metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(isonicotinamide-κN1)bis­­(4-methyl­benzoato-κO)copper(II) dihydrate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Hitit University, 19030 Ulukavak, Çorum, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 12 July 2010; accepted 14 July 2010; online 17 July 2010)

In the centrosymmetric title compound, [Cu(C8H7O2)2(C6H6N2O)2]·2H2O, the CuII ion is located on a crystallographic inversion center. The asymmetric unit is completed by one 4-methyl­benzoate anion, one isonicotinamide (INA) ligand and one uncoordinated water mol­ecule; all the ligands are monodentate. The two O and the two N atoms around the CuII ion form a slightly distorted square-planar arrangement. The dihedral angle between the carboxyl­ate group and the attached benzene ring is 13.86 (9)°, while the pyridine and benzene rings are oriented at a dihedral angle of 86.08 (5)°. The uncoordinated water mol­ecules are linked to the INA ligands by O—H⋯O hydrogen bonds. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]) and for N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513-m514.],c[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.]); Necefoğlu et al. (2010a[Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334-m335.],b[Necefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010b). Acta Cryst. E66, m361-m362.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O2)2(C6H6N2O)2]·2H2O

  • Mr = 614.11

  • Monoclinic, P 21 /c

  • a = 5.7138 (2) Å

  • b = 18.9948 (4) Å

  • c = 11.9671 (3) Å

  • β = 95.906 (3)°

  • V = 1291.92 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 100 K

  • 0.29 × 0.27 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.763, Tmax = 0.959

  • 11754 measured reflections

  • 3199 independent reflections

  • 2637 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.080

  • S = 1.08

  • 3199 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1i 0.82 (2) 2.46 (2) 3.283 (2) 177 (2)
N2—H22⋯O4ii 0.86 (2) 2.14 (2) 2.983 (2) 171 (2)
O4—H41⋯O3 0.77 (3) 2.10 (3) 2.866 (2) 178 (3)
O4—H42⋯O1iii 0.78 (3) 2.04 (3) 2.813 (2) 173 (3)
C3—H3⋯O3iv 0.93 2.48 3.324 (2) 151
C10—H10⋯O1iii 0.93 2.50 3.242 (2) 137
C12—H12⋯O4ii 0.93 2.34 3.253 (2) 169
Symmetry codes: (i) [x-1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a mononuclear complex, where the CuII ion is located on a crystallographic inversion center (Fig. 1). The asymmetric unit contains one 4-methylbenzoate (PMB) anion, one isonicotinamide (INA) ligand and one uncoordinated water molecule, and all the ligands are coordinated in a monodentate manner. The crystal structures of some NA and/or DENA complexes of CuII, CoII, NiII, MnII and ZnII ions have been reported on recently (Hökelek et al., 1996; Necefoğlu et al., 2010a,b; Hökelek & Necefoğlu, 1998; Hökelek et al., 2009a,b,c. In the copper(II) complex, trans-Bis(benzoato-O,O')bis(N,N-diethylnicotinamide-N1)copper(II) [Hökelek et al., 1996], the two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in the other structures all the ligands are coordinated in a monodentate manner.

The two O atoms (O2, and the symmetry-related atom, O2') and the two N atoms (N1, and the symmetry-related atom, N1') around the CuII ion form a slightly distorted square-planar arrangement (Fig. 1). The Cu1—O2 bond length is 1.9192 (13) Å, and the Cu1—N1 bond length is 2.0562 (15) Å.The near equality of the C1—O1 [1.249 (2) Å] and C1—O2 [1.287 (2) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The CuII ion is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.3593 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (= C2—C7) is 13.86 (9)°, while that between rings A and B (= N1/C9—C13) is 86.08 (5)°. The uncoordinated water molecules are linked to the INA groups by O-H···O hydrogen bonds (Table 1 and Fig. 1).

In the crystal structure intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules to form a three-dimensional network.

Related literature top

For niacin, see: Krishnamachari (1974) and for N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010a,b).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.25 g, 5 mmol) in H2O (50 ml) and isonicotinamide (2.44 g, 20 mmol) in H2O (15 ml) with sodium 4-methylbenzoate (1.58 g, 10 mmol) in H2O (500 ml). The precipitated green mass was set aside in solution at ambient temperature. After three weeks it had transformed into purple crystals. These were separated off by filtration and dried at room temperature.

Refinement top

Atoms H21, H22 (for NH2) and H41, H42 (for H2O) were located in a difference Fourier map and were freely refined: N-H = 0.82 (2) - 0.86 (2) Å; O-H = 0.77 (3) - 0.78 (3) Å. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for aromatic H-atoms.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a mononuclear complex, where the CuII ion is located on a crystallographic inversion center (Fig. 1). The asymmetric unit contains one 4-methylbenzoate (PMB) anion, one isonicotinamide (INA) ligand and one uncoordinated water molecule, and all the ligands are coordinated in a monodentate manner. The crystal structures of some NA and/or DENA complexes of CuII, CoII, NiII, MnII and ZnII ions have been reported on recently (Hökelek et al., 1996; Necefoğlu et al., 2010a,b; Hökelek & Necefoğlu, 1998; Hökelek et al., 2009a,b,c. In the copper(II) complex, trans-Bis(benzoato-O,O')bis(N,N-diethylnicotinamide-N1)copper(II) [Hökelek et al., 1996], the two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in the other structures all the ligands are coordinated in a monodentate manner.

The two O atoms (O2, and the symmetry-related atom, O2') and the two N atoms (N1, and the symmetry-related atom, N1') around the CuII ion form a slightly distorted square-planar arrangement (Fig. 1). The Cu1—O2 bond length is 1.9192 (13) Å, and the Cu1—N1 bond length is 2.0562 (15) Å.The near equality of the C1—O1 [1.249 (2) Å] and C1—O2 [1.287 (2) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The CuII ion is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.3593 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (= C2—C7) is 13.86 (9)°, while that between rings A and B (= N1/C9—C13) is 86.08 (5)°. The uncoordinated water molecules are linked to the INA groups by O-H···O hydrogen bonds (Table 1 and Fig. 1).

In the crystal structure intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules to form a three-dimensional network.

For niacin, see: Krishnamachari (1974) and for N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator: (') -x, -y, -z. Only one of the crystal water molecules is shown [dashed line indicates the O-H···O hydrogen-bond].
Bis(isonicotinamide-κN1)bis(4-methylbenzoato-κO)copper(II) dihydrate top
Crystal data top
[Cu(C8H7O2)2(C6H6N2O)2]·2H2OF(000) = 638
Mr = 614.11Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5200 reflections
a = 5.7138 (2) Åθ = 2.7–28.2°
b = 18.9948 (4) ŵ = 0.91 mm1
c = 11.9671 (3) ÅT = 100 K
β = 95.906 (3)°Block, violet
V = 1291.92 (6) Å30.29 × 0.27 × 0.25 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3199 independent reflections
Radiation source: fine-focus sealed tube2637 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.763, Tmax = 0.959k = 2025
11754 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0303P)2 + 1.1079P]
where P = (Fo2 + 2Fc2)/3
3199 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu(C8H7O2)2(C6H6N2O)2]·2H2OV = 1291.92 (6) Å3
Mr = 614.11Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.7138 (2) ŵ = 0.91 mm1
b = 18.9948 (4) ÅT = 100 K
c = 11.9671 (3) Å0.29 × 0.27 × 0.25 mm
β = 95.906 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3199 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2637 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.959Rint = 0.026
11754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.63 e Å3
3199 reflectionsΔρmin = 0.51 e Å3
204 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.01074 (9)
O10.0382 (2)0.09651 (7)0.17689 (11)0.0173 (3)
O20.1745 (2)0.00164 (6)0.14584 (11)0.0140 (3)
O30.8594 (2)0.25069 (7)0.09449 (12)0.0191 (3)
O41.1555 (3)0.22382 (8)0.10917 (14)0.0184 (3)
H411.077 (5)0.2318 (14)0.055 (2)0.027 (7)*
H421.097 (5)0.1903 (14)0.132 (2)0.028 (7)*
N10.2249 (3)0.07406 (8)0.05451 (13)0.0124 (3)
N20.6168 (3)0.27723 (9)0.24930 (14)0.0158 (3)
H210.707 (4)0.3082 (12)0.2657 (19)0.016 (6)*
H220.487 (4)0.2719 (10)0.2909 (18)0.007 (5)*
C10.1300 (3)0.05595 (9)0.20439 (15)0.0134 (4)
C20.2973 (3)0.06975 (9)0.30646 (15)0.0112 (3)
C30.2437 (3)0.11966 (9)0.38569 (16)0.0144 (4)
H30.10090.14350.37630.017*
C40.4027 (3)0.13357 (9)0.47810 (16)0.0144 (4)
H40.36450.16650.53080.017*
C50.6202 (3)0.09904 (9)0.49401 (15)0.0132 (4)
C60.6723 (3)0.04968 (9)0.41381 (16)0.0136 (4)
H60.81620.02640.42250.016*
C70.5137 (3)0.03481 (9)0.32179 (16)0.0126 (4)
H70.55100.00130.26970.015*
C80.7908 (3)0.11485 (10)0.59515 (16)0.0175 (4)
H8A0.81650.16470.60060.026*
H8B0.72740.09840.66160.026*
H8C0.93740.09150.58780.026*
C90.4391 (3)0.08763 (10)0.00027 (16)0.0143 (4)
H90.49080.06040.06210.017*
C100.5851 (3)0.14000 (9)0.03306 (16)0.0149 (4)
H100.73230.14710.00620.018*
C110.5111 (3)0.18220 (9)0.12538 (16)0.0132 (4)
C120.2892 (3)0.16896 (9)0.18202 (16)0.0149 (4)
H120.23270.19580.24400.018*
C130.1551 (3)0.11484 (10)0.14368 (16)0.0150 (4)
H130.00790.10620.18200.018*
C140.6762 (3)0.24014 (9)0.15535 (16)0.0145 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01320 (16)0.01035 (15)0.00829 (16)0.00275 (12)0.00076 (11)0.00013 (12)
O10.0140 (7)0.0194 (7)0.0172 (7)0.0006 (5)0.0041 (5)0.0042 (5)
O20.0181 (6)0.0127 (6)0.0103 (6)0.0040 (5)0.0020 (5)0.0005 (5)
O30.0180 (7)0.0167 (6)0.0217 (8)0.0030 (5)0.0025 (6)0.0026 (6)
O40.0205 (8)0.0147 (7)0.0189 (8)0.0022 (6)0.0036 (6)0.0018 (6)
N10.0131 (8)0.0128 (7)0.0110 (8)0.0015 (6)0.0007 (6)0.0005 (6)
N20.0154 (9)0.0143 (8)0.0168 (9)0.0034 (6)0.0019 (7)0.0021 (6)
C10.0144 (9)0.0138 (8)0.0118 (9)0.0058 (7)0.0011 (7)0.0037 (7)
C20.0129 (9)0.0102 (8)0.0102 (9)0.0029 (6)0.0004 (7)0.0014 (6)
C30.0139 (9)0.0128 (8)0.0164 (10)0.0011 (7)0.0013 (7)0.0016 (7)
C40.0195 (9)0.0109 (8)0.0131 (9)0.0004 (7)0.0024 (7)0.0036 (7)
C50.0163 (9)0.0117 (8)0.0110 (9)0.0045 (7)0.0010 (7)0.0016 (7)
C60.0130 (9)0.0127 (8)0.0149 (10)0.0003 (6)0.0003 (7)0.0019 (7)
C70.0155 (9)0.0106 (8)0.0117 (9)0.0016 (6)0.0014 (7)0.0011 (7)
C80.0205 (10)0.0174 (9)0.0136 (10)0.0034 (7)0.0032 (8)0.0003 (7)
C90.0161 (9)0.0142 (9)0.0124 (9)0.0014 (6)0.0000 (7)0.0001 (7)
C100.0148 (9)0.0147 (9)0.0149 (10)0.0004 (7)0.0004 (7)0.0015 (7)
C110.0152 (9)0.0110 (8)0.0137 (10)0.0005 (6)0.0028 (7)0.0014 (7)
C120.0200 (10)0.0130 (8)0.0116 (9)0.0013 (7)0.0012 (7)0.0014 (7)
C130.0149 (9)0.0164 (9)0.0131 (9)0.0001 (7)0.0013 (7)0.0001 (7)
C140.0133 (9)0.0120 (8)0.0183 (10)0.0011 (7)0.0027 (7)0.0012 (7)
Geometric parameters (Å, º) top
Cu1—O21.9192 (13)C4—H40.9300
Cu1—O2i1.9192 (13)C5—C41.401 (3)
Cu1—N12.0562 (15)C5—C61.396 (3)
Cu1—N1i2.0562 (15)C5—C81.504 (3)
O1—C11.249 (2)C6—H60.9300
O2—C11.287 (2)C7—C61.382 (3)
O3—C141.228 (2)C7—H70.9300
O4—H410.77 (3)C8—H8A0.9600
O4—H420.78 (3)C8—H8B0.9600
N1—C91.350 (2)C8—H8C0.9600
N1—C131.345 (2)C9—H90.9300
N2—C141.341 (2)C10—C91.381 (3)
N2—H210.82 (2)C10—C111.395 (3)
N2—H220.86 (2)C10—H100.9300
C2—C11.495 (3)C11—C121.398 (3)
C2—C31.397 (2)C11—C141.516 (2)
C2—C71.398 (3)C12—C131.388 (2)
C3—C41.383 (3)C12—H120.9300
C3—H30.9300C13—H130.9300
O2i—Cu1—O2180.00 (4)C7—C6—C5121.11 (17)
O2—Cu1—N189.67 (6)C7—C6—H6119.4
O2i—Cu1—N190.33 (6)C2—C7—H7119.8
O2—Cu1—N1i90.33 (6)C6—C7—C2120.40 (17)
O2i—Cu1—N1i89.67 (6)C6—C7—H7119.8
N1—Cu1—N1i180.00 (10)C5—C8—H8A109.5
C1—O2—Cu1113.26 (12)C5—C8—H8B109.5
H42—O4—H41103 (3)C5—C8—H8C109.5
C9—N1—Cu1122.91 (12)H8A—C8—H8B109.5
C13—N1—Cu1120.10 (12)H8A—C8—H8C109.5
C13—N1—C9116.85 (16)H8B—C8—H8C109.5
C14—N2—H21117.9 (16)N1—C9—C10123.05 (17)
C14—N2—H22123.8 (14)N1—C9—H9118.5
H22—N2—H21118 (2)C10—C9—H9118.5
O1—C1—O2122.72 (18)C9—C10—C11119.75 (17)
O1—C1—C2121.14 (17)C9—C10—H10120.1
O2—C1—C2116.10 (16)C11—C10—H10120.1
C3—C2—C1120.47 (16)C10—C11—C12117.82 (17)
C3—C2—C7119.07 (17)C10—C11—C14117.32 (16)
C7—C2—C1120.42 (16)C12—C11—C14124.85 (17)
C2—C3—H3120.0C11—C12—H12120.7
C4—C3—C2120.03 (17)C13—C12—C11118.51 (17)
C4—C3—H3120.0C13—C12—H12120.7
C3—C4—C5121.34 (17)N1—C13—C12124.04 (17)
C3—C4—H4119.3N1—C13—H13118.0
C5—C4—H4119.3C12—C13—H13118.0
C4—C5—C8120.56 (16)O3—C14—N2122.56 (17)
C6—C5—C4118.05 (17)O3—C14—C11119.40 (17)
C6—C5—C8121.39 (17)N2—C14—C11118.03 (17)
C5—C6—H6119.4
O2i—Cu1—N1—C9161.86 (14)C1—C2—C7—C6177.34 (16)
O2—Cu1—N1—C918.14 (14)C3—C2—C7—C60.2 (3)
O2i—Cu1—N1—C1322.59 (14)C2—C3—C4—C50.7 (3)
O2—Cu1—N1—C13157.41 (14)C6—C5—C4—C30.2 (3)
N1—Cu1—O2—C176.89 (12)C8—C5—C4—C3179.96 (17)
N1i—Cu1—O2—C1103.11 (12)C4—C5—C6—C70.5 (3)
Cu1—O2—C1—O111.8 (2)C8—C5—C6—C7179.23 (16)
Cu1—O2—C1—C2166.15 (11)C2—C7—C6—C50.7 (3)
Cu1—N1—C9—C10176.28 (14)C11—C10—C9—N10.8 (3)
C13—N1—C9—C100.6 (3)C9—C10—C11—C120.5 (3)
Cu1—N1—C13—C12175.86 (14)C9—C10—C11—C14178.32 (16)
C9—N1—C13—C120.0 (3)C10—C11—C12—C130.0 (3)
C3—C2—C1—O113.1 (3)C14—C11—C12—C13178.73 (17)
C7—C2—C1—O1164.51 (16)C10—C11—C14—O34.5 (2)
C3—C2—C1—O2169.00 (16)C10—C11—C14—N2174.41 (17)
C7—C2—C1—O213.4 (2)C12—C11—C14—O3174.24 (18)
C7—C2—C3—C40.5 (3)C12—C11—C14—N26.9 (3)
C1—C2—C3—C4178.05 (16)C11—C12—C13—N10.3 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1ii0.82 (2)2.46 (2)3.283 (2)177 (2)
N2—H22···O4iii0.86 (2)2.14 (2)2.983 (2)171 (2)
O4—H41···O30.77 (3)2.10 (3)2.866 (2)178 (3)
O4—H42···O1iv0.78 (3)2.04 (3)2.813 (2)173 (3)
C3—H3···O3v0.932.483.324 (2)151
C10—H10···O1iv0.932.503.242 (2)137
C12—H12···O4iii0.932.343.253 (2)169
Symmetry codes: (ii) x1, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z; (v) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C8H7O2)2(C6H6N2O)2]·2H2O
Mr614.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.7138 (2), 18.9948 (4), 11.9671 (3)
β (°) 95.906 (3)
V3)1291.92 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.29 × 0.27 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.763, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
11754, 3199, 2637
Rint0.026
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.080, 1.08
No. of reflections3199
No. of parameters204
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT (Bruker, 2007, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1i0.82 (2)2.46 (2)3.283 (2)177 (2)
N2—H22···O4ii0.86 (2)2.14 (2)2.983 (2)171 (2)
O4—H41···O30.77 (3)2.10 (3)2.866 (2)178 (3)
O4—H42···O1iii0.78 (3)2.04 (3)2.813 (2)173 (3)
C3—H3···O3iv0.932.483.324 (2)151
C10—H10···O1iii0.932.503.242 (2)137
C12—H12···O4ii0.932.343.253 (2)169
Symmetry codes: (i) x1, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y1/2, z1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513–m514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334–m335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010b). Acta Cryst. E66, m361–m362.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds