metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium clavulanate

aDepartment of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8551, Japan, and bSchool of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40312, Indonesia
*Correspondence e-mail: uekusa@cms.titech.ac.jp

(Received 4 July 2010; accepted 14 July 2010; online 21 July 2010)

The title salt, K+·C8H8NO5 [systematic name: potassium (2R,5R,Z)-3-(2-hy­droxy­ethyl­idene)-7-oxo-4-oxa-1-aza­bicyclo­[3.2.0]heptane-2-carb­oxyl­ate], a widely used β-lactam anti­biotic, is usually chemically unstable even in the solid state owing to its tendency to be hydrolysed. In the crystal structure, the potassium cations are arranged along the a axis, forming inter­actions to the carboxyl­ate and hy­droxy groups, resulting in one-dimensional ionic columns. These columns are arranged along the b axis, connected by O—H⋯O hydrogen bonds, forming a layer in the ab plane.

Related literature

For the pharmacological activity of clavulanic acid and potassium clavulanate, see: Bird et al. (1982[Bird, A. E., Bellis, J. M. & Basson, B. C. (1982). Analyst, 107, 1241-1245.]); Mayer & Deckwer (1996[Mayer, A. F. & Deckwer, W. D. (1996). Appl. Microbiol. Biotechnol. 45, 41-46.]); Navarro (2005[Navarro, A. S. (2005). Clin. Pharmacokinet. 44, 1097-1115.]). For the hydrolysis properties of clavulanic acid and potassium clavulanate, see: Bersanetti et al. (2005[Bersanetti, P. A., Almeida, R. M. R. G., Barboza, M., Araújo, M. L. G. C. & Hokka, C. O. (2005). Biochem. Eng. J. 23, 31-36.]); Brethauer et al. (2008[Brethauer, S., Held, M. & Panke, S. (2008). Biotechnol. Bioeng. 100, 439-447.]); Haginaka et al. (1985[Haginaka, J., Yasuda, H., Uno, T. & Nakagawa, T. (1985). Chem. Pharm. Bull. 33, 218-224.]); Hickey et al. (2007[Hickey, M. B., Peterson, M. L., Manas, E. S., Alvarez, J., Haeffner, F. & Almarsson, O. (2007). J. Pharm. Sci. 96, 1090-1099.]); Saudagar et al. (2008[Saudagar, P. S., Survase, S. A. & Singhal, R. S. (2008). Biotechnol. Adv. 26, 335-351.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C8H8NO5

  • Mr = 237.25

  • Orthorhombic, P 21 21 21

  • a = 4.3453 (6) Å

  • b = 7.8191 (11) Å

  • c = 27.491 (3) Å

  • V = 934.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 173 K

  • 0.24 × 0.04 × 0.01 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.876, Tmax = 0.994

  • 9047 measured reflections

  • 2138 independent reflections

  • 1433 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.12

  • 2138 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 839 Friedel pairs

  • Flack parameter: −0.05 (9)

Table 1
Selected bond lengths (Å)

O2—K1i 2.773 (3)
O2—K1ii 2.799 (3)
O2—K1 2.827 (3)
O3—K1 2.786 (3)
O4—K1ii 2.818 (4)
O4—K1iii 2.865 (4)
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iii) [x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+2].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3iv 0.84 1.90 2.673 (5) 153
Symmetry code: (iv) x+1, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many pathogenic bacteria secrete β-lactamases as a defense mechanism against β-lactam antibiotics. Because such β-lactamases have the potential to inactivate β-lactam antibiotics, inhibitors for these β-lactamases are clinically very important. Clavulanic acid (CA) is a powerful naturally obtained inhibitor for bacterial β-lactamases produced by the organism Streptomyces clavuligerus. Although CA itself can act as an β-lactam antibiotic and is active against a wide spectrum of Gram-positive and Gram-negative bacteria (Mayer & Deckwer, 1996), it is much more effective as a drug in combination with β-lactamase-sensitive penicillins, such as amoxicillin. In that situation, CA protects the β-lactam ring of the amoxicillin from hydrolysis and can maintain its activity against β-lactamase producing bacteria (Bird et al., 1982). The CA potassium salt is widely used as a drug in injectable and solid form, especially combined with amoxicillin sodium and amoxicillin trihydrate (Navarro, 2005).

In this context, an understanding of the structure of CA is important in order to establish its ability to form molecular interactions. Unfortunately, CA is chemically unstable as are the other β-lactam antibiotics, being very sensitive to pH, temperature, and humidity via the hydrolysis degradation mechanism; (Bersanetti et al., 2005; Hickey et al., 2007; Saudagar et al., 2008). The decomposition is also self-catalyzed (Brethauer et al. 2008; Haginaka et al. 1985) and there have been some difficulties in obtaining a single crystals of CA. Therefore, until now there has been no report of a crystal structure of CA. In this study, single crystals of potassium clavulanate were successfully obtained by a low-temperature crystallization process and the crystal structure was determined.

In the molecular structure of potassium clavulanate, Fig. 1, the C5–O2 and C5–O3 distances of 1.262 (5)Å and 1.256 (5) Å, respectively, indicate that the negative charge of the carboxylate group is delocalised. The potassium cation is surrounded by six oxygen atoms, three O2, one O3 and two O4, deriv ed from four different clavulanate anions. The selected bond lengths around the potassium cation are listed in Table 1. These interactions are infinitely linked along the a axis and lead to an ionic (hydrophilic) column structure. These columns are connected by intermolecular O–H···O hydrogen bonds formed between O4-hydroxyl groups and carboxylate-O2 atoms, and form a hydrophobic layer in the ab plane; Fig. 2. By contrast, the remaining hydrophobic groups (i.e. bicyclo groups) form a hydrophobic layer so that the crystal structure comprises alternating hydrophilic and hydrophilic regions.

Related literature top

For the pharmacological activity of clavulanic acid and potassium clavulanate, see: Bird et al. (1982); Mayer & Deckwer (1996); Navarro (2005). For the hydrolysis properties of clavulanic acid and potassium clavulanate, see: Bersanetti et al. (2005); Brethauer et al. (2008); Haginaka et al. (1985); Hickey et al. (2007); Saudagar et al. (2008).

Experimental top

The single crystals of potassium clavulanate were grown at a low temperature in order to prevent decomposition. After the compound was dissolved into an 8:2 mixture of methanol/water, a few drops of 1-propanol were added to the solution and the solution was kept at 235 K for a few days. The crystal used in the analysis was immediately covered with inert oil in order to prevent the decomposition through contact with atmospheric water vapor.

Refinement top

The O- and C-bound H atoms were geometrically placed (O–H = 0.84 Å and C–H = 0.95–1.00 Å,) and refined as riding with Uiso(H) = 1.2Ueq(carrier atom). The absolute structure was assigned according to the known configuration of the acid, an assignment confirmed by the refinement of the Flack parameter (Flack, 1983).

Structure description top

Many pathogenic bacteria secrete β-lactamases as a defense mechanism against β-lactam antibiotics. Because such β-lactamases have the potential to inactivate β-lactam antibiotics, inhibitors for these β-lactamases are clinically very important. Clavulanic acid (CA) is a powerful naturally obtained inhibitor for bacterial β-lactamases produced by the organism Streptomyces clavuligerus. Although CA itself can act as an β-lactam antibiotic and is active against a wide spectrum of Gram-positive and Gram-negative bacteria (Mayer & Deckwer, 1996), it is much more effective as a drug in combination with β-lactamase-sensitive penicillins, such as amoxicillin. In that situation, CA protects the β-lactam ring of the amoxicillin from hydrolysis and can maintain its activity against β-lactamase producing bacteria (Bird et al., 1982). The CA potassium salt is widely used as a drug in injectable and solid form, especially combined with amoxicillin sodium and amoxicillin trihydrate (Navarro, 2005).

In this context, an understanding of the structure of CA is important in order to establish its ability to form molecular interactions. Unfortunately, CA is chemically unstable as are the other β-lactam antibiotics, being very sensitive to pH, temperature, and humidity via the hydrolysis degradation mechanism; (Bersanetti et al., 2005; Hickey et al., 2007; Saudagar et al., 2008). The decomposition is also self-catalyzed (Brethauer et al. 2008; Haginaka et al. 1985) and there have been some difficulties in obtaining a single crystals of CA. Therefore, until now there has been no report of a crystal structure of CA. In this study, single crystals of potassium clavulanate were successfully obtained by a low-temperature crystallization process and the crystal structure was determined.

In the molecular structure of potassium clavulanate, Fig. 1, the C5–O2 and C5–O3 distances of 1.262 (5)Å and 1.256 (5) Å, respectively, indicate that the negative charge of the carboxylate group is delocalised. The potassium cation is surrounded by six oxygen atoms, three O2, one O3 and two O4, deriv ed from four different clavulanate anions. The selected bond lengths around the potassium cation are listed in Table 1. These interactions are infinitely linked along the a axis and lead to an ionic (hydrophilic) column structure. These columns are connected by intermolecular O–H···O hydrogen bonds formed between O4-hydroxyl groups and carboxylate-O2 atoms, and form a hydrophobic layer in the ab plane; Fig. 2. By contrast, the remaining hydrophobic groups (i.e. bicyclo groups) form a hydrophobic layer so that the crystal structure comprises alternating hydrophilic and hydrophilic regions.

For the pharmacological activity of clavulanic acid and potassium clavulanate, see: Bird et al. (1982); Mayer & Deckwer (1996); Navarro (2005). For the hydrolysis properties of clavulanic acid and potassium clavulanate, see: Bersanetti et al. (2005); Brethauer et al. (2008); Haginaka et al. (1985); Hickey et al. (2007); Saudagar et al. (2008).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of potassium clavulanate showing numbering scheme and displacement ellipsoids at the 50% probability .
[Figure 2] Fig. 2. Crystal packing viewed along the a axis. The hydrogen bonds are shown with red dotted lines.
potassium (2R,5R,Z)- 3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo[3.2.0]heptane-2-carboxylate top
Crystal data top
K+·C8H8NO5F(000) = 488
Mr = 237.25Dx = 1.687 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 9047 reflections
a = 4.3453 (6) Åθ = 3.0–27.5°
b = 7.8191 (11) ŵ = 0.57 mm1
c = 27.491 (3) ÅT = 173 K
V = 934.1 (2) Å3Platet, colorless
Z = 40.24 × 0.04 × 0.01 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2138 independent reflections
Radiation source: rotating anode, Rigaku UltraX181433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 55
Tmin = 0.876, Tmax = 0.994k = 1010
9047 measured reflectionsl = 3535
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0305P)2 + 0.8726P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2138 reflectionsΔρmax = 0.52 e Å3
137 parametersΔρmin = 0.56 e Å3
0 restraintsAbsolute structure: Flack (1983), 839 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (9)
Crystal data top
K+·C8H8NO5V = 934.1 (2) Å3
Mr = 237.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.3453 (6) ŵ = 0.57 mm1
b = 7.8191 (11) ÅT = 173 K
c = 27.491 (3) Å0.24 × 0.04 × 0.01 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2138 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1433 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.994Rint = 0.088
9047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.52 e Å3
S = 1.12Δρmin = 0.56 e Å3
2138 reflectionsAbsolute structure: Flack (1983), 839 Friedel pairs
137 parametersAbsolute structure parameter: 0.05 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2101 (11)0.3967 (6)1.20066 (15)0.0297 (11)
C21.1168 (11)0.5309 (6)1.23813 (13)0.0276 (9)
H2A1.29010.57981.25690.033*
H2B0.94470.49641.25960.033*
C31.0199 (11)0.6369 (6)1.19340 (14)0.0250 (10)
H30.80270.67901.19420.030*
C41.2417 (9)0.5363 (6)1.11851 (13)0.0192 (8)
H41.42730.46111.11630.023*
C51.0676 (9)0.5213 (6)1.06982 (13)0.0201 (8)
C61.3526 (11)0.7148 (5)1.13197 (12)0.0218 (9)
C71.5398 (10)0.8175 (6)1.10754 (14)0.0245 (10)
H71.61690.77521.07750.029*
C81.6419 (11)0.9914 (5)1.12198 (13)0.0269 (9)
H8A1.50561.03821.14760.032*
H8B1.85510.98811.13460.032*
O11.3545 (10)0.2661 (4)1.20053 (11)0.0458 (9)
O21.1415 (8)0.6217 (4)1.03630 (9)0.0258 (7)
O30.8682 (9)0.4058 (4)1.06647 (10)0.0318 (7)
O41.6262 (9)1.0947 (4)1.07905 (10)0.0321 (8)
H4A1.69581.19261.08510.038*
O51.2401 (7)0.7604 (4)1.17783 (9)0.0266 (7)
N11.0715 (8)0.4860 (5)1.16197 (10)0.0242 (8)
K10.6334 (2)0.52404 (13)0.97836 (3)0.0284 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (3)0.027 (2)0.026 (2)0.001 (2)0.001 (2)0.0026 (19)
C20.029 (2)0.035 (2)0.0185 (16)0.001 (3)0.0026 (18)0.0049 (18)
C30.026 (2)0.025 (2)0.024 (2)0.0001 (19)0.0021 (19)0.0033 (18)
C40.0183 (18)0.018 (2)0.0211 (17)0.0025 (18)0.0009 (15)0.0023 (17)
C50.017 (2)0.022 (2)0.0214 (17)0.0007 (18)0.0031 (15)0.0040 (17)
C60.020 (2)0.028 (2)0.0174 (17)0.001 (2)0.0018 (18)0.0019 (16)
C70.027 (2)0.026 (2)0.0204 (18)0.0043 (19)0.0037 (18)0.0005 (17)
C80.030 (2)0.025 (2)0.0255 (18)0.003 (2)0.002 (2)0.0008 (18)
O10.070 (3)0.033 (2)0.0340 (16)0.020 (2)0.006 (2)0.0063 (15)
O20.0265 (16)0.0296 (17)0.0213 (12)0.0041 (16)0.0002 (13)0.0045 (12)
O30.0366 (19)0.0304 (17)0.0285 (14)0.0127 (16)0.0071 (15)0.0038 (13)
O40.046 (2)0.0201 (15)0.0304 (15)0.0063 (17)0.0020 (17)0.0034 (12)
O50.0328 (18)0.0248 (17)0.0221 (13)0.0045 (13)0.0064 (13)0.0013 (13)
N10.032 (2)0.0236 (19)0.0174 (14)0.0030 (17)0.0036 (14)0.0043 (14)
K10.0242 (4)0.0362 (5)0.0248 (4)0.0008 (5)0.0007 (4)0.0031 (4)
Geometric parameters (Å, º) top
C1—O11.199 (6)C7—H70.9500
C1—N11.408 (5)C8—O41.432 (5)
C1—C21.525 (6)C8—H8A0.9900
C2—C31.542 (5)C8—H8B0.9900
C2—H2A0.9900O4—H4A0.8400
C2—H2B0.9900O2—K1i2.773 (3)
C3—O51.425 (5)O2—K1ii2.799 (3)
C3—N11.480 (5)O2—K12.827 (3)
C3—H31.0000O3—K12.786 (3)
C4—N11.459 (5)O4—K1ii2.818 (4)
C4—C61.522 (6)O4—K1iii2.865 (4)
C4—C51.542 (5)O4—H4A0.8400
C4—H41.0000K1—O2iv2.773 (3)
C5—O21.252 (5)K1—O2v2.799 (3)
C5—O31.256 (5)K1—O4v2.818 (4)
C6—C71.325 (6)K1—O4vi2.865 (4)
C6—O51.398 (4)K1—C7v3.198 (4)
C7—C81.485 (6)
O1—C1—N1130.1 (4)C1—N1—C4122.4 (4)
O1—C1—C2136.7 (4)C1—N1—C391.1 (3)
N1—C1—C293.2 (3)C4—N1—C3109.9 (3)
C1—C2—C384.5 (3)O2iv—K1—O382.78 (10)
C1—C2—H2A114.6O2iv—K1—O2v79.62 (9)
C3—C2—H2A114.6O3—K1—O2v116.68 (9)
C1—C2—H2B114.6O2iv—K1—O4v176.73 (10)
C3—C2—H2B114.6O3—K1—O4v95.70 (10)
H2A—C2—H2B111.7O2v—K1—O4v103.64 (9)
O5—C3—N1105.3 (3)O2iv—K1—O2101.77 (9)
O5—C3—C2114.9 (4)O3—K1—O246.69 (9)
N1—C3—C289.7 (3)O2v—K1—O278.70 (9)
O5—C3—H3114.7O4v—K1—O279.11 (9)
N1—C3—H3114.7O2iv—K1—O4vi79.21 (9)
C2—C3—H3114.7O3—K1—O4vi130.76 (10)
N1—C4—C6102.0 (3)O2v—K1—O4vi104.54 (9)
N1—C4—C5116.2 (3)O4v—K1—O4vi99.74 (9)
C6—C4—C5115.9 (3)O2—K1—O4vi176.76 (10)
N1—C4—H4107.4O2iv—K1—C590.29 (9)
C6—C4—H4107.4O3—K1—C523.47 (10)
C5—C4—H4107.4O2v—K1—C596.56 (11)
O2—C5—O3125.0 (3)O4v—K1—C589.41 (10)
O2—C5—C4117.7 (4)O2—K1—C523.45 (9)
O3—C5—C4117.2 (3)O4vi—K1—C5154.16 (10)
O2—C5—K164.0 (2)O2iv—K1—C7v137.98 (11)
O3—C5—K162.1 (2)O3—K1—C7v124.63 (12)
C4—C5—K1171.2 (3)O2v—K1—C7v60.23 (10)
O2—C5—K1i44.8 (2)O4v—K1—C7v45.13 (10)
O3—C5—K1i115.7 (3)O2—K1—C7v83.12 (10)
C4—C5—K1i106.1 (2)O4vi—K1—C7v98.25 (10)
K1—C5—K1i81.24 (8)C5—K1—C7v105.17 (11)
C7—C6—O5121.1 (4)O2iv—K1—C8vi89.53 (10)
C7—C6—C4128.8 (4)O3—K1—C8vi154.09 (11)
O5—C6—C4110.0 (3)O2v—K1—C8vi85.89 (9)
C6—C7—C8127.1 (4)O4v—K1—C8vi90.62 (10)
C6—C7—K1ii105.7 (3)O2—K1—C8vi158.79 (11)
C8—C7—K1ii90.4 (2)O4vi—K1—C8vi23.49 (9)
C6—C7—H7116.5C5—K1—C8vi177.48 (12)
C8—C7—H7116.5C7v—K1—C8vi76.57 (11)
K1ii—C7—H771.9O2iv—K1—C5iv18.57 (9)
O4—C8—C7106.4 (3)O3—K1—C5iv68.43 (10)
O4—C8—K1iii52.9 (2)O2v—K1—C5iv96.76 (10)
C7—C8—K1iii86.5 (2)O4v—K1—C5iv158.42 (10)
O4—C8—K1ii49.2 (2)O2—K1—C5iv98.32 (9)
C7—C8—K1ii64.7 (2)O4vi—K1—C5iv81.62 (9)
K1iii—C8—K1ii76.39 (8)C5—K1—C5iv81.24 (8)
O4—C8—H8A110.5C7v—K1—C5iv156.37 (11)
C7—C8—H8A110.5C8vi—K1—C5iv97.88 (10)
K1iii—C8—H8A160.2O2iv—K1—C8v159.90 (10)
K1ii—C8—H8A101.1O3—K1—C8v115.98 (12)
O4—C8—H8B110.5O2v—K1—C8v85.05 (9)
C7—C8—H8B110.5O4v—K1—C8v22.62 (9)
K1iii—C8—H8B72.8O2—K1—C8v87.75 (10)
K1ii—C8—H8B149.1O4vi—K1—C8v92.28 (10)
H8A—C8—H8B108.6C5—K1—C8v104.40 (10)
C5—O2—K1i116.6 (3)C7v—K1—C8v24.83 (10)
C5—O2—K1ii136.3 (3)C8vi—K1—C8v76.39 (8)
K1i—O2—K1ii101.51 (10)C5iv—K1—C8v173.89 (10)
C5—O2—K192.6 (2)O2iv—K1—K1ii90.24 (7)
K1i—O2—K1101.77 (9)O3—K1—K1ii81.25 (7)
K1ii—O2—K1100.16 (10)O2v—K1—K1ii39.02 (7)
C5—O3—K194.5 (2)O4v—K1—K1ii92.38 (7)
C8—O4—K1ii108.2 (2)O2—K1—K1ii39.68 (6)
C8—O4—K1iii103.6 (3)O4vi—K1—K1ii143.56 (7)
K1ii—O4—K1iii99.74 (9)C5—K1—K1ii58.85 (8)
C8—O4—H4A109.5C7v—K1—K1ii66.94 (8)
K1ii—O4—H4A133.2C8vi—K1—K1ii123.66 (8)
K1iii—O4—H4A97.3C5iv—K1—K1ii99.19 (7)
C6—O5—C3109.4 (3)C8v—K1—K1ii85.90 (8)
O1—C1—C2—C3168.2 (6)C5—O2—K1—O36.0 (2)
N1—C1—C2—C39.2 (3)K1i—O2—K1—O3111.90 (16)
C1—C2—C3—O598.0 (4)K1ii—O2—K1—O3143.96 (16)
C1—C2—C3—N18.8 (3)C5—O2—K1—O2v138.9 (2)
N1—C4—C5—O2151.2 (4)K1i—O2—K1—O2v103.25 (11)
C6—C4—C5—O231.4 (5)K1ii—O2—K1—O2v0.89 (9)
N1—C4—C5—O330.8 (6)C5—O2—K1—O4v114.7 (3)
C6—C4—C5—O3150.6 (4)K1i—O2—K1—O4v3.21 (10)
N1—C4—C5—K152 (2)K1ii—O2—K1—O4v107.35 (10)
C6—C4—C5—K167.5 (19)C5—O2—K1—O4vi45.1 (17)
N1—C4—C5—K1i161.8 (3)K1i—O2—K1—O4vi72.8 (16)
C6—C4—C5—K1i78.4 (4)K1ii—O2—K1—O4vi177 (45)
N1—C4—C6—C7174.2 (4)K1i—O2—K1—C5117.9 (3)
C5—C4—C6—C758.6 (6)K1ii—O2—K1—C5138.0 (3)
N1—C4—C6—O52.6 (4)C5—O2—K1—C7v160.2 (3)
C5—C4—C6—O5124.7 (4)K1i—O2—K1—C7v42.33 (11)
O5—C6—C7—C83.7 (7)K1ii—O2—K1—C7v61.82 (11)
C4—C6—C7—C8179.9 (4)C5—O2—K1—C8vi176.9 (3)
O5—C6—C7—K1ii106.5 (4)K1i—O2—K1—C8vi59.1 (3)
C4—C6—C7—K1ii77.1 (5)K1ii—O2—K1—C8vi45.1 (3)
C6—C7—C8—O4137.0 (5)C5—O2—K1—C5iv43.6 (2)
K1ii—C7—C8—O426.9 (3)K1i—O2—K1—C5iv161.47 (10)
C6—C7—C8—K1iii173.3 (5)K1ii—O2—K1—C5iv94.39 (11)
K1ii—C7—C8—K1iii76.57 (10)C5—O2—K1—C8v135.7 (3)
C6—C7—C8—K1ii110.1 (5)K1i—O2—K1—C8v17.85 (11)
O3—C5—O2—K1i92.7 (4)K1ii—O2—K1—C8v86.29 (10)
C4—C5—O2—K1i85.1 (4)C5—O2—K1—K1ii138.0 (3)
K1—C5—O2—K1i104.54 (19)K1i—O2—K1—K1ii104.15 (11)
O3—C5—O2—K1ii119.4 (4)O2—C5—K1—O2iv120.1 (3)
C4—C5—O2—K1ii62.7 (5)O3—C5—K1—O2iv70.9 (3)
K1—C5—O2—K1ii107.6 (3)C4—C5—K1—O2iv16.8 (18)
K1i—C5—O2—K1ii147.8 (5)K1i—C5—K1—O2iv163.73 (9)
O3—C5—O2—K111.8 (5)O2—C5—K1—O3169.1 (4)
C4—C5—O2—K1170.3 (3)C4—C5—K1—O387.6 (18)
K1i—C5—O2—K1104.54 (19)K1i—C5—K1—O3125.4 (3)
O2—C5—O3—K112.0 (5)O2—C5—K1—O2v40.5 (2)
C4—C5—O3—K1170.1 (3)O3—C5—K1—O2v150.5 (3)
K1i—C5—O3—K163.5 (2)C4—C5—K1—O2v62.8 (18)
C7—C8—O4—K1ii32.7 (4)K1i—C5—K1—O2v84.14 (9)
K1iii—C8—O4—K1ii105.23 (18)O2—C5—K1—O4v63.2 (2)
C7—C8—O4—K1iii72.5 (3)O3—C5—K1—O4v105.9 (3)
K1ii—C8—O4—K1iii105.23 (18)C4—C5—K1—O4v166.5 (18)
C7—C6—O5—C3173.7 (4)K1i—C5—K1—O4v19.52 (9)
C4—C6—O5—C39.2 (4)O3—C5—K1—O2169.1 (4)
N1—C3—O5—C616.9 (4)C4—C5—K1—O2103.3 (19)
C2—C3—O5—C6113.9 (4)K1i—C5—K1—O243.7 (2)
O1—C1—N1—C453.6 (7)O2—C5—K1—O4vi174.7 (2)
C2—C1—N1—C4124.1 (4)O3—C5—K1—O4vi5.7 (4)
O1—C1—N1—C3168.1 (6)C4—C5—K1—O4vi82.0 (19)
C2—C1—N1—C39.6 (3)K1i—C5—K1—O4vi131.1 (2)
C6—C4—N1—C191.7 (5)O2—C5—K1—C7v20.4 (3)
C5—C4—N1—C1141.3 (4)O3—C5—K1—C7v148.7 (3)
C6—C4—N1—C313.0 (4)C4—C5—K1—C7v123.7 (18)
C5—C4—N1—C3114.0 (4)K1i—C5—K1—C7v23.27 (12)
O5—C3—N1—C1106.3 (3)O2—C5—K1—C8vi154 (2)
C2—C3—N1—C19.5 (3)O3—C5—K1—C8vi15 (2)
O5—C3—N1—C418.9 (4)C4—C5—K1—C8vi103 (3)
C2—C3—N1—C4134.7 (3)K1i—C5—K1—C8vi110 (2)
C5—O3—K1—O2iv107.7 (3)O2—C5—K1—C5iv136.3 (2)
C5—O3—K1—O2v33.2 (3)O3—C5—K1—C5iv54.6 (3)
C5—O3—K1—O4v75.2 (3)C4—C5—K1—C5iv33.0 (19)
C5—O3—K1—O26.0 (2)K1i—C5—K1—C5iv180.0
C5—O3—K1—O4vi176.7 (2)O2—C5—K1—C8v46.1 (3)
C5—O3—K1—C7v37.6 (3)O3—C5—K1—C8v123.0 (3)
C5—O3—K1—C8vi178.5 (2)C4—C5—K1—C8v149.4 (18)
C5—O3—K1—C5iv120.0 (3)K1i—C5—K1—C8v2.41 (12)
C5—O3—K1—C8v64.7 (3)O2—C5—K1—K1ii30.0 (2)
C5—O3—K1—K1ii16.4 (2)O3—C5—K1—K1ii161.0 (3)
C5—O2—K1—O2iv62.1 (3)C4—C5—K1—K1ii73.4 (18)
K1i—O2—K1—O2iv180.0K1i—C5—K1—K1ii73.62 (7)
K1ii—O2—K1—O2iv75.85 (11)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+2; (iii) x+3/2, y+3/2, z+2; (iv) x1, y, z; (v) x1/2, y+3/2, z+2; (vi) x3/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3vii0.841.902.673 (5)153
Symmetry code: (vii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaK+·C8H8NO5
Mr237.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)4.3453 (6), 7.8191 (11), 27.491 (3)
V3)934.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.24 × 0.04 × 0.01
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.876, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
9047, 2138, 1433
Rint0.088
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.12
No. of reflections2138
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.56
Absolute structureFlack (1983), 839 Friedel pairs
Absolute structure parameter0.05 (9)

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
O2—K1i2.773 (3)O3—K12.786 (3)
O2—K1ii2.799 (3)O4—K1ii2.818 (4)
O2—K12.827 (3)O4—K1iii2.865 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+2; (iii) x+3/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3iv0.8401.8982.673 (5)152.75
Symmetry code: (iv) x+1, y+1, z.
 

Acknowledgements

Grateful thanks are given to the High Directorate of the Education Ministry of Indonesia for a research grant and PT Tempo Scan Pacific Indonesia for the supply of the material. KF was supported by a Grant-in-Aid for JSPS Fellows (Tokyo Institute of Technology G-COE Program: Education and the Research Centre for Emergence of New Mol­ecular Chemistry).

References

First citationBersanetti, P. A., Almeida, R. M. R. G., Barboza, M., Araújo, M. L. G. C. & Hokka, C. O. (2005). Biochem. Eng. J. 23, 31–36.  Web of Science CrossRef CAS Google Scholar
First citationBird, A. E., Bellis, J. M. & Basson, B. C. (1982). Analyst, 107, 1241–1245.  CrossRef CAS Web of Science Google Scholar
First citationBrethauer, S., Held, M. & Panke, S. (2008). Biotechnol. Bioeng. 100, 439–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaginaka, J., Yasuda, H., Uno, T. & Nakagawa, T. (1985). Chem. Pharm. Bull. 33, 218–224.  CAS Google Scholar
First citationHickey, M. B., Peterson, M. L., Manas, E. S., Alvarez, J., Haeffner, F. & Almarsson, O. (2007). J. Pharm. Sci. 96, 1090–1099.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMayer, A. F. & Deckwer, W. D. (1996). Appl. Microbiol. Biotechnol. 45, 41–46.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNavarro, A. S. (2005). Clin. Pharmacokinet. 44, 1097–1115.  PubMed Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaudagar, P. S., Survase, S. A. & Singhal, R. S. (2008). Biotechnol. Adv. 26, 335–351.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds