3) | 0.001 (2) | 0.009 (3) |
C11 | 0.043 (3) | 0.108 (5) | 0.073 (4) | −0.015 (3) | 0.009 (3) | 0.004 (4) |
C12 | 0.036 (3) | 0.098 (5) | 0.067 (4) | 0.012 (3) | −0.005 (3) | −0.013 (4) |
C13 | 0.049 (3) | 0.078 (4) | 0.060 (4) | 0.019 (3) | −0.014 (3) | −0.002 (3) |
C14 | 0.040 (3) | 0.058 (3) | 0.052 (3) | 0.007 (2) | −0.004 (2) | 0.002 (3) |
C15 | 0.051 (3) | 0.052 (3) | 0.034 (3) | 0.011 (2) | −0.006 (2) | −0.008 (2) |
C16 | 0.040 (3) | 0.049 (3) | 0.042 (3) | 0.007 (2) | −0.002 (2) | −0.007 (2) |
C17 | 0.042 (3) | 0.053 (3) | 0.029 (3) | 0.007 (2) | 0.003 (2) | −0.001 (2) |
C18 | 0.045 (3) | 0.057 (3) | 0.046 (3) | 0.009 (2) | 0.006 (2) | −0.001 (2) |
C19 | 0.063 (4) | 0.052 (3) | 0.061 (4) | 0.006 (3) | 0.003 (3) | −0.002 (3) |
C20 | 0.066 (4) | 0.062 (4) | 0.068 (4) | 0.022 (3) | 0.005 (3) | 0.007 (3) |
C21 | 0.048 (3) | 0.087 (5) | 0.079 (5) | 0.020 (3) | −0.001 (3) | 0.008 (4) |
C22 | 0.049 (3) | 0.062 (4) | 0.066 (4) | 0.005 (3) | −0.002 (3) | 0.003 (3) |
C23 | 0.048 (3) | 0.051 (3) | 0.039 (3) | 0.013 (2) | 0.012 (2) | 0.006 (2) |
C24 | 0.068 (4) | 0.070 (4) | 0.045 (3) | 0.009 (3) | 0.014 (3) | 0.007 (3) |
C25 | 0.083 (5) | 0.097 (5) | 0.058 (4) | 0.020 (4) | 0.032 (3) | 0.018 (4) |
C26 | 0.075 (5) | 0.084 (5) | 0.091 (5) | 0.007 (4) | 0.043 (4) | 0.032 (4) |
C27 | 0.065 (4) | 0.069 (4) | 0.095 (5) | −0.005 (3) | 0.025 (4) | 0.010 (4) |
C28 | 0.056 (3) | 0.061 (3) | 0.051 (3) | −0.001 (3) | 0.017 (3) | 0.005 (3) |
C29 | 0.038 (3) | 0.052 (3) | 0.049 (3) | 0.006 (2) | 0.000 (2) | 0.001 (2) |
C30 | 0.070 (4) | 0.074 (4) | 0.086 (5) | −0.009 (3) | 0.030 (4) | −0.008 (4) |
C31 | 0.105 (6) | 0.086 (5) | 0.117 (7) | −0.027 (4) | 0.046 (5) | −0.007 (5) |
C32 | 0.094 (5) | 0.106 (6) | 0.097 (6) | −0.017 (5) | 0.049 (4) | 0.000 (5) |
C33 | 0.076 (4) | 0.107 (6) | 0.072 (5) | −0.001 (4) | 0.027 (4) | −0.006 (4) |
C34 | 0.054 (3) | 0.075 (4) | 0.051 (3) | −0.004 (3) | 0.007 (3) | −0.005 (3) |
C35 | 0.042 (3) | 0.047 (3) | 0.037 (3) | 0.007 (2) | −0.006 (2) | −0.007 (2) |
C36 | 0.050 (3) | 0.060 (3) | 0.053 (3) | 0.002 (3) | −0.011 (3) | 0.003 (3) |
C37 | 0.075 (4) | 0.064 (4) | 0.071 (4) | −0.004 (3) | −0.020 (3) | 0.015 (3) |
C38 | 0.075 (4) | 0.069 (4) | 0.069 (4) | 0.019 (3) | −0.026 (3) | 0.009 (3) |
C39 | 0.048 (3) | 0.077 (4) | 0.068 (4) | 0.018 (3) | −0.015 (3) | 0.003 (3) |
C40 | 0.044 (3) | 0.062 (3) | 0.052 (3) | 0.006 (3) | −0.007 (2) | −0.001 (3) |
C41 | 0.166 (12) | 0.229 (14) | 0.204 (16) | −0.004 (10) | −0.006 (10) | 0.052 (12) |
Cu1—C1 | 1.951 (6) | C17—C22 | 1.387 (6) |
Cu1—P1 | 2.2832 (12) | C18—C19 | 1.388 (6) |
Cu1—P3 | 2.3041 (13) | C18—H18 | 0.9300 |
Cu1—P2 | 2.3291 (12) | C19—C20 | 1.355 (7) |
N1—C1 | 1.146 (6) | C19—H19 | 0.9300 |
O1—C41 | 1.358 (12) | C20—C21 | 1.370 (8) |
O1—H1 | 0.8200 | C20—H20 | 0.9300 |
P1—C3 | 1.818 (4) | C21—C22 | 1.383 (7) |
P1—C9 | 1.832 (4) | C21—H21 | 0.9300 |
P1—C2 | 1.840 (4) | C22—H22 | 0.9300 |
P2—C17 | 1.832 (5) | C23—C28 | 1.370 (7) |
P2—C23 | 1.833 (5) | C23—C24 | 1.372 (7) |
P2—C15 | 1.846 (5) | C24—C25 | 1.375 (8) |
P3—C29 | 1.818 (5) | C24—H24 | 0.9300 |
P3—C16 | 1.835 (5) | C25—C26 | 1.348 (9) |
P3—C35 | 1.835 (5) | C25—H25 | 0.9300 |
C2—C2i | 1.532 (8) | C26—C27 | 1.363 (9) |
C2—H2A | 0.9700 | C26—H26 | 0.9300 |
C2—H2B | 0.9700 | C27—C28 | 1.387 (7) |
C3—C8 | 1.382 (6) | C27—H27 | 0.9300 |
C3—C4 | 1.386 (6) | C28—H28 | 0.9300 |
C4—C5 | 1.384 (7) | C29—C30 | 1.384 (7) |
C4—H4 | 0.9300 | C29—C34 | 1.386 (7) |
C5—C6 | 1.371 (7) | C30—C31 | 1.391 (8) |
C5—H5 | 0.9300 | C30—H30 | 0.9300 |
C6—C7 | 1.378 (7) | C31—C32 | 1.360 (9) |
C6—H6 | 0.9300 | C31—H31 | 0.9300 |
C7—C8 | 1.375 (7) | C32—C33 | 1.358 (9) |
C7—H7 | 0.9300 | C32—H32 | 0.9300 |
C8—H8 | 0.9300 | C33—C34 | 1.377 (8) |
C9—C10 | 1.372 (6) | C33—H33 | 0.9300 |
C9—C14 | 1.381 (6) | C34—H34 | 0.9300 |
C10—C11 | 1.394 (7) | C35—C36 | 1.374 (7) |
C10—H10 | 0.9300 | C35—C40 | 1.396 (6) |
C11—C12 | 1.352 (8) | C36—C37 | 1.387 (7) |
C11—H11 | 0.9300 | C36—H36 | 0.9300 |
C12—C13 | 1.368 (8) | C37—C38 | 1.376 (8) |
C12—H12 | 0.9300 | C37—H37 | 0.9300 |
C13—C14 | 1.387 (6) | C38—C39 | 1.355 (8) |
C13—H13 | 0.9300 | C38—H38 | 0.9300 |
C14—H14 | 0.9300 | C39—C40 | 1.393 (7) |
C15—C16 | 1.529 (6) | C39—H39 | 0.9300 |
C15—H15A | 0.9700 | C40—H40 | 0.9300 |
C15—H15B | 0.9700 | C41—H41A | 0.9600 |
C16—H16A | 0.9700 | C41—H41B | 0.9600 |
C16—H16B | 0.9700 | C41—H41C | 0.9600 |
C17—C18 | 1.381 (6) | ||
C1—Cu1—P1 | 107.59 (14) | H16A—C16—H16B | 108.2 |
C1—Cu1—P3 | 119.11 (14) | C18—C17—C22 | 117.1 (4) |
P1—Cu1—P3 | 113.60 (5) | C18—C17—P2 | 123.1 (4) |
C1—Cu1—P2 | 111.79 (14) | C22—C17—P2 | 119.7 (4) |
P1—Cu1—P2 | 115.07 (5) | C17—C18—C19 | 121.2 (5) |
P3—Cu1—P2 | 89.03 (4) | C17—C18—H18 | 119.4 |
C41—O1—H1 | 109.5 | C19—C18—H18 | 119.4 |
C3—P1—C9 | 103.88 (19) | C20—C19—C18 | 120.4 (5) |
C3—P1—C2 | 104.93 (19) | C20—C19—H19 | 119.8 |
C9—P1—C2 | 99.06 (18) | C18—C19—H19 | 119.8 |
C3—P1—Cu1 | 117.12 (14) | C19—C20—C21 | 119.9 (5) |
C9—P1—Cu1 | 114.28 (15) | C19—C20—H20 | 120.1 |
C2—P1—Cu1 | 115.39 (14) | C21—C20—H20 | 120.1 |
C17—P2—C23 | 99.5 (2) | C20—C21—C22 | 119.9 (5) |
C17—P2—C15 | 103.7 (2) | C20—C21—H21 | 120.1 |
C23—P2—C15 | 104.3 (2) | C22—C21—H21 | 120.1 |
C17—P2—Cu1 | 125.84 (15) | C21—C22—C17 | 121.5 (5) |
C23—P2—Cu1 | 118.46 (16) | C21—C22—H22 | 119.3 |
C15—P2—Cu1 | 102.56 (15) | C17—C22—H22 | 119.3 |
C29—P3—C16 | 105.0 (2) | C28—C23—C24 | 118.8 (5) |
C29—P3—C35 | 102.3 (2) | C28—C23—P2 | 118.9 (4) |
C16—P3—C35 | 101.2 (2) | C24—C23—P2 | 122.2 (4) |
C29—P3—Cu1 | 123.19 (17) | C23—C24—C25 | 120.7 (6) |
C16—P3—Cu1 | 103.70 (15) | C23—C24—H24 | 119.7 |
C35—P3—Cu1 | 118.66 (16) | C25—C24—H24 | 119.7 |
N1—C1—Cu1 | 176.6 (5) | C26—C25—C24 | 120.1 (6) |
C2i—C2—P1 | 113.6 (4) | C26—C25—H25 | 120.0 |
C2i—C2—H2A | 108.8 | C24—C25—H25 | 120.0 |
P1—C2—H2A | 108.8 | C25—C26—C27 | 120.6 (6) |
C2i—C2—H2B | 108.8 | C25—C26—H26 | 119.7 |
P1—C2—H2B | 108.8 | C27—C26—H26 | 119.7 |
H2A—C2—H2B | 107.7 | C26—C27—C28 | 119.5 (6) |
C8—C3—C4 | 117.7 (4) | C26—C27—H27 | 120.2 |
C8—C3—P1 | 124.8 (3) | C28—C27—H27 | 120.2 |
C4—C3—P1 | 117.5 (3) | C23—C28—C27 | 120.4 (6) |
C5—C4—C3 | 121.2 (5) | C23—C28—H28 | 119.8 |
C5—C4—H4 | 119.4 | C27—C28—H28 | 119.8 |
C3—C4—H4 | 119.4 | C30—C29—C34 | 118.9 (5) |
C6—C5—C4 | 119.9 (5) | C30—C29—P3 | 123.5 (4) |
C6—C5—H5 | 120.1 | C34—C29—P3 | 117.6 (4) |
C4—C5—H5 | 120.1 | C29—C30—C31 | 119.3 (6) |
C5—C6—C7 | 119.8 (5) | C29—C30—H30 | 120.3 |
C5—C6—H6 | 120.1 | C31—C30—H30 | 120.3 |
C7—C6—H6 | 120.1 | C32—C31—C30 | 120.7 (7) |
C8—C7—C6 | 119.9 (5) | C32—C31—H31 | 119.7 |
C8—C7—H7 | 120.1 | C30—C31—H31 | 119.7 |
C6—C7—H7 | 120.1 | C33—C32—C31 | 120.5 (6) |
C7—C8—C3 | 121.5 (5) | C33—C32—H32 | 119.7 |
C7—C8—H8 | 119.2 | C31—C32—H32 | 119.7 |
C3—C8—H8 | 119.2 | C32—C33—C34 | 119.8 (6) |
C10—C9—C14 | 118.2 (4) | C32—C33—H33 | 120.1 |
C10—C9—P1 | 118.9 (4) | C34—C33—H33 | 120.1 |
C14—C9—P1 | 122.8 (3) | C33—C34—C29 | 120.8 (6) |
C9—C10—C11 | 120.6 (5) | C33—C34—H34 | 119.6 |
C9—C10—H10 | 119.7 | C29—C34—H34 | 119.6 |
C11—C10—H10 | 119.7 | C36—C35—C40 | 118.9 (4) |
C12—C11—C10 | 120.4 (5) | C36—C35—P3 | 119.1 (4) |
C12—C11—H11 | 119.8 | C40—C35—P3 | 122.0 (4) |
C10—C11—H11 | 119.8 | C35—C36—C37 | 120.6 (5) |
C11—C12—C13 | 120.1 (5) | C35—C36—H36 | 119.7 |
C11—C12—H12 | 120.0 | C37—C36—H36 | 119.7 |
C13—C12—H12 | 120.0 | C38—C37—C36 | 119.9 (6) |
C12—C13—C14 | 119.7 (5) | C38—C37—H37 | 120.0 |
C12—C13—H13 | 120.1 | C36—C37—H37 | 120.0 |
C14—C13—H13 | 120.1 | C39—C38—C37 | 120.3 (5) |
C9—C14—C13 | 121.0 (5) | C39—C38—H38 | 119.9 |
C9—C14—H14 | 119.5 | C37—C38—H38 | 119.9 |
C13—C14—H14 | 119.5 | C38—C39—C40 | 120.6 (5) |
C16—C15—P2 | 112.0 (3) | C38—C39—H39 | 119.7 |
C16—C15—H15A | 109.2 | C40—C39—H39 | 119.7 |
P2—C15—H15A | 109.2 | C39—C40—C35 | 119.7 (5) |
C16—C15—H15B | 109.2 | C39—C40—H40 | 120.2 |
P2—C15—H15B | 109.2 | C35—C40—H40 | 120.2 |
H15A—C15—H15B | 107.9 | O1—C41—H41A | 109.5 |
C15—C16—P3 | 109.8 (3) | O1—C41—H41B | 109.5 |
C15—C16—H16A | 109.7 | H41A—C41—H41B | 109.5 |
P3—C16—H16A | 109.7 | O1—C41—H41C | 109.5 |
C15—C16—H16B | 109.7 | H41A—C41—H41C | 109.5 |
P3—C16—H16B | 109.7 | H41B—C41—H41C | 109.5 |
C1—Cu1—P1—C3 | 160.9 (2) | P2—C15—C16—P3 | 54.5 (4) |
P3—Cu1—P1—C3 | 26.84 (16) | C29—P3—C16—C15 | −172.6 (3) |
P2—Cu1—P1—C3 | −73.77 (16) | C35—P3—C16—C15 | 81.3 (3) |
C1—Cu1—P1—C9 | −77.3 (2) | Cu1—P3—C16—C15 | −42.1 (3) |
P3—Cu1—P1—C9 | 148.63 (15) | C23—P2—C17—C18 | −135.9 (4) |
P2—Cu1—P1—C9 | 48.02 (16) | C15—P2—C17—C18 | −28.6 (4) |
C1—Cu1—P1—C2 | 36.6 (2) | Cu1—P2—C17—C18 | 88.2 (4) |
P3—Cu1—P1—C2 | −97.46 (15) | C23—P2—C17—C22 | 45.0 (4) |
P2—Cu1—P1—C2 | 161.93 (15) | C15—P2—C17—C22 | 152.3 (4) |
C1—Cu1—P2—C17 | 130.6 (2) | Cu1—P2—C17—C22 | −90.8 (4) |
P1—Cu1—P2—C17 | 7.5 (2) | C22—C17—C18—C19 | −0.9 (7) |
P3—Cu1—P2—C17 | −108.3 (2) | P2—C17—C18—C19 | −179.9 (4) |
C1—Cu1—P2—C23 | 2.0 (2) | C17—C18—C19—C20 | 0.2 (8) |
P1—Cu1—P2—C23 | −121.14 (18) | C18—C19—C20—C21 | 0.1 (9) |
P3—Cu1—P2—C23 | 123.13 (18) | C19—C20—C21—C22 | 0.3 (9) |
C1—Cu1—P2—C15 | −112.1 (2) | C20—C21—C22—C17 | −1.1 (9) |
P1—Cu1—P2—C15 | 124.81 (16) | C18—C17—C22—C21 | 1.3 (8) |
P3—Cu1—P2—C15 | 9.07 (16) | P2—C17—C22—C21 | −179.6 (4) |
C1—Cu1—P3—C29 | −112.1 (2) | C17—P2—C23—C28 | −112.0 (4) |
P1—Cu1—P3—C29 | 16.2 (2) | C15—P2—C23—C28 | 141.1 (4) |
P2—Cu1—P3—C29 | 133.3 (2) | Cu1—P2—C23—C28 | 28.0 (4) |
C1—Cu1—P3—C16 | 129.4 (2) | C17—P2—C23—C24 | 63.0 (4) |
P1—Cu1—P3—C16 | −102.25 (17) | C15—P2—C23—C24 | −43.9 (5) |
P2—Cu1—P3—C16 | 14.82 (17) | Cu1—P2—C23—C24 | −157.0 (4) |
C1—Cu1—P3—C35 | 18.2 (2) | C28—C23—C24—C25 | −0.8 (8) |
P1—Cu1—P3—C35 | 146.56 (17) | P2—C23—C24—C25 | −175.8 (4) |
P2—Cu1—P3—C35 | −96.37 (17) | C23—C24—C25—C26 | 1.7 (9) |
C3—P1—C2—C2i | −72.9 (4) | C24—C25—C26—C27 | −1.4 (10) |
C9—P1—C2—C2i | −180.0 (4) | C25—C26—C27—C28 | 0.3 (10) |
Cu1—P1—C2—C2i | 57.6 (4) | C24—C23—C28—C27 | −0.3 (8) |
C9—P1—C3—C8 | 92.8 (4) | P2—C23—C28—C27 | 174.8 (4) |
C2—P1—C3—C8 | −10.7 (4) | C26—C27—C28—C23 | 0.6 (9) |
Cu1—P1—C3—C8 | −140.2 (3) | C16—P3—C29—C30 | −0.7 (5) |
C9—P1—C3—C4 | −87.4 (4) | C35—P3—C29—C30 | 104.6 (5) |
C2—P1—C3—C4 | 169.1 (3) | Cu1—P3—C29—C30 | −118.6 (5) |
Cu1—P1—C3—C4 | 39.7 (4) | C16—P3—C29—C34 | −178.7 (4) |
C8—C3—C4—C5 | −0.2 (7) | C35—P3—C29—C34 | −73.4 (4) |
P1—C3—C4—C5 | 179.9 (4) | Cu1—P3—C29—C34 | 63.4 (4) |
C3—C4—C5—C6 | −0.1 (8) | C34—C29—C30—C31 | 0.3 (9) |
C4—C5—C6—C7 | 0.9 (8) | P3—C29—C30—C31 | −177.6 (5) |
C5—C6—C7—C8 | −1.3 (8) | C29—C30—C31—C32 | −1.3 (12) |
C6—C7—C8—C3 | 1.0 (8) | C30—C31—C32—C33 | 1.7 (13) |
C4—C3—C8—C7 | −0.2 (7) | C31—C32—C33—C34 | −1.0 (12) |
P1—C3—C8—C7 | 179.6 (4) | C32—C33—C34—C29 | 0.0 (10) |
C3—P1—C9—C10 | 151.4 (4) | C30—C29—C34—C33 | 0.3 (9) |
C2—P1—C9—C10 | −100.6 (4) | P3—C29—C34—C33 | 178.4 (5) |
Cu1—P1—C9—C10 | 22.6 (4) | C29—P3—C35—C36 | 159.4 (4) |
C3—P1—C9—C14 | −33.0 (4) | C16—P3—C35—C36 | −92.4 (4) |
C2—P1—C9—C14 | 74.9 (4) | Cu1—P3—C35—C36 | 20.2 (4) |
Cu1—P1—C9—C14 | −161.8 (3) | C29—P3—C35—C40 | −22.0 (4) |
C14—C9—C10—C11 | 0.0 (8) | C16—P3—C35—C40 | 86.2 (4) |
P1—C9—C10—C11 | 175.7 (4) | Cu1—P3—C35—C40 | −161.3 (3) |
C9—C10—C11—C12 | 0.6 (9) | C40—C35—C36—C37 | −0.3 (8) |
C10—C11—C12—C13 | −1.1 (9) | P3—C35—C36—C37 | 178.3 (4) |
C11—C12—C13—C14 | 1.0 (9) | C35—C36—C37—C38 | 1.0 (9) |
C10—C9—C14—C13 | −0.1 (7) | C36—C37—C38—C39 | −1.1 (9) |
P1—C9—C14—C13 | −175.7 (4) | C37—C38—C39—C40 | 0.6 (9) |
C12—C13—C14—C9 | −0.4 (8) | C38—C39—C40—C35 | 0.1 (8) |
C17—P2—C15—C16 | 93.9 (3) | C36—C35—C40—C39 | −0.2 (7) |
C23—P2—C15—C16 | −162.3 (3) | P3—C35—C40—C39 | −178.8 (4) |
Cu1—P2—C15—C16 | −38.3 (3) |
Symmetry code: (i) −x+1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.82 | 2.02 | 2.829 (11) | 171 |
Symmetry code: (i) −x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(CN)2(C26H24P2)3]·2CH4O |
Mr | 1438.38 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 23.423 (2), 17.7912 (16), 17.6614 (18) |
β (°) | 92.194 (1) |
V (Å3) | 7354.6 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.76 |
Crystal size (mm) | 0.44 × 0.40 × 0.25 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.732, 0.833 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18242, 6494, 4140 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.149, 1.06 |
No. of reflections | 6494 |
No. of parameters | 425 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.063P)2 + 16.0608P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.63, −0.39 |
Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.82 | 2.02 | 2.829 (11) | 171 |
Symmetry code: (i) −x+1/2, −y+1/2, −z+1. |
Acknowledgements
This work was supported by the National Keystone Basic Research Program (973 Program – grant Nos. 2007CB310408 and 2006CB302901), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of the Beijing Municipality and the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.
References
Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cingolani, A., Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta, 358, 748–762. Web of Science CSD CrossRef CAS Google Scholar
Di Nicola, C., Koutsantonis, G. A., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 2159–2169. CrossRef CAS Google Scholar
Effendy, Di Nicola, C., Pettinari, C., Pizzabiocca, A., Skelton, B. W., Somers, N. & White, A. H. (2006). Inorg. Chim. Acta, 359, 64–80. Web of Science CSD CrossRef CAS Google Scholar
Jin, Q. H., Chen, L. M., Li, P. Z., Deng, S. F. & Wang, R. (2009). Inorg. Chim. Acta, 362, 5224–5230. Web of Science CSD CrossRef CAS Google Scholar
Saravanabharathi, D., Monika, Venugopalan, P. & Samuelson, A.G. (2002). Polyhedron, 21, 2433–2443. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sivasankar, C., Nethaji, M. & Samuelson, A. G. (2004). Inorg. Chim. Commun. 7, 238–240. Web of Science CSD CrossRef CAS Google Scholar
Song, L., Lin, P., Li, Z. H., Li, J. R., Du, S. W. & Wu, X. T. (2007). Polyhedron, 26, 1199–1204. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Copper(I) complexes containing the diphosphine ligands bis(diphenylphosphinoethane)(Dppe) are extensively studied because of their interesting structures and photophysical properties (Cingolani et al., 2005; Song et al., 2007). dppe is a very efficient bridging bidentate ligand and its chelating tendency is very suitable to lock the metal atom. As a part of the extension of our study on the systematic structural chemistry of copper(I) complexes with ligands containing phosphine and nitrogen atoms (Jin et al., 2009), we synthesized the new title complex, (1), in the presence of (NH4)2WS4 and 1,10-phenanthroline.
The molecular structure of complex (1) is depicted in Fig. 1. It consists of two five-membered [Cu(dppe)CN] rings that are bridged by one µ2-dppe ligand, and two methanol solvent molecules. The copper atom is four-coordinated by three P-atoms from two dppe ligands, and one C-atom from the cyanide ion. The Cu—P distances of 2.2832 (12) Å, 2.3041 (13) Å and 2.3291 (12) Å are longer than those in complex [Cu2(dppe)3(CN)2].2(CH3CN) (2), which vary from 2.2784 (4) to 2.3158 (4) Å (Effendy et al., 2006), but are almost equal to those in complex [Cu2(dppe)3(CN)2] (3), which vary from 2.2808 (8) to 2.3276 (8) Å (Saravanabharathi et al., 2002). The Cu—C distance of 1.952 (6)Å in complex (1) is shorter than the same distance observed in complexes (2) and (3); 1.975 (2) Å and 1.964 (4) Å, respectively.
In (1) the P—Cu—C angles are in the range 107.59 (14) - 119.11 (14)°, and the P—Cu—P angles are in the range 89.03 (4) - 115.07 (5)°. This confirms the distored tetrahedral environment around the copper(I) atom. These values are very close to those observed for complex (3), where the P—Cu—C angles range from 107.05 (9) to 120.73 (9)°, and the P—Cu—P angles are in the range 89.22 (3) - 115.16 (3) °.
Though both (NH4)2WS4 and 1,10-phenanthroline were starting materials in the prepartion of (1), they do not appear in the final product. This may be related to the solvent methanol because the O—H donor from methanol can form an O—H···N hydrogen bond with the N atom from the cyanide anion (Table 1), and this can stablize the molecular structure of the complex.
The crystal structure of complex (1) is similar with that of complex (2). Other similar complexes are adducts CuX:dppe:X, where X is a simple inorganic anion, for example, a halide (Effendy et al., 2006; Di Nicola et al., 2006), thiocyanate (Saravanabharathi et al., 2002), nitrate (Saravanabharathi et al., 2002), perchlorate (Sivasankar et al., 2004; Jin et al., 2009) and tetrafluoroborate (Jin et al., 2009).