organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­bromo-1,3-bis­­(4-fluoro­phen­yl)propan-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 4 July 2010; accepted 7 July 2010; online 14 July 2010)

In the title compound, C15H10Br2F2O, the dihedral angle between the two 3-fluoro-substituted benzene rings is 5.7 (5)°. The two bromine substituents on the chalcone moiety are close to anti as the Br—C—C—Br torsion angle is 176.9 (7)°. Weak C—Br⋯π inter­actions may contribute to the crystal stability.

Related literature

For bromo substitution of non-linerar optical (NLO) compounds, see: Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]); Tam et al. (1989[Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93-96.]); Indira et al. (2002[Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]). For NLO first-order hyperpolarizabilities, see: Zhao et al. (2002[Zhao, B., Lu, W. Q., Zhou, Z. H. & Wu, Y. (2002). J. Mater. Chem. 10, 1513-1517.]). For related structures, see: Narayana et al. (2007[Narayana, B., Mayekar, A. N., Yathirajan, H. S., Sarojini, B. K. & Kubicki, M. (2007). Acta Cryst. E63, o4362.]); Sarojini et al. (2007[Sarojini, B. K., Narayana, B., Yathirajan, H. S., Mayekar, A. N. & Bolte, M. (2007). Acta Cryst. E63, o3755.]); Yathirajan et al. (2007[Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2198-o2199.]); Butcher et al. (2006[Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Mithun, A. (2006). Acta Cryst. E62, o1629-o1630.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10Br2F2O

  • Mr = 404.05

  • Triclinic, [P \overline 1]

  • a = 5.7381 (13) Å

  • b = 9.909 (2) Å

  • c = 12.575 (3) Å

  • α = 75.324 (3)°

  • β = 87.472 (3)°

  • γ = 82.300 (3)°

  • V = 685.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.93 mm−1

  • T = 100 K

  • 0.55 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.329, Tmax = 0.746

  • 8841 measured reflections

  • 4008 independent reflections

  • 3408 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.21

  • 4008 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
YXCg inter­actions (Å)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

YXCg XCg YCg YXCg
C8—Br1⋯Cg1i 3.650 (7) 5.617 (2) 174
C7—Br3⋯Cg2ii 3.479 (6) 5.341 (1) 153
Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, −z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The non-linear optical (NLO) effect in organic molecules originates from a strong donor–acceptor intermolecular interaction, a delocalized π-electron system and the ability to crystallize in a non-centrosymmetric space group. Among several organic compounds exhibiting NLO effects, chalcone derivatives are important materials known for their excellent blue light transmittance and good crystallizability. It has been observed that substitution of a bromo group on either of the phenyl rings greatly influences non-centrosymmetric crystal packing (Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002). Bromo substituents can obviously improve molecular first-order hyperpolarizabilities and can effectively reduce dipole–dipole interactions between molecules (Zhao et al., 2002). Chalcone derivatives usually have lower melting points, which can be a drawback when their crystals are used in optical instruments. Chalcone dibromides usually have higher melting points and are thermally stable.

The crystal structures of some dibromo chalcones viz., 2,3-dibromo- 3-(5-bromo-2-methoxyphenyl)-1-(2,4-dichlorophenyl)propan-1-one (Narayana et al., 2007), 2,3-dibromo-3-(4-bromo-6-methoxy-2 -naphthyl)-1-(4-methoxyphenyl)propan-1-one (Sarojini et al., 2007), 2,3-dibromo-1-(3-bromo-2-thienyl)-3-(4-fluorophenyl)propan-1-one, (Yathirajan et al., 2007), 2,3-dibromo-1-(4-methoxyphenyl)-3-[4- (methylsulfanyl)phenyl] propan-1-one, (Butcher et al., 2006) have been reported. In continuation of our studies on chalcones and their derivatives, the title chalcone dibromide, C15H10F2Br2O, was prepared by the bromination of the chalcone precursor, and its crystal structure is reported.

The title compound, C15H10F2Br2O, contains two m-fluoro-substituted rings attached to a brominated chalcone moiety. The dihedral angle between the mean planes of the benzene rings is 5.7 (5) °. The two bromine substituents on the chalcone moiety are nearly opposite to each orher [Br1–C8–C7–Br2 = 176.9 (7) °]. Weak C—Br···π interactions (Table 1) contribute to crystal stability.

Related literature top

For bromo substitution of non-linerar optical (NLO) compounds, see: Uchida et al. (1998); Tam et al. (1989); Indira et al. (2002). For NLO first-order hyperpolarizabilities, see: Zhao et al. (2002). For related structures, see: Narayana et al. (2007); Sarojini et al. (2007); Yathirajan et al. (2007); Butcher et al. (2006).

Experimental top

To a solution of (2E)-1,3-bis(4-fluorophenyl)prop-2-en-1-one (2.44 g, 0.01 mol) in acetic acid (25 ml), bromine (1.60 g, 0.01 mol) in acetic acid (10 ml) was added slowly with stirring at 273 K. After completion of the addition of the bromine solution, the reaction mixture was stirred for 5 h. The solid obtained was filtered and recrystallized from acetone. The crystals were grown from methanol by slow evaporation and the yield of the compound was 86%. (m.pt. 443 K). Analytical data: Found (Calculated): C %: 44.57 (44.59); H%: 2.48 (2.49).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.17–1.23Ueq(C).

Structure description top

The non-linear optical (NLO) effect in organic molecules originates from a strong donor–acceptor intermolecular interaction, a delocalized π-electron system and the ability to crystallize in a non-centrosymmetric space group. Among several organic compounds exhibiting NLO effects, chalcone derivatives are important materials known for their excellent blue light transmittance and good crystallizability. It has been observed that substitution of a bromo group on either of the phenyl rings greatly influences non-centrosymmetric crystal packing (Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002). Bromo substituents can obviously improve molecular first-order hyperpolarizabilities and can effectively reduce dipole–dipole interactions between molecules (Zhao et al., 2002). Chalcone derivatives usually have lower melting points, which can be a drawback when their crystals are used in optical instruments. Chalcone dibromides usually have higher melting points and are thermally stable.

The crystal structures of some dibromo chalcones viz., 2,3-dibromo- 3-(5-bromo-2-methoxyphenyl)-1-(2,4-dichlorophenyl)propan-1-one (Narayana et al., 2007), 2,3-dibromo-3-(4-bromo-6-methoxy-2 -naphthyl)-1-(4-methoxyphenyl)propan-1-one (Sarojini et al., 2007), 2,3-dibromo-1-(3-bromo-2-thienyl)-3-(4-fluorophenyl)propan-1-one, (Yathirajan et al., 2007), 2,3-dibromo-1-(4-methoxyphenyl)-3-[4- (methylsulfanyl)phenyl] propan-1-one, (Butcher et al., 2006) have been reported. In continuation of our studies on chalcones and their derivatives, the title chalcone dibromide, C15H10F2Br2O, was prepared by the bromination of the chalcone precursor, and its crystal structure is reported.

The title compound, C15H10F2Br2O, contains two m-fluoro-substituted rings attached to a brominated chalcone moiety. The dihedral angle between the mean planes of the benzene rings is 5.7 (5) °. The two bromine substituents on the chalcone moiety are nearly opposite to each orher [Br1–C8–C7–Br2 = 176.9 (7) °]. Weak C—Br···π interactions (Table 1) contribute to crystal stability.

For bromo substitution of non-linerar optical (NLO) compounds, see: Uchida et al. (1998); Tam et al. (1989); Indira et al. (2002). For NLO first-order hyperpolarizabilities, see: Zhao et al. (2002). For related structures, see: Narayana et al. (2007); Sarojini et al. (2007); Yathirajan et al. (2007); Butcher et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of C15H10F2Br2O, showing the atom labeling scheme and 50% probability displacement ellipsoids.
2,3-Dibromo-1,3-bis(4-fluorophenyl)propan-1-one top
Crystal data top
C15H10Br2F2OZ = 2
Mr = 404.05F(000) = 392
Triclinic, P1Dx = 1.958 Mg m3
Hall symbol: -P 1Melting point: 443 K
a = 5.7381 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.909 (2) ÅCell parameters from 3859 reflections
c = 12.575 (3) Åθ = 2.4–31.2°
α = 75.324 (3)°µ = 5.93 mm1
β = 87.472 (3)°T = 100 K
γ = 82.300 (3)°Block, colourless
V = 685.4 (3) Å30.55 × 0.30 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
4008 independent reflections
Radiation source: fine-focus sealed tube3408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 31.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.329, Tmax = 0.746k = 1414
8841 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0334P)2]
where P = (Fo2 + 2Fc2)/3
4008 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
C15H10Br2F2Oγ = 82.300 (3)°
Mr = 404.05V = 685.4 (3) Å3
Triclinic, P1Z = 2
a = 5.7381 (13) ÅMo Kα radiation
b = 9.909 (2) ŵ = 5.93 mm1
c = 12.575 (3) ÅT = 100 K
α = 75.324 (3)°0.55 × 0.30 × 0.25 mm
β = 87.472 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4008 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3408 reflections with I > 2σ(I)
Tmin = 0.329, Tmax = 0.746Rint = 0.032
8841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.21Δρmax = 1.08 e Å3
4008 reflectionsΔρmin = 0.87 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.01364 (4)0.64928 (2)0.325242 (18)0.01732 (7)
Br30.63722 (4)0.41938 (2)0.166955 (18)0.01767 (7)
F30.2805 (3)0.01545 (14)0.61742 (12)0.0256 (3)
F40.1808 (3)0.97463 (15)0.24671 (12)0.0269 (3)
O10.4729 (3)0.76521 (17)0.16467 (14)0.0197 (3)
C10.1701 (4)0.1693 (2)0.44729 (19)0.0198 (5)
H10.04910.11770.44210.024*
C20.3155 (4)0.1313 (2)0.53742 (19)0.0177 (5)
C30.4942 (4)0.2065 (2)0.5500 (2)0.0199 (5)
H30.58710.17970.61240.024*
C40.5301 (4)0.3239 (2)0.46579 (19)0.0189 (5)
H40.65030.37590.47160.023*
C50.3885 (4)0.3646 (2)0.37295 (18)0.0157 (4)
C60.2097 (4)0.2867 (2)0.36490 (19)0.0188 (5)
H60.11470.31360.30310.023*
C70.4417 (4)0.4886 (2)0.28267 (18)0.0152 (4)
H70.53130.54730.31310.018*
C240.1493 (4)0.7950 (2)0.08429 (19)0.0180 (4)
H240.28410.76300.10190.022*
C250.0292 (4)0.7287 (2)0.01293 (18)0.0150 (4)
H250.08510.65200.06130.018*
C260.1738 (4)0.7767 (2)0.03802 (18)0.0133 (4)
C270.2560 (4)0.8922 (2)0.03527 (18)0.0146 (4)
H270.39180.92430.01880.018*
C280.1387 (4)0.9599 (2)0.13229 (19)0.0178 (5)
H280.19381.03660.18110.021*
C290.0623 (4)0.9097 (2)0.15370 (18)0.0176 (5)
C300.3079 (4)0.7134 (2)0.14074 (18)0.0146 (4)
C310.2346 (4)0.5802 (2)0.22021 (18)0.0155 (4)
H310.15580.52660.18020.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01593 (12)0.01512 (11)0.02036 (13)0.00004 (8)0.00191 (8)0.00485 (8)
Br30.01936 (12)0.01393 (11)0.02088 (13)0.00394 (8)0.00569 (9)0.00655 (8)
F30.0373 (9)0.0182 (7)0.0176 (7)0.0072 (6)0.0014 (6)0.0037 (5)
F40.0366 (9)0.0234 (7)0.0175 (7)0.0027 (6)0.0117 (6)0.0004 (6)
O10.0211 (8)0.0162 (7)0.0228 (9)0.0080 (6)0.0057 (7)0.0027 (6)
C10.0231 (12)0.0161 (10)0.0205 (12)0.0076 (9)0.0003 (9)0.0027 (9)
C20.0228 (12)0.0128 (10)0.0153 (10)0.0001 (8)0.0022 (8)0.0009 (8)
C30.0228 (12)0.0180 (11)0.0171 (11)0.0004 (9)0.0052 (9)0.0015 (9)
C40.0208 (11)0.0172 (10)0.0193 (11)0.0033 (8)0.0035 (9)0.0048 (9)
C50.0194 (11)0.0122 (9)0.0151 (10)0.0018 (8)0.0002 (8)0.0026 (8)
C60.0220 (11)0.0165 (10)0.0168 (11)0.0048 (8)0.0046 (9)0.0004 (8)
C70.0159 (10)0.0138 (9)0.0170 (11)0.0023 (8)0.0003 (8)0.0057 (8)
C240.0165 (11)0.0177 (10)0.0213 (12)0.0017 (8)0.0026 (9)0.0074 (9)
C250.0171 (10)0.0132 (9)0.0150 (10)0.0036 (8)0.0010 (8)0.0035 (8)
C260.0166 (10)0.0099 (9)0.0134 (10)0.0002 (7)0.0001 (8)0.0036 (7)
C270.0164 (10)0.0107 (9)0.0181 (11)0.0026 (8)0.0029 (8)0.0061 (8)
C280.0257 (12)0.0111 (9)0.0150 (11)0.0011 (8)0.0018 (9)0.0013 (8)
C290.0234 (11)0.0145 (10)0.0134 (10)0.0061 (8)0.0028 (8)0.0046 (8)
C300.0170 (10)0.0110 (9)0.0163 (10)0.0030 (8)0.0011 (8)0.0036 (8)
C310.0188 (11)0.0127 (9)0.0151 (10)0.0041 (8)0.0019 (8)0.0022 (8)
Geometric parameters (Å, º) top
Br1—C311.974 (2)C7—C311.511 (3)
Br3—C72.001 (2)C7—H70.9800
F3—C21.352 (2)C24—C291.383 (3)
F4—C291.347 (2)C24—C251.395 (3)
O1—C301.218 (3)C24—H240.9300
C1—C21.380 (3)C25—C261.392 (3)
C1—C61.384 (3)C25—H250.9300
C1—H10.9300C26—C271.398 (3)
C2—C31.383 (3)C26—C301.484 (3)
C3—C41.392 (3)C27—C281.389 (3)
C3—H30.9300C27—H270.9300
C4—C51.394 (3)C28—C291.378 (3)
C4—H40.9300C28—H280.9300
C5—C61.386 (3)C30—C311.537 (3)
C5—C71.502 (3)C31—H310.9800
C6—H60.9300
C2—C1—C6118.1 (2)C25—C24—H24120.9
C2—C1—H1121.0C24—C25—C26120.4 (2)
C6—C1—H1121.0C24—C25—H25119.8
F3—C2—C1118.4 (2)C26—C25—H25119.8
F3—C2—C3118.5 (2)C25—C26—C27119.3 (2)
C1—C2—C3123.0 (2)C25—C26—C30123.47 (19)
C2—C3—C4117.6 (2)C27—C26—C30117.3 (2)
C2—C3—H3121.2C28—C27—C26121.2 (2)
C4—C3—H3121.2C28—C27—H27119.4
C5—C4—C3120.9 (2)C26—C27—H27119.4
C5—C4—H4119.5C29—C28—C27117.7 (2)
C3—C4—H4119.5C29—C28—H28121.1
C6—C5—C4119.2 (2)C27—C28—H28121.1
C6—C5—C7122.1 (2)F4—C29—C28118.8 (2)
C4—C5—C7118.6 (2)F4—C29—C24118.0 (2)
C1—C6—C5121.1 (2)C28—C29—C24123.2 (2)
C1—C6—H6119.5O1—C30—C26121.82 (19)
C5—C6—H6119.5O1—C30—C31118.95 (19)
C5—C7—C31116.96 (19)C26—C30—C31119.22 (19)
C5—C7—Br3108.97 (15)C7—C31—C30111.97 (19)
C31—C7—Br3103.93 (16)C7—C31—Br1108.95 (16)
C5—C7—H7108.9C30—C31—Br1105.03 (14)
C31—C7—H7108.9C7—C31—H31110.3
Br3—C7—H7108.9C30—C31—H31110.3
C29—C24—C25118.2 (2)Br1—C31—H31110.3
C29—C24—H24120.9
C6—C1—C2—F3178.9 (2)C30—C26—C27—C28178.6 (2)
C6—C1—C2—C31.5 (4)C26—C27—C28—C290.3 (3)
F3—C2—C3—C4178.8 (2)C27—C28—C29—F4179.2 (2)
C1—C2—C3—C41.5 (4)C27—C28—C29—C240.9 (4)
C2—C3—C4—C50.8 (4)C25—C24—C29—F4179.1 (2)
C3—C4—C5—C60.0 (4)C25—C24—C29—C281.1 (4)
C3—C4—C5—C7177.5 (2)C25—C26—C30—O1173.5 (2)
C2—C1—C6—C50.6 (4)C27—C26—C30—O15.2 (3)
C4—C5—C6—C10.1 (4)C25—C26—C30—C315.4 (3)
C7—C5—C6—C1177.4 (2)C27—C26—C30—C31175.9 (2)
C6—C5—C7—C3136.4 (3)C5—C7—C31—C30172.58 (18)
C4—C5—C7—C31146.1 (2)Br3—C7—C31—C3067.3 (2)
C6—C5—C7—Br381.0 (2)C5—C7—C31—Br156.8 (2)
C4—C5—C7—Br396.5 (2)Br3—C7—C31—Br1176.97 (9)
C29—C24—C25—C260.6 (3)O1—C30—C31—C731.3 (3)
C24—C25—C26—C270.0 (3)C26—C30—C31—C7149.7 (2)
C24—C25—C26—C30178.7 (2)O1—C30—C31—Br186.8 (2)
C25—C26—C27—C280.1 (3)C26—C30—C31—Br192.2 (2)

Experimental details

Crystal data
Chemical formulaC15H10Br2F2O
Mr404.05
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.7381 (13), 9.909 (2), 12.575 (3)
α, β, γ (°)75.324 (3), 87.472 (3), 82.300 (3)
V3)685.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.93
Crystal size (mm)0.55 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.329, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
8841, 4008, 3408
Rint0.032
(sin θ/λ)max1)0.727
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.21
No. of reflections4008
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.87

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

YX···Cg interactions (Å) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
YX···CgX···CgY···CgYX···Cg
C8—Br1···Cg1i3.650 (7)5.617 (2)174
C7—Br3···Cg2ii3.479 (6)5.341 (1)153
Symmetry codes: (i) -x, 1-y, 1-z ; (ii) 1-x, 1-y, -z.
 

Acknowledgements

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. SS thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Mithun, A. (2006). Acta Cryst. E62, o1629–o1630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIndira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationNarayana, B., Mayekar, A. N., Yathirajan, H. S., Sarojini, B. K. & Kubicki, M. (2007). Acta Cryst. E63, o4362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Yathirajan, H. S., Mayekar, A. N. & Bolte, M. (2007). Acta Cryst. E63, o3755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96.  CSD CrossRef CAS Web of Science Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationYathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2198–o2199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B., Lu, W. Q., Zhou, Z. H. & Wu, Y. (2002). J. Mater. Chem. 10, 1513–1517.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds