organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Bromo-1,3-di­phenyl-2,3-di­hydro-1H-naphtho­[1,2-e][1,3]oxazine

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and SeQuent Scientific Ltd, Baikampady, New Mangalore 575 011 India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 1 July 2010; accepted 5 July 2010; online 17 July 2010)

The title compound, C24H18BrNO, consists of an envelope-configured oxazine ring with a fused 8-bromo-1,3-diphenyl group and two bonded phenyl rings. The dihedral angles between the mean planes of the 8-bromo-1,3-diphenyl and the phenyl rings are 54.5 (6) and 87.4 (8)°, respectively. The oxazine is essentially coplanar with the 8-bromo-1,3-diphenyl [dihedral angle = 9.4 (1)°]. Weak C—H⋯π inter­actions contribute to the crystal packing.

Related literature

For the anti­tumor activity of heterocycles containing oxazine, see: Benameur et al. (1996[Benameur, L., Bouaziz, Z., Nebois, P., Bartoli, M. H., Boitard, M. & Fillion, H. (1996). Chem. Pharm. Bull. 44, 605-608.]). For the treatment of Parkinson's disease with naphthoxazines, see: Millan et al. (2004[Millan, M. J., Di Cara, B., Hill, M., Jackson, M., Joyce, J. N., Brotchie, J., McGuire, S., Crossman, A., Smith, L., Jenner, P., Gobert, A., Peglion, J. L. & Brocco, M. (2004). J. Pharm. Exp. Ther. 309, 921-935.]); Joyce et al. (2003[Joyce, J. N., Presgraves, S., Renish, L., Borwege, S., Osredkar, T., Hagner, D., Replogle, M., PazSoldan, M. & Millan, M. J. (2003). Exp. Neurol. 184, 393-407.]). For the psychostimulating and anti­depressant activity of oxazines, see: Nozulak & Giger (1987[Nozulak, J. & Giger, R. K. A. (1987). US Patent 4 656 167.]). For their analgesic, anti­convulsant, anti­tubercular, anti­bacterial and anti­cancer activity, see: Kurz (2005[Kurz, T. (2005). Tetrahedron, 61, 3091-3096.]); Turgut et al. (2007[Turgut, Z., Pelit, E. & Koycu, A. (2007). Molecules, 12, 345-352.]). For the range of their biological applications, see: Ohnacker & Scheffler (1960[Ohnacker, G. & Scheffler, H. (1960). US Patent 2 943 087.]). For synthetic possibilities, see: Szatmari et al. (2003[Szatmari, I., Martinek, T. A., Lazar, L. & Fulop, F. (2003). Tetrahedron, 59, 2877-2884.], 2004[Szatmari, I., Martinek, T. A., Lazar, L. & Fulop, F. (2004). Eur. J. Org. Chem. pp. 2231-2238.]). For anti­cancer derivatives, see: Zhang & Li (2003[Zhang, P., Terefenko, E. A., Fensome, A., Wrobel, J., Winneker, R. & Zhang, Z. (2003). Bioorg. Med. Chem. Lett. 13, 1313-1316.]). For related structures, see: Li et al. (2008[Li, Y. H., Zhao, M. M. & Zhang, Y. (2008). Acta Cryst. E64, o1972.]); Sarojini et al. (2007[Sarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4739.]); Şen et al. (2008[Şen, B., Turgut, Z., Pelit, E. & Aygün, M. (2008). Acta Cryst. E64, o573.]); Yang et al. (2008[Yang, Y.-F., Yang, L.-R., Yin, Z.-G. & Qian, H.-Y. (2008). Acta Cryst. E64, o147.]); Zhang et al. (2009[Zhang, Y. & Li, Y. H. (2009). Acta Cryst. E65, o1796.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18BrNO

  • Mr = 416.30

  • Monoclinic, P 21 /c

  • a = 7.7617 (11) Å

  • b = 20.092 (3) Å

  • c = 11.5094 (16) Å

  • β = 91.893 (2)°

  • V = 1793.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 100 K

  • 0.55 × 0.50 × 0.35 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.364, Tmax = 0.499

  • 14693 measured reflections

  • 5341 independent reflections

  • 4426 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.03

  • 5341 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 1.64 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
C—H⋯π inter­actions (Å)

Cg3, Cg4 and Cg5 are the centroids of the C4/C5/C7–C16, C13–C18 and C19–C24 rings, respectively.

X—H⋯Cg XCg H⋯Cg H⋯Perp
C1–H1⋯Cg5i 3.357 (8) 2.80 2.67
C24–H18⋯Cg3ii 3.692 (9) 2.93 2.90
C22–H21⋯Cg4iii 3.547 (3) 2.68 2.61
C17–H24⋯Cg3iv 3.587 (8) 2.70 2.67
Symmetry codes: (i) −x, [{1\over 2}] + y, [{1\over 2}] − z; (ii) −x, −y, 1 − z; (iii) −x, −[{1\over 2}] + y, [{1\over 2}] − z; (iv) −1 + x, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocycles containing the oxazine nucleus are found to possess a wide range of biological applications (Ohnacker & Scheffler et al., 1960). 1,3-Oxazine heterocycles are of interest because they constitute an important class of natural and non-natural products. Many of them exhibit biological activity such as analgesic, anticonvulsant, antitubercular, antibacterial and anticancer (Kurz et al., 2005; Turgut et al., 2007). 1,3-Oxazine derivatives that display anticancer activity are also known as progesterone receptor agonists (Zhang et al., 2003). Oxazine derivatives with a naphthalene ring, termed naphthoxazines, are used in the treatment of Parkinson's disease (Millan et al., 2004; Joyce et al., 2003). Naphthoxazines are also known for their psychostimulating and antidepressant activity (Nozulak & Giger et al., 1987). Dihydrofuronaphth[1,3]oxazines have shown anti-tumor activity (Benameur et al., 1996). In addition, naphthoxazines can be used as intermediates in the synthesis of N-substituted amino alcohols or in enantioselective synthesis of chiral amines. The tautomeric character of the 1,3-O,N-heterocycles offers a great number of synthetic possibilities (Szatmari et al., 2003; Szatmari et al., 2004). The crystal structures of a few naphthoxazines viz., 6-bromo-2,4-bis(3-methoxyphenyl)-3,4-dihydro-2H-1,3-naphthoxazine (Sarojini et al., 2007), 3-(1,3 -benzodioxol-5-yl)-1-phenyl-2, 3-dihydro-1H-naphtho[1,2-e][1,3]oxazine (Yang et al., 2008), 2-butyl-1,3-diphenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine (Li et al., 2008), 1,3-di-3-pyridyl-2, 3-dihydro-1H-naphth-[1,2-e][1,3]oxazine (Şen et al., 2008) and 2-benzyl-1,3-diphenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine (Zhang et al., 2009) have been reported. In view of the importance of naphthoxazines, this paper reports the synthesis and crystal structure of the title compound, (I).

Compound (I) consists of an envelope configured oxazine (C8/C7/C11/N2/C12/O1) ring with a fused 8-bromo-1,3-diphenyl group and two bonded benzene rings (at C11 and C12) [puckering parameters Q, θ and φ = 0.460 (6) Å, 54.2 (7) °, and 259.144 (8) °, respectively] (Fig 1.); for an ideal envelope θ has a value of 54.7°. The dihedral angles between the mean planes of the 8-bromo-1,3-diphenyl (C1—C10) and the benzene rings (C13—C18 and C19—C24) are 54.5 (6) and 87.4 (8) °, respectively. The oxazine ring (C7/C8/O1/C12/N1) is essentially co-planar (dihedral angle = 9.4 (1)°) to the 8-bromo-1,3-diphenyl ring. Weak C–H···π interactions (Table 1) (Spek, 2003) are observed which contribute to crystal stability (Fig. 2).

Related literature top

For the antitumor activity of heterocycles containing oxazine, see: Benameur et al. (1996). For the treatment of Parkinson's disease with naphthoxazines, see: Millan et al. (2004); Joyce et al. (2003). For their psychostimulating and antidepressant activity, see: Nozulak & Giger et al. (1987). For their analgesic, anticonvulsant, antitubercular, antibacterial and anticancer activity, see: Kurz et al. (2005); Turgut et al. (2007). For the range of their biological applications, see: Ohnacker & Scheffler et al. (1960). For synthetic possibilities, see: Szatmari et al. (2003, 2004). For anticancer derivatives, see: Zhang et al. (2003). For related structures, see: Li et al. (2008); Sarojini et al. (2007); Şen et al. (2008); Yang et al. (2008); Zhang et al. (2009).

Experimental top

Benzaldehyde (2.12 g, 0.02 mol) and 25–30% methanolic ammonia (10 ml) were added to 6-bromo-2-naphthol (2.23 g, 0.01 mol) in methanol (10 ml). The mixture was left to stand at ambient temperature for 3 days, during which the crystalline product separated out. The crude product was filtered off and washed with cold methanol. Crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the acetonitrile solution (m.pt. 423–425 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.16–1.22Ueq(C). The maximum and minimum residual electron density peaks of 1.64 and 0.84 eÅ-3, respectively, were located 1.01 Å and 0.06 Å from the C12 and H2 atoms, respectively.

Structure description top

Heterocycles containing the oxazine nucleus are found to possess a wide range of biological applications (Ohnacker & Scheffler et al., 1960). 1,3-Oxazine heterocycles are of interest because they constitute an important class of natural and non-natural products. Many of them exhibit biological activity such as analgesic, anticonvulsant, antitubercular, antibacterial and anticancer (Kurz et al., 2005; Turgut et al., 2007). 1,3-Oxazine derivatives that display anticancer activity are also known as progesterone receptor agonists (Zhang et al., 2003). Oxazine derivatives with a naphthalene ring, termed naphthoxazines, are used in the treatment of Parkinson's disease (Millan et al., 2004; Joyce et al., 2003). Naphthoxazines are also known for their psychostimulating and antidepressant activity (Nozulak & Giger et al., 1987). Dihydrofuronaphth[1,3]oxazines have shown anti-tumor activity (Benameur et al., 1996). In addition, naphthoxazines can be used as intermediates in the synthesis of N-substituted amino alcohols or in enantioselective synthesis of chiral amines. The tautomeric character of the 1,3-O,N-heterocycles offers a great number of synthetic possibilities (Szatmari et al., 2003; Szatmari et al., 2004). The crystal structures of a few naphthoxazines viz., 6-bromo-2,4-bis(3-methoxyphenyl)-3,4-dihydro-2H-1,3-naphthoxazine (Sarojini et al., 2007), 3-(1,3 -benzodioxol-5-yl)-1-phenyl-2, 3-dihydro-1H-naphtho[1,2-e][1,3]oxazine (Yang et al., 2008), 2-butyl-1,3-diphenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine (Li et al., 2008), 1,3-di-3-pyridyl-2, 3-dihydro-1H-naphth-[1,2-e][1,3]oxazine (Şen et al., 2008) and 2-benzyl-1,3-diphenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine (Zhang et al., 2009) have been reported. In view of the importance of naphthoxazines, this paper reports the synthesis and crystal structure of the title compound, (I).

Compound (I) consists of an envelope configured oxazine (C8/C7/C11/N2/C12/O1) ring with a fused 8-bromo-1,3-diphenyl group and two bonded benzene rings (at C11 and C12) [puckering parameters Q, θ and φ = 0.460 (6) Å, 54.2 (7) °, and 259.144 (8) °, respectively] (Fig 1.); for an ideal envelope θ has a value of 54.7°. The dihedral angles between the mean planes of the 8-bromo-1,3-diphenyl (C1—C10) and the benzene rings (C13—C18 and C19—C24) are 54.5 (6) and 87.4 (8) °, respectively. The oxazine ring (C7/C8/O1/C12/N1) is essentially co-planar (dihedral angle = 9.4 (1)°) to the 8-bromo-1,3-diphenyl ring. Weak C–H···π interactions (Table 1) (Spek, 2003) are observed which contribute to crystal stability (Fig. 2).

For the antitumor activity of heterocycles containing oxazine, see: Benameur et al. (1996). For the treatment of Parkinson's disease with naphthoxazines, see: Millan et al. (2004); Joyce et al. (2003). For their psychostimulating and antidepressant activity, see: Nozulak & Giger et al. (1987). For their analgesic, anticonvulsant, antitubercular, antibacterial and anticancer activity, see: Kurz et al. (2005); Turgut et al. (2007). For the range of their biological applications, see: Ohnacker & Scheffler et al. (1960). For synthetic possibilities, see: Szatmari et al. (2003, 2004). For anticancer derivatives, see: Zhang et al. (2003). For related structures, see: Li et al. (2008); Sarojini et al. (2007); Şen et al. (2008); Yang et al. (2008); Zhang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labeling scheme and 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the c axis.
8-Bromo-1,3-diphenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine top
Crystal data top
C24H18BrNOF(000) = 848
Mr = 416.30Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5049 reflections
a = 7.7617 (11) Åθ = 2.6–31.2°
b = 20.092 (3) ŵ = 2.31 mm1
c = 11.5094 (16) ÅT = 100 K
β = 91.893 (2)°Block, colourless
V = 1793.9 (4) Å30.55 × 0.50 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5341 independent reflections
Radiation source: fine-focus sealed tube4426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 31.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1110
Tmin = 0.364, Tmax = 0.499k = 2228
14693 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0531P)2 + 1.779P]
where P = (Fo2 + 2Fc2)/3
5341 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 1.64 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
C24H18BrNOV = 1793.9 (4) Å3
Mr = 416.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7617 (11) ŵ = 2.31 mm1
b = 20.092 (3) ÅT = 100 K
c = 11.5094 (16) Å0.55 × 0.50 × 0.35 mm
β = 91.893 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5341 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4426 reflections with I > 2σ(I)
Tmin = 0.364, Tmax = 0.499Rint = 0.025
14693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 1.64 e Å3
5341 reflectionsΔρmin = 0.84 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.26837 (3)0.385264 (10)0.377762 (19)0.02407 (8)
C110.1161 (2)0.04955 (10)0.22310 (16)0.0149 (4)
H160.17390.07080.15840.018*
C70.1858 (2)0.08276 (10)0.33364 (16)0.0137 (3)
C50.2088 (2)0.15294 (10)0.34152 (16)0.0144 (3)
C80.2413 (3)0.04374 (10)0.42586 (16)0.0149 (4)
C40.2910 (2)0.18121 (10)0.44282 (16)0.0153 (4)
C90.3260 (3)0.07139 (10)0.52570 (17)0.0172 (4)
H90.36450.04370.58600.021*
C100.3511 (3)0.13830 (11)0.53356 (17)0.0177 (4)
H100.40810.15610.59880.021*
C30.3107 (3)0.25095 (10)0.45246 (17)0.0169 (4)
H30.36510.26930.51810.020*
C20.2494 (3)0.29135 (11)0.36489 (18)0.0185 (4)
C10.1708 (3)0.26470 (11)0.26294 (18)0.0193 (4)
H10.13210.29280.20340.023*
C60.1517 (3)0.19715 (10)0.25210 (17)0.0170 (4)
H60.10000.17990.18460.020*
N10.1653 (3)0.02094 (9)0.22166 (16)0.0231 (4)
H20.21040.04050.16360.028*
C120.1297 (3)0.05220 (11)0.32674 (19)0.0220 (4)
H130.00610.04830.34020.026*
O10.2269 (2)0.02379 (7)0.42750 (12)0.0207 (3)
C130.0762 (2)0.05797 (9)0.19911 (16)0.0131 (3)
C140.1404 (3)0.05611 (10)0.08416 (17)0.0154 (4)
H270.06510.05150.02350.018*
C190.1801 (3)0.12560 (11)0.33218 (19)0.0232 (4)
C240.1387 (3)0.16039 (11)0.43087 (18)0.0215 (4)
H180.08310.13850.49010.026*
C220.2638 (3)0.26054 (12)0.3568 (2)0.0261 (5)
H210.29190.30530.36540.031*
C230.1781 (3)0.22716 (11)0.44351 (19)0.0233 (4)
H220.14730.24980.51020.028*
C200.2633 (3)0.15863 (12)0.2441 (2)0.0279 (5)
H190.29020.13610.17650.033*
C210.3069 (3)0.22641 (13)0.2574 (2)0.0284 (5)
H200.36480.24830.19910.034*
C150.3168 (3)0.06123 (11)0.06044 (18)0.0196 (4)
H260.35920.05900.01600.023*
C180.1906 (3)0.06585 (10)0.28794 (17)0.0167 (4)
H230.14900.06690.36460.020*
C170.3669 (3)0.07221 (11)0.26411 (19)0.0213 (4)
H240.44210.07810.32450.026*
C160.4300 (3)0.06968 (11)0.1503 (2)0.0222 (4)
H250.54770.07360.13400.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03207 (13)0.01420 (11)0.02574 (12)0.00133 (8)0.00214 (8)0.00038 (8)
C110.0146 (8)0.0182 (9)0.0117 (8)0.0015 (7)0.0003 (6)0.0008 (7)
C70.0106 (8)0.0179 (9)0.0127 (8)0.0001 (7)0.0007 (6)0.0006 (7)
C50.0114 (8)0.0183 (9)0.0136 (8)0.0001 (7)0.0003 (6)0.0010 (7)
C80.0179 (9)0.0130 (9)0.0138 (8)0.0031 (7)0.0021 (7)0.0006 (7)
C40.0147 (8)0.0167 (9)0.0144 (8)0.0003 (7)0.0011 (6)0.0002 (7)
C90.0229 (10)0.0164 (9)0.0122 (8)0.0002 (7)0.0018 (7)0.0020 (7)
C100.0228 (10)0.0171 (9)0.0130 (8)0.0006 (7)0.0030 (7)0.0005 (7)
C30.0181 (9)0.0148 (9)0.0177 (9)0.0003 (7)0.0002 (7)0.0014 (7)
C20.0196 (9)0.0150 (9)0.0209 (9)0.0007 (7)0.0017 (7)0.0014 (7)
C10.0184 (9)0.0198 (10)0.0194 (9)0.0017 (7)0.0024 (7)0.0034 (8)
C60.0161 (9)0.0190 (9)0.0158 (8)0.0005 (7)0.0018 (7)0.0016 (7)
N10.0328 (10)0.0190 (9)0.0171 (8)0.0099 (7)0.0040 (7)0.0050 (7)
C120.0231 (10)0.0217 (10)0.0210 (10)0.0012 (8)0.0007 (8)0.0004 (8)
O10.0352 (8)0.0141 (7)0.0127 (6)0.0047 (6)0.0025 (6)0.0015 (5)
C130.0133 (8)0.0110 (8)0.0151 (8)0.0006 (6)0.0003 (6)0.0008 (6)
C140.0172 (9)0.0139 (9)0.0150 (8)0.0003 (7)0.0006 (7)0.0001 (7)
C190.0342 (12)0.0167 (10)0.0184 (9)0.0058 (8)0.0035 (8)0.0003 (7)
C240.0310 (11)0.0160 (10)0.0172 (9)0.0010 (8)0.0044 (8)0.0007 (7)
C220.0271 (11)0.0185 (10)0.0322 (12)0.0030 (8)0.0083 (9)0.0003 (9)
C230.0323 (11)0.0170 (10)0.0202 (9)0.0038 (8)0.0049 (8)0.0040 (8)
C200.0375 (13)0.0260 (12)0.0202 (10)0.0105 (10)0.0029 (9)0.0002 (9)
C210.0252 (11)0.0316 (13)0.0285 (11)0.0040 (9)0.0024 (9)0.0091 (10)
C150.0167 (9)0.0214 (10)0.0202 (9)0.0025 (7)0.0060 (7)0.0015 (8)
C180.0183 (9)0.0178 (9)0.0140 (8)0.0001 (7)0.0015 (7)0.0026 (7)
C170.0156 (9)0.0228 (10)0.0259 (10)0.0000 (8)0.0055 (8)0.0060 (8)
C160.0125 (9)0.0226 (10)0.0313 (11)0.0033 (7)0.0018 (8)0.0084 (9)
Geometric parameters (Å, º) top
Br1—C21.898 (2)C12—C191.527 (3)
C11—N11.467 (3)C12—H130.9800
C11—C131.518 (3)C13—C181.385 (3)
C11—C71.520 (3)C13—C141.399 (3)
C11—H160.9800C14—C151.391 (3)
C7—C81.377 (3)C14—H270.9300
C7—C51.424 (3)C19—C241.381 (3)
C5—C61.420 (3)C19—C201.388 (3)
C5—C41.428 (3)C24—C231.383 (3)
C8—O11.361 (2)C24—H180.9300
C8—C91.418 (3)C22—C211.384 (4)
C4—C31.414 (3)C22—C231.390 (3)
C4—C101.421 (3)C22—H210.9300
C9—C101.361 (3)C23—H220.9300
C9—H90.9300C20—C211.410 (4)
C10—H100.9300C20—H190.9300
C3—C21.367 (3)C21—H200.9300
C3—H30.9300C15—C161.389 (3)
C2—C11.410 (3)C15—H260.9300
C1—C61.370 (3)C18—C171.393 (3)
C1—H10.9300C18—H230.9300
C6—H60.9300C17—C161.384 (3)
N1—C121.399 (3)C17—H240.9300
N1—H20.8600C16—H250.9300
C12—O11.477 (3)
N1—C11—C13111.12 (16)O1—C12—C19102.55 (16)
N1—C11—C7110.33 (15)N1—C12—H13108.8
C13—C11—C7115.09 (16)O1—C12—H13108.8
N1—C11—H16106.6C19—C12—H13108.8
C13—C11—H16106.6C8—O1—C12114.47 (15)
C7—C11—H16106.6C18—C13—C14118.95 (17)
C8—C7—C5118.64 (17)C18—C13—C11121.92 (17)
C8—C7—C11119.26 (18)C14—C13—C11119.11 (17)
C5—C7—C11121.90 (16)C15—C14—C13120.09 (19)
C6—C5—C7122.55 (17)C15—C14—H27120.0
C6—C5—C4117.61 (18)C13—C14—H27120.0
C7—C5—C4119.84 (17)C24—C19—C20119.0 (2)
O1—C8—C7123.66 (17)C24—C19—C12117.2 (2)
O1—C8—C9114.54 (17)C20—C19—C12123.8 (2)
C7—C8—C9121.75 (18)C19—C24—C23121.4 (2)
C3—C4—C10120.77 (18)C19—C24—H18119.3
C3—C4—C5120.17 (18)C23—C24—H18119.3
C10—C4—C5119.06 (18)C21—C22—C23119.2 (2)
C10—C9—C8120.16 (18)C21—C22—H21120.4
C10—C9—H9119.9C23—C22—H21120.4
C8—C9—H9119.9C24—C23—C22120.1 (2)
C9—C10—C4120.50 (18)C24—C23—H22119.9
C9—C10—H10119.8C22—C23—H22119.9
C4—C10—H10119.8C19—C20—C21119.9 (2)
C2—C3—C4119.77 (18)C19—C20—H19120.1
C2—C3—H3120.1C21—C20—H19120.1
C4—C3—H3120.1C22—C21—C20120.3 (2)
C3—C2—C1121.2 (2)C22—C21—H20119.8
C3—C2—Br1120.56 (16)C20—C21—H20119.8
C1—C2—Br1118.21 (15)C16—C15—C14120.37 (19)
C6—C1—C2119.62 (19)C16—C15—H26119.8
C6—C1—H1120.2C14—C15—H26119.8
C2—C1—H1120.2C13—C18—C17120.99 (18)
C1—C6—C5121.57 (18)C13—C18—H23119.5
C1—C6—H6119.2C17—C18—H23119.5
C5—C6—H6119.2C16—C17—C18119.8 (2)
C12—N1—C11111.40 (17)C16—C17—H24120.1
C12—N1—H2124.3C18—C17—H24120.1
C11—N1—H2124.3C17—C16—C15119.76 (19)
N1—C12—O1113.24 (18)C17—C16—H25120.1
N1—C12—C19114.31 (19)C15—C16—H25120.1
N1—C11—C7—C816.2 (2)C7—C11—N1—C1248.5 (2)
C13—C11—C7—C8110.5 (2)C11—N1—C12—O162.2 (2)
N1—C11—C7—C5158.55 (18)C11—N1—C12—C19179.14 (17)
C13—C11—C7—C574.7 (2)C7—C8—O1—C126.1 (3)
C8—C7—C5—C6178.32 (19)C9—C8—O1—C12176.55 (18)
C11—C7—C5—C66.9 (3)N1—C12—O1—C839.9 (2)
C8—C7—C5—C41.2 (3)C19—C12—O1—C8163.56 (18)
C11—C7—C5—C4173.63 (17)N1—C11—C13—C1897.4 (2)
C5—C7—C8—O1179.57 (18)C7—C11—C13—C1828.9 (3)
C11—C7—C8—O14.6 (3)N1—C11—C13—C1481.0 (2)
C5—C7—C8—C92.4 (3)C7—C11—C13—C14152.64 (18)
C11—C7—C8—C9172.48 (18)C18—C13—C14—C150.9 (3)
C6—C5—C4—C31.0 (3)C11—C13—C14—C15177.60 (19)
C7—C5—C4—C3178.53 (18)N1—C12—C19—C24176.1 (2)
C6—C5—C4—C10179.44 (18)O1—C12—C19—C2460.9 (2)
C7—C5—C4—C101.1 (3)N1—C12—C19—C203.5 (3)
O1—C8—C9—C10178.84 (19)O1—C12—C19—C20119.5 (2)
C7—C8—C9—C101.5 (3)C20—C19—C24—C230.0 (3)
C8—C9—C10—C40.8 (3)C12—C19—C24—C23179.6 (2)
C3—C4—C10—C9177.5 (2)C19—C24—C23—C221.1 (3)
C5—C4—C10—C92.1 (3)C21—C22—C23—C240.8 (3)
C10—C4—C3—C2179.0 (2)C24—C19—C20—C211.2 (3)
C5—C4—C3—C20.6 (3)C12—C19—C20—C21179.2 (2)
C4—C3—C2—C11.9 (3)C23—C22—C21—C200.4 (3)
C4—C3—C2—Br1178.18 (15)C19—C20—C21—C221.4 (4)
C3—C2—C1—C61.5 (3)C13—C14—C15—C161.4 (3)
Br1—C2—C1—C6178.55 (16)C14—C13—C18—C170.3 (3)
C2—C1—C6—C50.2 (3)C11—C13—C18—C17178.75 (19)
C7—C5—C6—C1178.12 (19)C13—C18—C17—C161.0 (3)
C4—C5—C6—C11.4 (3)C18—C17—C16—C150.4 (3)
C13—C11—N1—C1280.4 (2)C14—C15—C16—C170.8 (3)

Experimental details

Crystal data
Chemical formulaC24H18BrNO
Mr416.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7617 (11), 20.092 (3), 11.5094 (16)
β (°) 91.893 (2)
V3)1793.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.55 × 0.50 × 0.35
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.364, 0.499
No. of measured, independent and
observed [I > 2σ(I)] reflections
14693, 5341, 4426
Rint0.025
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.03
No. of reflections5341
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.64, 0.84

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

C—H···π interactions (Å) top
Cg3, Cg4 and Cg5 are the centroids of the C4/C5/C7–C16, C13–C18 and C19–C24 rings, respectively.
X—H···CgX···CgH···CgH···Perp
C1–H1···Cg5i3.357 (8)2.802.67
C24–H18···Cg3ii3.692 (9)2.932.90
C22–H21···Cg4iii3.547 (3)2.682.61
C17–H24···Cg3iv3.587 (8)2.702.67
Symmetry codes: (i) -x, 1/2+y, 1/2-z ; (ii) -x, -y, 1-z ; (iii) -x, -1/2+y, 1/2-z ; (iv) -1+x, y, z.
 

Acknowledgements

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. ANM thanks the University of Mysore and SeQuent Scientific Ltd for research facilities and HSY thanks the University of Mysore for sabbatical leave.

References

First citationBenameur, L., Bouaziz, Z., Nebois, P., Bartoli, M. H., Boitard, M. & Fillion, H. (1996). Chem. Pharm. Bull. 44, 605–608.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2008). APEX2, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationJoyce, J. N., Presgraves, S., Renish, L., Borwege, S., Osredkar, T., Hagner, D., Replogle, M., PazSoldan, M. & Millan, M. J. (2003). Exp. Neurol. 184, 393–407.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKurz, T. (2005). Tetrahedron, 61, 3091–3096.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y. H., Zhao, M. M. & Zhang, Y. (2008). Acta Cryst. E64, o1972.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMillan, M. J., Di Cara, B., Hill, M., Jackson, M., Joyce, J. N., Brotchie, J., McGuire, S., Crossman, A., Smith, L., Jenner, P., Gobert, A., Peglion, J. L. & Brocco, M. (2004). J. Pharm. Exp. Ther. 309, 921–935.  Web of Science CrossRef CAS Google Scholar
First citationNozulak, J. & Giger, R. K. A. (1987). US Patent 4 656 167.  Google Scholar
First citationOhnacker, G. & Scheffler, H. (1960). US Patent 2 943 087.  Google Scholar
First citationSarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞen, B., Turgut, Z., Pelit, E. & Aygün, M. (2008). Acta Cryst. E64, o573.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzatmari, I., Martinek, T. A., Lazar, L. & Fulop, F. (2003). Tetrahedron, 59, 2877–2884.  Web of Science CrossRef CAS Google Scholar
First citationSzatmari, I., Martinek, T. A., Lazar, L. & Fulop, F. (2004). Eur. J. Org. Chem. pp. 2231–2238.  CrossRef Google Scholar
First citationTurgut, Z., Pelit, E. & Koycu, A. (2007). Molecules, 12, 345–352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, Y.-F., Yang, L.-R., Yin, Z.-G. & Qian, H.-Y. (2008). Acta Cryst. E64, o147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y. & Li, Y. H. (2009). Acta Cryst. E65, o1796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, P., Terefenko, E. A., Fensome, A., Wrobel, J., Winneker, R. & Zhang, Z. (2003). Bioorg. Med. Chem. Lett. 13, 1313–1316.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds