metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­pyridinium μ-oxido-di-μ-sulfato-bis­­[chloridodioxidomolybdate(VI)]

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 7 July 2010; accepted 14 July 2010; online 24 July 2010)

The title salt, (C5H6N)4[Mo2Cl2O5(SO4)2], comprises four pyridinium cations for each [(MoClO2)2(μ-O)(μ-SO4)2]4− anionic unit. The asymmetric unit consists of three aggregates of the empirical formula. The tetra­anionic bimetallic molybdenum(VI) cluster is unprecedented and contains two sulfate and one oxide bridges. This structure constitutes the first example of a non-polymeric compound with terminal oxide, sulfate and halide ligands bonded to the same metal. The hydrogen bonds connecting the pyridinium cations to the molybdenum clusters are diverse, varying from strong and directional interactions to bifurcated bonds with a subsequent loss of directionality.

Related literature

For previous studies on dioxidomolybdenum complexes, see: Monteiro et al. (2010[Monteiro, B., Cunha-Silva, L., Gago, S., Klinowski, J., Paz, F. A. A., Rocha, J., Gonçalves, I. S. & Pillinger, M. (2010). Polyhedron, 29, 719-730.]); Gago et al. (2009[Gago, S., Neves, P., Monteiro, B., Pêssego, M., Lopes, A. D., Valente, A. A., Paz, F. A. A., Pillinger, M., Moreira, J., Silva, C. M. & Gonçalves, I. S. (2009). Eur. J. Inorg. Chem. pp. 4528-4537.]); Pereira et al. (2007[Pereira, C. C. L., Balula, S. S., Paz, F. A. A., Valente, A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2007). Inorg. Chem. 46, 8508-8510.]); Cunha-Silva et al. (2007[Cunha-Silva, L., Monteiro, B., Pillinger, M., Gonçalves, I. S., Rocha, J. & Almeida Paz, F. A. (2007). Acta Cryst. E63, m376-m378.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For a related tetra­nuclear cluster, see: Clegg et al. (1990[Clegg, W., Errington, R. J., Hockless, D. C. R., Glen, A. D. & Richards, D. G. (1990). J. Chem. Soc. Chem. Commun. pp. 1565-1566.]). For related sulfato-bridged bimetallic compounds, see: Zhao et al. (2006[Zhao, J., Zhang, H. & Ng, S. W. (2006). Acta Cryst. E62, m1890-m1891.]); Zhang et al. (2005[Zhang, Q. F., Lam, T. C. H., Yi, X.-Y., Chan, E. Y. Y., Wong, W. Y., Sung, H. H. Y., Williams, I. D. & Leung, W.-H. (2005). Chem. Eur. J. 11, 101-111.]); Wieghardt et al. (1989[Wieghardt, K., Drueke, S., Chaudhuri, P., Florke, U., Haupt, H.-J., Nuber, B. & Weiss, J. (1989). Z. Naturforsch. Teil B, 44, 1093-1101.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6N)4[Mo2Cl2O5(SO4)2]

  • Mr = 855.33

  • Monoclinic, P 21 /n

  • a = 10.517 (4) Å

  • b = 49.281 (15) Å

  • c = 17.557 (6) Å

  • β = 95.07 (3)°

  • V = 9064 (5) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 150 K

  • 0.03 × 0.02 × 0.01 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.988

  • 49290 measured reflections

  • 16283 independent reflections

  • 6037 reflections with I > 2σ(I)

  • Rint = 0.255

Refinement
  • R[F2 > 2σ(F2)] = 0.098

  • wR(F2) = 0.286

  • S = 0.94

  • 16283 reflections

  • 802 parameters

  • H-atom parameters constrained

  • Δρmax = 2.08 e Å−3

  • Δρmin = −1.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1_4—H1_4⋯O8_2 0.88 2.18 3.01 (3) 157
N1_5—H1_5⋯O9_1 0.88 2.43 3.15 (2) 139
N1_6—H1_6⋯O12_2 0.88 2.50 3.32 (3) 157
N1_7—H1_7⋯O6_2i 0.88 2.11 2.99 (2) 176
N1_8—H1_8⋯O6_3 0.88 2.13 2.90 (2) 146
N1_8—H1_8⋯O10_3 0.88 2.39 3.09 (2) 137
N1_9—H1_9⋯O7_2 0.88 2.03 2.86 (3) 157
N1_9—H1_9⋯O9_2 0.88 2.41 2.94 (2) 119
N1_10—H1_10⋯O4_3 0.88 2.34 3.01 (3) 133
N1_11—H1_11⋯O13_1 0.88 2.04 2.84 (2) 149
N1_11—H1_11⋯O11_1 0.88 2.64 3.18 (2) 121
N1_12—H1_12⋯O5_3 0.88 2.00 2.74 (3) 141
N1_12—H1_12⋯O8_3 0.88 2.45 3.07 (3) 128
N1_13—H1_13⋯O13_1 0.88 1.85 2.722 (18) 173
N1_14—H1_14⋯O8_3 0.88 2.25 3.09 (3) 160
N1_15—H1_15⋯O9_2ii 0.88 2.25 3.02 (2) 146
Symmetry codes: (i) x, y, z-1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Geometrical parameters (Å,°) for the three crystallographically independent molybdenum clusters

Mo—O1 1.857 (13)–1.969 (14)
Mo—Oterminal 1.678 (11)–1.717 (12)
Mo—Osulfato 2.164 (16)–2.271 (14)
Mo—Cl 2.271 (14)–2.442 (5)
Oterminal—Mo—Oterminal 102.2 (7)–104.3 (8)
cis-Oterminal—Mo—Osulfato 86.4 (6)–92.6 (7)
trans-Oterminal—Mo—Osulfato 162.5 (6)–169.4 (4)
Oterminal—Mo—O1 96.4 (7)–101.6 (5)
Oterminal—Mo—Cl 91.2 (5)–97.4 (6)
Osulfato—Mo—Osulfato 74.8 (5)–79.8 (6)
Osulfato—Mo—O1 82 (5)–85.9 (5)
Osulfato—Mo—Cl 77.8 (3)–82.6 (3)
O1—Mo—Cl 158 (4)–159.4 (3)
Mo—O1—Mo 149.3 (7)–155 (6)
Notes: O1 stands for the μ-O oxygen atom; Oterminal corresponds to O2, O3, O4 and O5; Osulfato corresponds to O6, O7, O10 and O11.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years our combined research groups have been interested in the design, synthesis and detailed structural elucidation of novel catalysts based on dioxomolybdenum complexes (Monteiro et al., 2010; Gago et al., 2009; Pereira et al., 2007; Cunha-Silva et al., 2007). Knowing that compounds of the type [(MoClO2L2)2(µ-O)] are important in catalytic olefin epoxidation (Pereira et al., 2007), we were interested in preparing the particular compound with L = py (py = pyridine). However, the synthesis of this compound was not feasible. During our most recent efforts to coordinate pyridine to the molybdenum centre, we have isolated the title compound as a secondary product, (C5NH6)4[(MoClO2)2(µ-O)(µ-SO4)2], whose structure we would like to report here. Surveying the Cambridge Structural Database (Allen, 2002), only polymeric compounds were found with terminal oxo, sulfato and halo ligands bonded to the same metal. A similar survey for bridging oxo, sulfato and halo ligands yielded only two non-polymeric structures comprising the same tetranuclear cluster of chromium (Clegg et al., 1990). Only three bimetallic compounds with the M2(µ-O)(µ-SO4)2 moiety exist (with Ti: Zhang et al., 2005; with Fe: Wieghardt et al., 1989; Zhao et al., 2006).

The asymmetric unit of the title compound comprises three [(MoClO2)2(µ-O)(µ-SO4)2]4- anionic complexes which crystallize with twelve charge-balancing pyridinium cations (PyH+). Each metallic cluster is composed of two molybdenum(VI) centres, bridged by two sulfato and one oxo ligands. Additionally, each metal centre has two terminal oxo and a chlorido ligand. The coordination geometries of the metallic centres resemble highly distorted octahedra: see Table 1 for the ranges of Mo—Obridge, Mo—Oterminal, Mo—Osulfato, and Mo—Cl bond distances. The cis and trans octahedral angles are deviated from the ideal values [found in the 74.8 (5)–104.3 (7)° and 158.0 (4)–169.4 (6)° ranges, respectively, Table 1]. The "kink" Mo—O—Mo angles range from 149.3 (7) to 155 (6)°.

The overall crystal structure is sustained by the existence of two sub-sets of N+—H···O- hydrogen bonding interactions (Fig. 2). On the one hand, several PyH+ cations are engaged in strong and rather directional interactions, with the N···O distances ranging from 2.722 (18) to 3.32 (2) Å, and the corresponding <(N—H···O) angles being found between 133 and 176° (Table 2). On the other, four cations are instead interacting with the anionic complexes via bifurcated hydrogen bonds which lead to a loss of directionality of the interactions [<(N—H···O) angles in the range of 119–157°], despite the N···O distances being somewhat in a similar range [2.74 (3)–3.18 (2) Å, Table 2].

Related literature top

For previous studies on dioxomolybdenum complexes, see: Monteiro et al. (2010); Gago et al. (2009); Pereira et al. (2007); Cunha-Silva et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For a related tetranuclear cluster, see: Clegg et al. (1990). For related sulfato-bridged bimetallic compounds, see: Zhao et al. (2006); Zhang et al. (2005); Wieghardt et al. (1989).

Experimental top

All chemicals were purchased from commercial sources and used as received without further purification. A solution of pyridine (1.34 ml, 16.6 mmol) in CH2Cl2 (60 ml) was slowly added drop wise to an aqueous solution (30 ml) of HCl (3.3 mol dm-3) containing Na2MoO4.2H2O (2.0 g, 8.3 mmol). The biphasic mixture was vigorously stirred for 3 h at ambient temperature. The aqueous phase was separated and concentrated yielding a solid which was dissolved in acetonitrile. The acetonitrile solution was then dried over anhydrous MgSO4 (in excess) and evaporated to give a pale-yellow solid. Recrystallization by slow diffusion of diethyl ether into a concentrated acetonitrile solution afforded a yellow crystalline product in 12% yield. Selected FT–IR (ATR, cm-1): 941 (vs, MoO), 925 (vs, MoO), 749 (s, Mo—O—Mo).

Refinement top

Hydrogen atoms bound to carbon and nitrogen were located at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å and N—H = 0.88 Å. The isotropic thermal displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective carbon atom.

The 12 crystallographically independent pyridinium cations were found to be severely affected by thermal disorder and were modeled with all nitrogen and carbon atoms having independent isotropic displacement parameters.

The maximum and minimum residual electron density peaks of 2.08 and -1.28 eÅ-3, respectively, were located 1.06 Å and 0.78 Å from the Mo1 and Mo2 atoms, respectively, belonging to residue 3.

Structure description top

In the last few years our combined research groups have been interested in the design, synthesis and detailed structural elucidation of novel catalysts based on dioxomolybdenum complexes (Monteiro et al., 2010; Gago et al., 2009; Pereira et al., 2007; Cunha-Silva et al., 2007). Knowing that compounds of the type [(MoClO2L2)2(µ-O)] are important in catalytic olefin epoxidation (Pereira et al., 2007), we were interested in preparing the particular compound with L = py (py = pyridine). However, the synthesis of this compound was not feasible. During our most recent efforts to coordinate pyridine to the molybdenum centre, we have isolated the title compound as a secondary product, (C5NH6)4[(MoClO2)2(µ-O)(µ-SO4)2], whose structure we would like to report here. Surveying the Cambridge Structural Database (Allen, 2002), only polymeric compounds were found with terminal oxo, sulfato and halo ligands bonded to the same metal. A similar survey for bridging oxo, sulfato and halo ligands yielded only two non-polymeric structures comprising the same tetranuclear cluster of chromium (Clegg et al., 1990). Only three bimetallic compounds with the M2(µ-O)(µ-SO4)2 moiety exist (with Ti: Zhang et al., 2005; with Fe: Wieghardt et al., 1989; Zhao et al., 2006).

The asymmetric unit of the title compound comprises three [(MoClO2)2(µ-O)(µ-SO4)2]4- anionic complexes which crystallize with twelve charge-balancing pyridinium cations (PyH+). Each metallic cluster is composed of two molybdenum(VI) centres, bridged by two sulfato and one oxo ligands. Additionally, each metal centre has two terminal oxo and a chlorido ligand. The coordination geometries of the metallic centres resemble highly distorted octahedra: see Table 1 for the ranges of Mo—Obridge, Mo—Oterminal, Mo—Osulfato, and Mo—Cl bond distances. The cis and trans octahedral angles are deviated from the ideal values [found in the 74.8 (5)–104.3 (7)° and 158.0 (4)–169.4 (6)° ranges, respectively, Table 1]. The "kink" Mo—O—Mo angles range from 149.3 (7) to 155 (6)°.

The overall crystal structure is sustained by the existence of two sub-sets of N+—H···O- hydrogen bonding interactions (Fig. 2). On the one hand, several PyH+ cations are engaged in strong and rather directional interactions, with the N···O distances ranging from 2.722 (18) to 3.32 (2) Å, and the corresponding <(N—H···O) angles being found between 133 and 176° (Table 2). On the other, four cations are instead interacting with the anionic complexes via bifurcated hydrogen bonds which lead to a loss of directionality of the interactions [<(N—H···O) angles in the range of 119–157°], despite the N···O distances being somewhat in a similar range [2.74 (3)–3.18 (2) Å, Table 2].

For previous studies on dioxomolybdenum complexes, see: Monteiro et al. (2010); Gago et al. (2009); Pereira et al. (2007); Cunha-Silva et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For a related tetranuclear cluster, see: Clegg et al. (1990). For related sulfato-bridged bimetallic compounds, see: Zhao et al. (2006); Zhang et al. (2005); Wieghardt et al. (1989).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of [(MoClO2)2(µ-O)(µ-SO4)2]4- (residue 1). Thermal ellipsoids are drawn at the 30% probability level. For the ranges of bond lengths (in Å) and angles (in °) of the three crystallographically independent anionic residues see Table 1.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along the [001] direction of the unit cell.
Tetrapyridinium µ-oxido-di-µ-sulfato-bis[chloridodioxidomolybdate(VI)] top
Crystal data top
(C5H6N)4[Mo2Cl2O5(SO4)2]F(000) = 5112
Mr = 855.33Dx = 1.880 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1387 reflections
a = 10.517 (4) Åθ = 3.9–17.8°
b = 49.281 (15) ŵ = 1.21 mm1
c = 17.557 (6) ÅT = 150 K
β = 95.07 (3)°Plate, pale-yellow
V = 9064 (5) Å30.03 × 0.02 × 0.01 mm
Z = 12
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
16283 independent reflections
Radiation source: fine-focus sealed tube6037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.255
ω/φ scansθmax = 25.4°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1212
Tmin = 0.965, Tmax = 0.988k = 5959
49290 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.098Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.286H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.1162P)2]
where P = (Fo2 + 2Fc2)/3
16283 reflections(Δ/σ)max = 0.001
802 parametersΔρmax = 2.08 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
(C5H6N)4[Mo2Cl2O5(SO4)2]V = 9064 (5) Å3
Mr = 855.33Z = 12
Monoclinic, P21/nMo Kα radiation
a = 10.517 (4) ŵ = 1.21 mm1
b = 49.281 (15) ÅT = 150 K
c = 17.557 (6) Å0.03 × 0.02 × 0.01 mm
β = 95.07 (3)°
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
16283 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
6037 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.988Rint = 0.255
49290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0980 restraints
wR(F2) = 0.286H-atom parameters constrained
S = 0.94Δρmax = 2.08 e Å3
16283 reflectionsΔρmin = 1.28 e Å3
802 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo1_10.61841 (14)0.04241 (3)0.29835 (8)0.0331 (4)
Mo2_10.86953 (14)0.08147 (3)0.21318 (9)0.0345 (4)
S1_10.7478 (4)0.10087 (8)0.3811 (2)0.0306 (10)
S2_10.5454 (4)0.09810 (9)0.1811 (2)0.0334 (10)
Cl1_10.4126 (4)0.04489 (9)0.3510 (3)0.0443 (11)
Cl2_10.9536 (5)0.12595 (10)0.1865 (3)0.0574 (14)
O1_10.7636 (10)0.0547 (2)0.2521 (6)0.036 (3)
O2_10.5677 (13)0.0163 (3)0.2383 (7)0.057 (4)
O3_10.6895 (11)0.0259 (2)0.3765 (6)0.040 (3)
O4_11.0114 (11)0.0698 (2)0.2526 (7)0.045 (3)
O5_10.8667 (11)0.0711 (2)0.1205 (7)0.048 (3)
O6_10.6406 (10)0.0817 (2)0.3603 (6)0.035 (3)
O7_10.8371 (15)0.1019 (3)0.3224 (9)0.079 (5)
O8_10.6969 (12)0.1276 (2)0.3937 (8)0.054 (4)
O9_10.8211 (15)0.0913 (3)0.4486 (9)0.082 (5)
O10_10.5174 (11)0.0714 (3)0.2139 (7)0.047 (3)
O11_10.6839 (12)0.1017 (2)0.1803 (9)0.066 (5)
O12_10.4878 (15)0.0989 (3)0.1043 (7)0.076 (5)
O13_10.4953 (12)0.1195 (3)0.2274 (7)0.050 (3)
Mo1_20.07651 (14)0.04591 (3)0.80064 (8)0.0342 (4)
Mo2_20.32790 (14)0.08398 (3)0.71361 (8)0.0336 (4)
Cl1_20.1186 (4)0.04937 (10)0.8657 (3)0.0476 (12)
Cl2_20.4061 (5)0.12807 (10)0.6787 (3)0.0558 (14)
S1_20.2164 (4)0.10380 (9)0.8868 (2)0.0352 (11)
S2_20.0087 (4)0.10255 (9)0.6850 (2)0.0371 (11)
O1_20.2183 (10)0.0576 (2)0.7524 (6)0.035 (3)
O2_20.1451 (12)0.0256 (2)0.8698 (7)0.051 (3)
O3_20.0076 (13)0.0240 (3)0.7343 (8)0.063 (4)
O4_20.4680 (12)0.0750 (3)0.7637 (7)0.051 (3)
O5_20.3428 (12)0.0710 (2)0.6265 (7)0.047 (3)
O6_20.1268 (14)0.0807 (3)0.8811 (8)0.064 (4)
O7_20.2701 (12)0.1091 (2)0.8123 (7)0.048 (3)
O8_20.3146 (14)0.0977 (4)0.9422 (10)0.106 (7)
O9_20.1473 (14)0.1273 (2)0.9043 (8)0.063 (4)
O10_20.0181 (13)0.0806 (3)0.7395 (8)0.073 (5)
O11_20.1387 (13)0.1019 (3)0.6654 (8)0.060 (4)
O12_20.0767 (16)0.0992 (3)0.6156 (9)0.088 (5)
O13_20.0172 (15)0.1276 (3)0.7225 (10)0.086 (5)
Mo1_30.44358 (17)0.23070 (4)0.36070 (10)0.0491 (5)
Mo2_30.30556 (19)0.29740 (4)0.40168 (11)0.0559 (5)
Cl1_30.4093 (5)0.18173 (10)0.3646 (3)0.0566 (13)
Cl2_30.1181 (6)0.31877 (11)0.4444 (4)0.0815 (19)
S1_30.3402 (5)0.24730 (9)0.5328 (3)0.0431 (12)
S2_30.1355 (5)0.24752 (9)0.3051 (3)0.0404 (12)
O1_30.4123 (11)0.2697 (3)0.3742 (7)0.057 (4)
O2_30.5916 (13)0.2273 (3)0.4055 (9)0.073 (4)
O3_30.4727 (14)0.2309 (3)0.2679 (8)0.071 (4)
O4_30.3178 (19)0.3169 (3)0.3226 (9)0.091 (5)
O5_30.4034 (14)0.3135 (3)0.4681 (8)0.068 (4)
O6_30.3605 (12)0.2252 (2)0.4743 (7)0.051 (3)
O7_30.2559 (12)0.2679 (3)0.4923 (8)0.058 (4)
O8_30.4594 (13)0.2594 (3)0.5629 (8)0.064 (4)
O9_30.2722 (13)0.2355 (3)0.5928 (7)0.057 (4)
O10_30.2360 (12)0.2280 (2)0.3327 (8)0.053 (3)
O11_30.1574 (17)0.2735 (3)0.3401 (12)0.115 (7)
O12_30.138 (2)0.2519 (5)0.2268 (9)0.139 (10)
O13_30.0161 (17)0.2380 (3)0.3250 (17)0.140 (10)
N1_40.4861 (17)0.0489 (4)0.9445 (10)0.063 (5)*
H1_40.42570.06080.93180.076*
C1_40.499 (2)0.0285 (4)0.8951 (13)0.060 (6)*
H1A_40.44820.02710.84790.073*
C2_40.591 (2)0.0100 (5)0.9170 (13)0.064 (6)*
H2_40.60360.00470.88370.077*
C3_40.660 (2)0.0114 (4)0.9796 (12)0.060 (6)*
H3_40.72330.00200.99300.072*
C4_40.642 (2)0.0336 (5)1.0296 (14)0.074 (7)*
H4_40.69240.03501.07720.089*
C5_40.5530 (17)0.0527 (4)1.0089 (11)0.045 (5)*
H5_40.54040.06801.04010.054*
N1_50.6472 (17)0.0571 (4)0.5494 (11)0.067 (5)*
H1_50.65860.06520.50590.081*
C1_50.5530 (19)0.0387 (4)0.5522 (12)0.055 (5)*
H1A_50.49690.03520.50780.066*
C2_50.538 (2)0.0258 (5)0.6147 (13)0.064 (6)*
H2_50.47500.01210.61680.077*
C3_50.6154 (18)0.0324 (4)0.6763 (11)0.050 (5)*
H3_50.60380.02390.72390.060*
C4_50.709 (2)0.0506 (4)0.6724 (13)0.062 (6)*
H4_50.76660.05460.71570.074*
C5_50.7179 (16)0.0627 (3)0.6075 (9)0.034 (4)*
H5_50.78110.07630.60440.041*
N1_60.0519 (17)0.0486 (4)0.5239 (11)0.069 (5)*
H1_60.03760.06100.55830.083*
C1_60.0135 (16)0.0490 (4)0.4585 (10)0.037 (4)*
H1A_60.08100.06170.44970.045*
C2_60.0112 (19)0.0317 (4)0.4019 (12)0.052 (5)*
H2_60.03650.03290.35350.063*
C3_60.1016 (19)0.0132 (4)0.4137 (12)0.056 (5)*
H3_60.11760.00120.37330.067*
C4_60.172 (2)0.0108 (4)0.4814 (11)0.055 (5)*
H4_60.23720.00240.48910.066*
C5_60.1446 (19)0.0289 (4)0.5410 (12)0.057 (5)*
H5_60.18830.02760.59050.068*
N1_70.1357 (15)0.0553 (3)0.0363 (10)0.054 (4)*
H1_70.12900.06260.00970.065*
C1_70.056 (2)0.0368 (5)0.0525 (14)0.070 (6)*
H1A_70.01240.03220.01570.084*
C2_70.066 (2)0.0240 (5)0.1185 (13)0.065 (6)*
H2_70.00450.01050.12740.078*
C3_70.1505 (18)0.0288 (4)0.1691 (12)0.051 (5)*
H3_70.15640.01910.21590.061*
C4_70.248 (2)0.0514 (4)0.1543 (12)0.056 (5)*
H4_70.31690.05620.19020.068*
C5_70.2252 (17)0.0634 (4)0.0859 (10)0.043 (5)*
H5_70.27680.07830.07370.052*
N1_80.1397 (16)0.1897 (4)0.4548 (10)0.063 (5)*
H1_80.18760.20360.44410.076*
C1_80.068 (2)0.1803 (5)0.3990 (15)0.080 (7)*
H1A_80.07130.18740.34890.096*
C2_80.018 (2)0.1591 (5)0.4134 (14)0.074 (7)*
H2_80.07450.15150.37410.089*
C3_80.013 (2)0.1502 (5)0.4901 (13)0.069 (6)*
H3_80.06840.13600.50280.083*
C4_80.069 (2)0.1611 (5)0.5462 (15)0.080 (7)*
H4_80.06850.15510.59760.095*
C5_80.152 (2)0.1814 (5)0.5269 (14)0.073 (7)*
H5_80.21460.18890.56340.088*
N1_90.210 (2)0.1652 (5)0.7840 (12)0.085 (6)*
H1_90.20680.14740.78730.102*
C1_90.115 (3)0.1785 (7)0.7720 (17)0.100 (9)*
H1A_90.03430.16980.77020.121*
C2_90.120 (4)0.2048 (8)0.7612 (19)0.121 (11)*
H2_90.04080.21370.74800.145*
C3_90.216 (3)0.2193 (7)0.7665 (17)0.099 (9)*
H3_90.20920.23860.76540.119*
C4_90.331 (3)0.2069 (7)0.7738 (18)0.107 (9)*
H4_90.40840.21620.76700.128*
C5_90.327 (3)0.1789 (7)0.7925 (19)0.121 (11)*
H5_90.40290.16960.81060.145*
N1_100.1566 (18)0.3143 (4)0.1724 (11)0.075 (5)*
H1_100.16940.30760.21890.090*
C1_100.222 (2)0.3370 (4)0.1531 (12)0.060 (6)*
H1A_100.28310.34530.18870.072*
C2_100.1964 (19)0.3475 (4)0.0811 (12)0.054 (5)*
H2_100.24140.36290.06510.065*
C3_100.111 (2)0.3361 (5)0.0356 (14)0.065 (6)*
H3_100.08780.34390.01310.078*
C4_100.0536 (18)0.3137 (4)0.0550 (11)0.051 (5)*
H4_100.00580.30550.01820.061*
C5_100.0732 (19)0.3023 (4)0.1207 (12)0.055 (5)*
H5_100.03050.28600.13230.066*
N1_110.6750 (16)0.1625 (4)0.2403 (10)0.060 (5)*
H1_110.63740.14730.25160.072*
C1_110.7116 (19)0.1792 (4)0.2946 (12)0.054 (5)*
H1A_110.69510.17550.34580.065*
C2_110.775 (2)0.2026 (5)0.2768 (14)0.073 (7)*
H2_110.80200.21500.31620.087*
C3_110.801 (2)0.2082 (5)0.2014 (13)0.072 (7)*
H3_110.84800.22380.19000.087*
C4_110.756 (2)0.1903 (5)0.1433 (15)0.075 (7)*
H4_110.76730.19350.09100.090*
C5_110.693 (2)0.1678 (5)0.1682 (13)0.062 (6)*
H5_110.66020.15520.13060.074*
N1_120.599 (3)0.3141 (6)0.5825 (17)0.118 (8)*
H1_120.53010.30680.55820.142*
C1_120.640 (3)0.3049 (7)0.645 (2)0.115 (10)*
H1A_120.60220.28940.66560.137*
C2_120.733 (3)0.3162 (7)0.680 (2)0.109 (10)*
H2_120.76120.31010.73010.131*
C3_120.799 (4)0.3380 (8)0.648 (2)0.133 (12)*
H3_120.86910.34650.67710.159*
C4_120.760 (3)0.3468 (6)0.5751 (17)0.089 (8)*
H4_120.80460.35970.54720.107*
C5_120.657 (3)0.3355 (6)0.5505 (18)0.095 (8)*
H5_120.61540.34260.50450.114*
N1_130.3595 (14)0.1116 (3)0.3505 (9)0.042 (4)*
H1_130.40880.11380.31300.050*
C1_130.2354 (19)0.1070 (4)0.3325 (12)0.055 (5)*
H1A_130.20100.10640.28070.066*
C2_130.158 (2)0.1030 (4)0.3919 (12)0.057 (5)*
H2_130.06880.09980.38140.068*
C3_130.2134 (18)0.1037 (4)0.4668 (11)0.047 (5)*
H3_130.16370.10040.50840.056*
C4_130.341 (2)0.1093 (4)0.4794 (13)0.059 (6)*
H4_130.38030.11060.53000.071*
C5_130.4102 (19)0.1130 (4)0.4182 (11)0.050 (5)*
H5_130.49890.11670.42680.060*
N1_140.749 (3)0.2531 (6)0.5500 (17)0.130 (9)*
H1_140.66830.25070.55790.156*
C1_140.853 (3)0.2483 (6)0.6095 (18)0.096 (9)*
H1A_140.83500.24240.65890.115*
C2_140.987 (3)0.2527 (6)0.5917 (19)0.110 (10)*
H2_141.05900.25030.62790.132*
C3_140.995 (2)0.2603 (4)0.5196 (13)0.059 (6)*
H3_141.07880.26380.50540.071*
C4_140.906 (4)0.2633 (7)0.468 (2)0.129 (12)*
H4_140.93050.26670.41830.155*
C5_140.791 (4)0.2623 (8)0.475 (2)0.148 (14)*
H5_140.73010.26720.43350.177*
N1_150.3633 (19)0.3831 (4)0.3870 (11)0.071 (5)*
H1_150.44090.38300.37190.085*
C1_150.161 (2)0.3844 (5)0.3563 (14)0.074 (7)*
H1A_150.09260.38430.31730.088*
C2_150.136 (2)0.3864 (5)0.4289 (15)0.078 (7)*
H2_150.05020.38780.44150.093*
C3_150.236 (2)0.3863 (4)0.4865 (13)0.059 (6)*
H3_150.22400.38800.53920.071*
C4_150.351 (3)0.3837 (5)0.4608 (17)0.090 (8)*
H4_150.42410.38230.49620.108*
C5_150.273 (2)0.3828 (5)0.3384 (15)0.077 (7)*
H5_150.28760.38120.28600.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo1_10.0431 (9)0.0243 (8)0.0317 (9)0.0068 (7)0.0027 (7)0.0008 (7)
Mo2_10.0344 (9)0.0332 (9)0.0371 (9)0.0008 (7)0.0092 (7)0.0010 (7)
S1_10.037 (2)0.024 (2)0.030 (2)0.006 (2)0.0001 (19)0.0027 (18)
S2_10.034 (3)0.040 (3)0.026 (2)0.006 (2)0.0014 (19)0.000 (2)
Cl1_10.043 (3)0.040 (3)0.050 (3)0.008 (2)0.001 (2)0.005 (2)
Cl2_10.041 (3)0.049 (3)0.082 (4)0.007 (2)0.009 (3)0.010 (3)
O1_10.041 (7)0.034 (7)0.033 (6)0.008 (5)0.012 (5)0.002 (5)
O2_10.082 (10)0.041 (8)0.048 (8)0.016 (7)0.007 (7)0.007 (6)
O3_10.044 (7)0.030 (7)0.045 (7)0.003 (6)0.007 (6)0.012 (5)
O4_10.038 (7)0.047 (8)0.051 (8)0.003 (6)0.007 (6)0.003 (6)
O5_10.048 (8)0.045 (8)0.050 (8)0.001 (6)0.011 (6)0.008 (6)
O6_10.037 (7)0.034 (7)0.036 (7)0.001 (6)0.010 (5)0.008 (5)
O7_10.084 (11)0.073 (10)0.088 (11)0.046 (9)0.054 (9)0.047 (9)
O8_10.053 (8)0.013 (6)0.098 (11)0.011 (6)0.014 (7)0.012 (6)
O9_10.092 (11)0.055 (10)0.090 (12)0.021 (8)0.052 (9)0.023 (8)
O10_10.039 (7)0.055 (8)0.044 (8)0.017 (6)0.014 (6)0.028 (6)
O11_10.038 (8)0.025 (7)0.140 (14)0.013 (6)0.038 (8)0.031 (8)
O12_10.101 (12)0.098 (12)0.024 (8)0.031 (10)0.021 (7)0.014 (7)
O13_10.056 (8)0.049 (8)0.047 (8)0.019 (7)0.020 (7)0.002 (6)
Mo1_20.0411 (9)0.0275 (9)0.0340 (9)0.0055 (7)0.0037 (7)0.0003 (7)
Mo2_20.0370 (9)0.0321 (9)0.0327 (9)0.0024 (7)0.0083 (7)0.0038 (7)
Cl1_20.044 (3)0.060 (3)0.040 (3)0.007 (2)0.006 (2)0.009 (2)
Cl2_20.080 (4)0.040 (3)0.052 (3)0.012 (3)0.030 (3)0.004 (2)
S1_20.038 (3)0.038 (3)0.030 (2)0.010 (2)0.004 (2)0.001 (2)
S2_20.043 (3)0.038 (3)0.029 (3)0.007 (2)0.003 (2)0.008 (2)
O1_20.035 (7)0.031 (7)0.041 (7)0.002 (5)0.012 (5)0.002 (5)
O2_20.064 (9)0.033 (7)0.057 (9)0.006 (6)0.015 (7)0.017 (6)
O3_20.065 (9)0.062 (9)0.064 (9)0.039 (8)0.016 (7)0.039 (7)
O4_20.050 (8)0.058 (9)0.044 (8)0.012 (7)0.004 (6)0.001 (6)
O5_20.055 (8)0.048 (8)0.039 (7)0.007 (6)0.016 (6)0.015 (6)
O6_20.095 (11)0.045 (8)0.056 (9)0.040 (8)0.031 (8)0.010 (7)
O7_20.073 (9)0.034 (7)0.042 (8)0.015 (6)0.025 (7)0.010 (6)
O8_20.054 (10)0.169 (19)0.090 (13)0.016 (11)0.021 (9)0.067 (13)
O9_20.081 (10)0.031 (8)0.087 (11)0.009 (7)0.053 (9)0.009 (7)
O10_20.053 (9)0.092 (12)0.079 (10)0.021 (8)0.030 (8)0.066 (9)
O11_20.068 (10)0.055 (9)0.060 (9)0.018 (7)0.026 (7)0.024 (7)
O12_20.108 (13)0.083 (12)0.068 (11)0.063 (10)0.014 (10)0.008 (9)
O13_20.079 (11)0.060 (10)0.122 (14)0.015 (8)0.018 (10)0.047 (10)
Mo1_30.0509 (11)0.0491 (11)0.0480 (11)0.0003 (9)0.0093 (8)0.0008 (8)
Mo2_30.0731 (13)0.0329 (10)0.0597 (12)0.0047 (9)0.0048 (10)0.0003 (9)
Cl1_30.075 (3)0.040 (3)0.054 (3)0.013 (3)0.003 (3)0.008 (2)
Cl2_30.084 (4)0.041 (3)0.116 (5)0.006 (3)0.011 (4)0.006 (3)
S1_30.043 (3)0.031 (3)0.057 (3)0.003 (2)0.015 (3)0.006 (2)
S2_30.051 (3)0.029 (2)0.042 (3)0.001 (2)0.008 (2)0.002 (2)
O1_30.040 (7)0.086 (11)0.044 (8)0.000 (7)0.005 (6)0.027 (7)
O2_30.055 (9)0.079 (11)0.086 (11)0.000 (8)0.020 (8)0.016 (9)
O3_30.084 (11)0.074 (11)0.060 (10)0.003 (9)0.031 (8)0.004 (8)
O4_30.156 (16)0.061 (11)0.057 (10)0.029 (10)0.012 (10)0.008 (8)
O5_30.086 (10)0.044 (9)0.072 (10)0.020 (8)0.007 (8)0.011 (7)
O6_30.055 (8)0.044 (8)0.056 (8)0.011 (6)0.020 (7)0.008 (6)
O7_30.050 (8)0.049 (9)0.076 (10)0.018 (7)0.011 (7)0.019 (7)
O8_30.053 (9)0.077 (11)0.061 (9)0.004 (8)0.004 (7)0.018 (8)
O9_30.081 (10)0.047 (8)0.047 (8)0.002 (7)0.029 (7)0.011 (6)
O10_30.056 (8)0.025 (7)0.077 (10)0.004 (6)0.000 (7)0.011 (6)
O11_30.113 (14)0.046 (10)0.170 (19)0.027 (9)0.080 (13)0.055 (11)
O12_30.21 (2)0.17 (2)0.046 (10)0.114 (18)0.017 (12)0.048 (12)
O13_30.071 (12)0.052 (11)0.31 (3)0.007 (9)0.089 (16)0.047 (15)
Geometric parameters (Å, º) top
Mo1_1—O3_11.711 (11)C2_7—H2_70.9500
Mo1_1—O2_11.717 (12)C3_7—C4_71.55 (3)
Mo1_1—O1_11.891 (10)C3_7—H3_70.9500
Mo1_1—O6_12.224 (11)C4_7—C5_71.34 (3)
Mo1_1—O10_12.255 (11)C4_7—H4_70.9500
Mo1_1—Cl1_12.431 (5)C5_7—H5_70.9500
Mo2_1—O4_11.690 (12)N1_8—C1_81.27 (3)
Mo2_1—O5_11.705 (12)N1_8—C5_81.33 (3)
Mo2_1—O1_11.893 (10)N1_8—H1_80.8800
Mo2_1—O7_12.217 (13)C1_8—C2_81.41 (3)
Mo2_1—O11_12.222 (12)C1_8—H1A_80.9500
Mo2_1—Cl2_12.424 (5)C2_8—C3_81.41 (3)
S1_1—O9_11.434 (15)C2_8—H2_80.9500
S1_1—O8_11.447 (11)C3_8—C4_81.36 (3)
S1_1—O7_11.457 (12)C3_8—H3_80.9500
S1_1—O6_11.491 (12)C4_8—C5_81.39 (3)
S2_1—O12_11.430 (14)C4_8—H4_80.9500
S2_1—O13_11.456 (12)C5_8—H5_80.9500
S2_1—O11_11.469 (13)N1_9—C1_91.20 (3)
S2_1—O10_11.478 (12)N1_9—C5_91.40 (4)
Mo1_2—O2_21.684 (12)N1_9—H1_90.8800
Mo1_2—O3_21.701 (12)C1_9—C2_91.31 (4)
Mo1_2—O1_21.870 (10)C1_9—H1A_90.9500
Mo1_2—O10_22.210 (13)C2_9—C3_91.23 (4)
Mo1_2—O6_22.252 (13)C2_9—H2_90.9500
Mo1_2—Cl1_22.442 (5)C3_9—C4_91.35 (4)
Mo2_2—O5_21.678 (11)C3_9—H3_90.9500
Mo2_2—O4_21.706 (13)C4_9—C5_91.42 (4)
Mo2_2—O1_21.902 (10)C4_9—H4_90.9500
Mo2_2—O7_22.257 (11)C5_9—H5_90.9500
Mo2_2—O11_22.271 (14)N1_10—C5_101.34 (3)
Mo2_2—Cl2_22.421 (5)N1_10—C1_101.37 (3)
S1_2—O8_21.387 (16)N1_10—H1_100.8800
S1_2—O9_21.417 (13)C1_10—C2_101.37 (3)
S1_2—O6_21.477 (13)C1_10—H1A_100.9500
S1_2—O7_21.494 (11)C2_10—C3_101.28 (3)
S2_2—O13_21.435 (14)C2_10—H2_100.9500
S2_2—O11_21.439 (13)C3_10—C4_101.31 (3)
S2_2—O12_21.458 (16)C3_10—H3_100.9500
S2_2—O10_21.485 (12)C4_10—C5_101.28 (3)
Mo1_3—O3_31.684 (13)C4_10—H4_100.9500
Mo1_3—O2_31.689 (16)C5_10—H5_100.9500
Mo1_3—O1_31.969 (14)N1_11—C1_111.29 (2)
Mo1_3—O10_32.200 (13)N1_11—C5_111.32 (2)
Mo1_3—O6_32.264 (12)N1_11—H1_110.8800
Mo1_3—Cl1_32.442 (5)C1_11—C2_111.38 (3)
Mo2_3—O5_31.684 (14)C1_11—H1A_110.9500
Mo2_3—O4_31.704 (15)C2_11—C3_111.40 (3)
Mo2_3—O1_31.857 (13)C2_11—H2_110.9500
Mo2_3—O11_32.164 (16)C3_11—C4_111.40 (3)
Mo2_3—O7_32.249 (12)C3_11—H3_110.9500
Mo2_3—Cl2_32.413 (7)C4_11—C5_111.38 (3)
S1_3—O8_31.445 (15)C4_11—H4_110.9500
S1_3—O9_31.448 (12)C5_11—H5_110.9500
S1_3—O7_31.488 (13)N1_12—C1_121.23 (4)
S1_3—O6_31.522 (13)N1_12—C5_121.37 (3)
S2_3—O12_31.395 (16)N1_12—H1_120.8800
S2_3—O13_31.412 (16)C1_12—C2_121.24 (4)
S2_3—O11_31.431 (15)C1_12—H1A_120.9500
S2_3—O10_31.480 (13)C2_12—C3_121.42 (4)
N1_4—C5_41.29 (2)C2_12—H2_120.9500
N1_4—C1_41.34 (2)C3_12—C4_121.39 (4)
N1_4—H1_40.8800C3_12—H3_120.9500
C1_4—C2_41.36 (3)C4_12—C5_121.26 (4)
C1_4—H1A_40.9500C4_12—H4_120.9500
C2_4—C3_41.27 (3)C5_12—H5_120.9500
C2_4—H2_40.9500N1_13—C5_131.26 (2)
C3_4—C4_41.43 (3)N1_13—C1_131.33 (2)
C3_4—H3_40.9500N1_13—H1_130.8800
C4_4—C5_41.35 (3)C1_13—C2_131.39 (2)
C4_4—H4_40.9500C1_13—H1A_130.9500
C5_4—H5_40.9500C2_13—C3_131.39 (3)
N1_5—C5_51.24 (2)C2_13—H2_130.9500
N1_5—C1_51.35 (2)C3_13—C4_131.37 (3)
N1_5—H1_50.8800C3_13—H3_130.9500
C1_5—C2_51.29 (3)C4_13—C5_131.36 (2)
C1_5—H1A_50.9500C4_13—H4_130.9500
C2_5—C3_51.33 (3)C5_13—H5_130.9500
C2_5—H2_50.9500N1_14—C1_141.46 (4)
C3_5—C4_51.34 (3)N1_14—C5_141.50 (4)
C3_5—H3_50.9500N1_14—H1_140.8800
C4_5—C5_51.30 (2)C1_14—C2_141.49 (4)
C4_5—H4_50.9500C1_14—H1A_140.9500
C5_5—H5_50.9500C2_14—C3_141.33 (3)
N1_6—C1_61.29 (2)C2_14—H2_140.9500
N1_6—C5_61.39 (3)C3_14—C4_141.25 (4)
N1_6—H1_60.8800C3_14—H3_140.9500
C1_6—C2_61.35 (2)C4_14—C5_141.23 (4)
C1_6—H1A_60.9500C4_14—H4_140.9500
C2_6—C3_61.32 (3)C5_14—H5_140.9500
C2_6—H2_60.9500N1_15—C5_151.22 (3)
C3_6—C4_61.35 (3)N1_15—C4_151.32 (3)
C3_6—H3_60.9500N1_15—H1_150.8800
C4_6—C5_61.42 (3)C1_15—C5_151.24 (3)
C4_6—H4_60.9500C1_15—C2_151.33 (3)
C5_6—H5_60.9500C1_15—H1A_150.9500
N1_7—C5_71.29 (2)C2_15—C3_151.40 (3)
N1_7—C1_71.29 (2)C2_15—H2_150.9500
N1_7—H1_70.8800C3_15—C4_151.33 (3)
C1_7—C2_71.31 (3)C3_15—H3_150.9500
C1_7—H1A_70.9500C4_15—H4_150.9500
C2_7—C3_71.22 (3)C5_15—H5_150.9500
O3_1—Mo1_1—O2_1103.1 (6)C5_6—N1_6—H1_6119.6
O3_1—Mo1_1—O1_1100.7 (5)N1_6—C1_6—C2_6121.7 (19)
O2_1—Mo1_1—O1_1101.3 (5)N1_6—C1_6—H1A_6119.1
O3_1—Mo1_1—O6_190.2 (5)C2_6—C1_6—H1A_6119.1
O2_1—Mo1_1—O6_1165.0 (6)C3_6—C2_6—C1_6120 (2)
O1_1—Mo1_1—O6_182.9 (4)C3_6—C2_6—H2_6119.9
O3_1—Mo1_1—O10_1167.5 (5)C1_6—C2_6—H2_6119.9
O2_1—Mo1_1—O10_188.1 (6)C2_6—C3_6—C4_6122 (2)
O1_1—Mo1_1—O10_182.3 (4)C2_6—C3_6—H3_6119.1
O6_1—Mo1_1—O10_178.1 (4)C4_6—C3_6—H3_6119.1
O3_1—Mo1_1—Cl1_193.4 (4)C3_6—C4_6—C5_6118 (2)
O2_1—Mo1_1—Cl1_191.9 (5)C3_6—C4_6—H4_6121.2
O1_1—Mo1_1—Cl1_1158.0 (4)C5_6—C4_6—H4_6121.2
O6_1—Mo1_1—Cl1_180.1 (3)N1_6—C5_6—C4_6118 (2)
O10_1—Mo1_1—Cl1_180.5 (3)N1_6—C5_6—H5_6121.2
O4_1—Mo2_1—O5_1103.2 (6)C4_6—C5_6—H5_6121.2
O4_1—Mo2_1—O1_198.1 (5)C5_7—N1_7—C1_7121.4 (19)
O5_1—Mo2_1—O1_1100.0 (5)C5_7—N1_7—H1_7119.3
O4_1—Mo2_1—O7_189.9 (6)C1_7—N1_7—H1_7119.3
O5_1—Mo2_1—O7_1166.2 (7)N1_7—C1_7—C2_7122 (2)
O1_1—Mo2_1—O7_182.1 (5)N1_7—C1_7—H1A_7119.0
O4_1—Mo2_1—O11_1169.4 (6)C2_7—C1_7—H1A_7119.0
O5_1—Mo2_1—O11_186.9 (6)C3_7—C2_7—C1_7123 (2)
O1_1—Mo2_1—O11_182.8 (5)C3_7—C2_7—H2_7118.6
O7_1—Mo2_1—O11_179.8 (6)C1_7—C2_7—H2_7118.6
O4_1—Mo2_1—Cl2_193.6 (4)C2_7—C3_7—C4_7118 (2)
O5_1—Mo2_1—Cl2_193.6 (4)C2_7—C3_7—H3_7121.1
O1_1—Mo2_1—Cl2_1159.4 (3)C4_7—C3_7—H3_7121.1
O7_1—Mo2_1—Cl2_181.0 (4)C5_7—C4_7—C3_7113.6 (19)
O11_1—Mo2_1—Cl2_182.6 (3)C5_7—C4_7—H4_7123.2
O9_1—S1_1—O8_1110.7 (9)C3_7—C4_7—H4_7123.2
O9_1—S1_1—O7_1105.3 (11)N1_7—C5_7—C4_7122.0 (19)
O8_1—S1_1—O7_1110.3 (8)N1_7—C5_7—H5_7119.0
O9_1—S1_1—O6_1109.6 (8)C4_7—C5_7—H5_7119.0
O8_1—S1_1—O6_1109.4 (7)C1_8—N1_8—C5_8129 (2)
O7_1—S1_1—O6_1111.6 (7)C1_8—N1_8—H1_8115.7
O12_1—S2_1—O13_1111.2 (9)C5_8—N1_8—H1_8115.7
O12_1—S2_1—O11_1109.0 (9)N1_8—C1_8—C2_8118 (2)
O13_1—S2_1—O11_1109.1 (8)N1_8—C1_8—H1A_8120.8
O12_1—S2_1—O10_1108.0 (8)C2_8—C1_8—H1A_8120.8
O13_1—S2_1—O10_1109.4 (7)C3_8—C2_8—C1_8115 (2)
O11_1—S2_1—O10_1110.1 (7)C3_8—C2_8—H2_8122.3
Mo1_1—O1_1—Mo2_1154.4 (6)C1_8—C2_8—H2_8122.3
S1_1—O6_1—Mo1_1135.7 (6)C4_8—C3_8—C2_8122 (2)
S1_1—O7_1—Mo2_1139.0 (8)C4_8—C3_8—H3_8118.9
S2_1—O10_1—Mo1_1136.2 (7)C2_8—C3_8—H3_8118.9
S2_1—O11_1—Mo2_1142.5 (7)C3_8—C4_8—C5_8119 (2)
O2_2—Mo1_2—O3_2104.3 (7)C3_8—C4_8—H4_8120.7
O2_2—Mo1_2—O1_2101.6 (5)C5_8—C4_8—H4_8120.7
O3_2—Mo1_2—O1_2101.2 (5)N1_8—C5_8—C4_8116 (2)
O2_2—Mo1_2—O10_2162.8 (6)N1_8—C5_8—H5_8121.9
O3_2—Mo1_2—O10_290.7 (7)C4_8—C5_8—H5_8121.9
O1_2—Mo1_2—O10_283.3 (5)C1_9—N1_9—C5_9118 (3)
O2_2—Mo1_2—O6_286.4 (6)C1_9—N1_9—H1_9121.2
O3_2—Mo1_2—O6_2166.7 (7)C5_9—N1_9—H1_9121.2
O1_2—Mo1_2—O6_284.0 (5)N1_9—C1_9—C2_9122 (4)
O10_2—Mo1_2—O6_277.7 (6)N1_9—C1_9—H1A_9119.2
O2_2—Mo1_2—Cl1_291.6 (4)C2_9—C1_9—H1A_9119.2
O3_2—Mo1_2—Cl1_292.3 (4)C3_9—C2_9—C1_9127 (4)
O1_2—Mo1_2—Cl1_2158.0 (4)C3_9—C2_9—H2_9116.4
O10_2—Mo1_2—Cl1_279.2 (3)C1_9—C2_9—H2_9116.4
O6_2—Mo1_2—Cl1_279.3 (3)C2_9—C3_9—C4_9118 (4)
O5_2—Mo2_2—O4_2103.0 (6)C2_9—C3_9—H3_9121.2
O5_2—Mo2_2—O1_2100.1 (5)C4_9—C3_9—H3_9121.2
O4_2—Mo2_2—O1_299.3 (5)C3_9—C4_9—C5_9115 (3)
O5_2—Mo2_2—O7_2164.2 (6)C3_9—C4_9—H4_9122.7
O4_2—Mo2_2—O7_291.5 (6)C5_9—C4_9—H4_9122.7
O1_2—Mo2_2—O7_283.5 (4)N1_9—C5_9—C4_9119 (3)
O5_2—Mo2_2—O11_287.6 (6)N1_9—C5_9—H5_9120.3
O4_2—Mo2_2—O11_2168.9 (6)C4_9—C5_9—H5_9120.3
O1_2—Mo2_2—O11_282.0 (5)C5_10—N1_10—C1_10120 (2)
O7_2—Mo2_2—O11_277.6 (5)C5_10—N1_10—H1_10119.9
O5_2—Mo2_2—Cl2_292.9 (4)C1_10—N1_10—H1_10119.9
O4_2—Mo2_2—Cl2_293.8 (4)C2_10—C1_10—N1_10118 (2)
O1_2—Mo2_2—Cl2_2158.9 (3)C2_10—C1_10—H1A_10120.8
O7_2—Mo2_2—Cl2_279.7 (3)N1_10—C1_10—H1A_10120.8
O11_2—Mo2_2—Cl2_282.1 (4)C3_10—C2_10—C1_10119 (2)
O8_2—S1_2—O9_2112.9 (12)C3_10—C2_10—H2_10120.7
O8_2—S1_2—O6_2108.2 (10)C1_10—C2_10—H2_10120.7
O9_2—S1_2—O6_2108.2 (8)C2_10—C3_10—C4_10121 (2)
O8_2—S1_2—O7_2109.6 (9)C2_10—C3_10—H3_10119.4
O9_2—S1_2—O7_2106.6 (8)C4_10—C3_10—H3_10119.4
O6_2—S1_2—O7_2111.4 (7)C5_10—C4_10—C3_10124 (2)
O13_2—S2_2—O11_2110.6 (9)C5_10—C4_10—H4_10118.0
O13_2—S2_2—O12_2110.6 (11)C3_10—C4_10—H4_10118.0
O11_2—S2_2—O12_2109.0 (9)C4_10—C5_10—N1_10117 (2)
O13_2—S2_2—O10_2106.0 (10)C4_10—C5_10—H5_10121.4
O11_2—S2_2—O10_2112.1 (7)N1_10—C5_10—H5_10121.4
O12_2—S2_2—O10_2108.5 (9)C1_11—N1_11—C5_11121 (2)
Mo1_2—O1_2—Mo2_2155.0 (6)C1_11—N1_11—H1_11119.3
S1_2—O6_2—Mo1_2138.0 (7)C5_11—N1_11—H1_11119.3
S1_2—O7_2—Mo2_2136.4 (7)N1_11—C1_11—C2_11119 (2)
S2_2—O10_2—Mo1_2140.6 (8)N1_11—C1_11—H1A_11120.5
S2_2—O11_2—Mo2_2137.6 (7)C2_11—C1_11—H1A_11120.5
O3_3—Mo1_3—O2_3102.2 (7)C1_11—C2_11—C3_11121 (2)
O3_3—Mo1_3—O1_399.0 (6)C1_11—C2_11—H2_11119.5
O2_3—Mo1_3—O1_3101.4 (6)C3_11—C2_11—H2_11119.5
O3_3—Mo1_3—O10_392.6 (7)C4_11—C3_11—C2_11119 (2)
O2_3—Mo1_3—O10_3162.5 (6)C4_11—C3_11—H3_11120.5
O1_3—Mo1_3—O10_385.1 (5)C2_11—C3_11—H3_11120.5
O3_3—Mo1_3—O6_3166.1 (6)C5_11—C4_11—C3_11115 (2)
O2_3—Mo1_3—O6_389.4 (6)C5_11—C4_11—H4_11122.7
O1_3—Mo1_3—O6_385.9 (5)C3_11—C4_11—H4_11122.7
O10_3—Mo1_3—O6_374.8 (5)N1_11—C5_11—C4_11125 (2)
O3_3—Mo1_3—Cl1_394.2 (5)N1_11—C5_11—H5_11117.5
O2_3—Mo1_3—Cl1_391.2 (5)C4_11—C5_11—H5_11117.5
O1_3—Mo1_3—Cl1_3159.3 (4)C1_12—N1_12—C5_12121 (3)
O10_3—Mo1_3—Cl1_378.4 (3)C1_12—N1_12—H1_12119.6
O6_3—Mo1_3—Cl1_377.8 (3)C5_12—N1_12—H1_12119.6
O5_3—Mo2_3—O4_3102.3 (8)N1_12—C1_12—C2_12119 (4)
O5_3—Mo2_3—O1_3100.3 (6)N1_12—C1_12—H1A_12120.6
O4_3—Mo2_3—O1_396.4 (7)C2_12—C1_12—H1A_12120.6
O5_3—Mo2_3—O11_3166.2 (8)C1_12—C2_12—C3_12122 (4)
O4_3—Mo2_3—O11_390.2 (9)C1_12—C2_12—H2_12118.8
O1_3—Mo2_3—O11_384.0 (6)C3_12—C2_12—H2_12118.8
O5_3—Mo2_3—O7_388.9 (6)C4_12—C3_12—C2_12119 (4)
O4_3—Mo2_3—O7_3168.6 (8)C4_12—C3_12—H3_12120.5
O1_3—Mo2_3—O7_383.9 (5)C2_12—C3_12—H3_12120.5
O11_3—Mo2_3—O7_378.5 (7)C5_12—C4_12—C3_12111 (3)
O5_3—Mo2_3—Cl2_392.6 (5)C5_12—C4_12—H4_12124.6
O4_3—Mo2_3—Cl2_397.4 (6)C3_12—C4_12—H4_12124.6
O1_3—Mo2_3—Cl2_3158.6 (4)C4_12—C5_12—N1_12127 (3)
O11_3—Mo2_3—Cl2_379.7 (5)C4_12—C5_12—H5_12116.4
O7_3—Mo2_3—Cl2_379.3 (3)N1_12—C5_12—H5_12116.4
O8_3—S1_3—O9_3111.6 (9)C5_13—N1_13—C1_13123.7 (17)
O8_3—S1_3—O7_3110.7 (9)C5_13—N1_13—H1_13118.1
O9_3—S1_3—O7_3108.1 (8)C1_13—N1_13—H1_13118.1
O8_3—S1_3—O6_3111.9 (8)N1_13—C1_13—C2_13118 (2)
O9_3—S1_3—O6_3108.1 (7)N1_13—C1_13—H1A_13120.9
O7_3—S1_3—O6_3106.2 (8)C2_13—C1_13—H1A_13120.9
O12_3—S2_3—O13_3113.0 (17)C3_13—C2_13—C1_13118.5 (19)
O12_3—S2_3—O11_3105.6 (15)C3_13—C2_13—H2_13120.7
O13_3—S2_3—O11_3107.7 (13)C1_13—C2_13—H2_13120.7
O12_3—S2_3—O10_3110.3 (10)C4_13—C3_13—C2_13118.9 (18)
O13_3—S2_3—O10_3109.1 (9)C4_13—C3_13—H3_13120.6
O11_3—S2_3—O10_3111.0 (9)C2_13—C3_13—H3_13120.6
Mo2_3—O1_3—Mo1_3149.3 (7)C5_13—C4_13—C3_13119 (2)
S1_3—O6_3—Mo1_3126.7 (7)C5_13—C4_13—H4_13120.5
S1_3—O7_3—Mo2_3127.8 (7)C3_13—C4_13—H4_13120.5
S2_3—O10_3—Mo1_3134.3 (7)N1_13—C5_13—C4_13122 (2)
S2_3—O11_3—Mo2_3141.6 (10)N1_13—C5_13—H5_13119.2
C5_4—N1_4—C1_4126 (2)C4_13—C5_13—H5_13119.2
C5_4—N1_4—H1_4116.8C1_14—N1_14—C5_14115 (3)
C1_4—N1_4—H1_4116.8C1_14—N1_14—H1_14122.5
N1_4—C1_4—C2_4115 (2)C5_14—N1_14—H1_14122.5
N1_4—C1_4—H1A_4122.3N1_14—C1_14—C2_14119 (3)
C2_4—C1_4—H1A_4122.3N1_14—C1_14—H1A_14120.3
C3_4—C2_4—C1_4123 (2)C2_14—C1_14—H1A_14120.3
C3_4—C2_4—H2_4118.3C3_14—C2_14—C1_14112 (3)
C1_4—C2_4—H2_4118.3C3_14—C2_14—H2_14123.8
C2_4—C3_4—C4_4118 (2)C1_14—C2_14—H2_14123.8
C2_4—C3_4—H3_4120.8C4_14—C3_14—C2_14128 (3)
C4_4—C3_4—H3_4120.8C4_14—C3_14—H3_14116.1
C5_4—C4_4—C3_4120 (2)C2_14—C3_14—H3_14116.1
C5_4—C4_4—H4_4120.1C5_14—C4_14—C3_14128 (4)
C3_4—C4_4—H4_4120.1C5_14—C4_14—H4_14116.1
N1_4—C5_4—C4_4116 (2)C3_14—C4_14—H4_14116.1
N1_4—C5_4—H5_4121.8C4_14—C5_14—N1_14117 (4)
C4_4—C5_4—H5_4121.8C4_14—C5_14—H5_14121.4
C5_5—N1_5—C1_5120.7 (19)N1_14—C5_14—H5_14121.4
C5_5—N1_5—H1_5119.7C5_15—N1_15—C4_15123 (2)
C1_5—N1_5—H1_5119.7C5_15—N1_15—H1_15118.4
C2_5—C1_5—N1_5120 (2)C4_15—N1_15—H1_15118.4
C2_5—C1_5—H1A_5119.8C5_15—C1_15—C2_15121 (3)
N1_5—C1_5—H1A_5119.8C5_15—C1_15—H1A_15119.3
C1_5—C2_5—C3_5117 (2)C2_15—C1_15—H1A_15119.3
C1_5—C2_5—H2_5121.3C1_15—C2_15—C3_15119 (2)
C3_5—C2_5—H2_5121.3C1_15—C2_15—H2_15120.3
C2_5—C3_5—C4_5121 (2)C3_15—C2_15—H2_15120.3
C2_5—C3_5—H3_5119.4C4_15—C3_15—C2_15114 (2)
C4_5—C3_5—H3_5119.4C4_15—C3_15—H3_15123.1
C5_5—C4_5—C3_5118 (2)C2_15—C3_15—H3_15123.1
C5_5—C4_5—H4_5121.2N1_15—C4_15—C3_15121 (3)
C3_5—C4_5—H4_5121.2N1_15—C4_15—H4_15119.6
N1_5—C5_5—C4_5122 (2)C3_15—C4_15—H4_15119.6
N1_5—C5_5—H5_5118.8N1_15—C5_15—C1_15121 (3)
C4_5—C5_5—H5_5118.8N1_15—C5_15—H5_15119.4
C1_6—N1_6—C5_6120.8 (19)C1_15—C5_15—H5_15119.4
C1_6—N1_6—H1_6119.6
O3_1—Mo1_1—O1_1—Mo2_1122.1 (15)O1_3—Mo1_3—O6_3—S1_315.6 (10)
O2_1—Mo1_1—O1_1—Mo2_1132.1 (16)O10_3—Mo1_3—O6_3—S1_3101.7 (10)
O6_1—Mo1_1—O1_1—Mo2_133.2 (15)Cl1_3—Mo1_3—O6_3—S1_3177.2 (10)
O10_1—Mo1_1—O1_1—Mo2_145.6 (15)O8_3—S1_3—O7_3—Mo2_350.3 (12)
Cl1_1—Mo1_1—O1_1—Mo2_17 (2)O9_3—S1_3—O7_3—Mo2_3172.8 (9)
O4_1—Mo2_1—O1_1—Mo1_1135.4 (16)O6_3—S1_3—O7_3—Mo2_371.4 (11)
O5_1—Mo2_1—O1_1—Mo1_1119.5 (15)O5_3—Mo2_3—O7_3—S1_367.8 (12)
O7_1—Mo2_1—O1_1—Mo1_146.7 (16)O4_3—Mo2_3—O7_3—S1_3125 (3)
O11_1—Mo2_1—O1_1—Mo1_133.9 (15)O1_3—Mo2_3—O7_3—S1_332.7 (11)
Cl2_1—Mo2_1—O1_1—Mo1_111 (2)O11_3—Mo2_3—O7_3—S1_3117.8 (12)
O9_1—S1_1—O6_1—Mo1_181.6 (12)Cl2_3—Mo2_3—O7_3—S1_3160.7 (11)
O8_1—S1_1—O6_1—Mo1_1157.0 (9)O12_3—S2_3—O10_3—Mo1_378.1 (17)
O7_1—S1_1—O6_1—Mo1_134.6 (14)O13_3—S2_3—O10_3—Mo1_3157.1 (15)
O3_1—Mo1_1—O6_1—S1_176.3 (10)O11_3—S2_3—O10_3—Mo1_338.6 (16)
O2_1—Mo1_1—O6_1—S1_1131.6 (18)O3_3—Mo1_3—O10_3—S2_376.5 (12)
O1_1—Mo1_1—O6_1—S1_124.4 (10)O2_3—Mo1_3—O10_3—S2_3135.2 (18)
O10_1—Mo1_1—O6_1—S1_1108.0 (10)O1_3—Mo1_3—O10_3—S2_322.4 (12)
Cl1_1—Mo1_1—O6_1—S1_1169.7 (10)O6_3—Mo1_3—O10_3—S2_3109.4 (12)
O9_1—S1_1—O7_1—Mo2_1113.7 (17)Cl1_3—Mo1_3—O10_3—S2_3170.2 (12)
O8_1—S1_1—O7_1—Mo2_1127.0 (16)O12_3—S2_3—O11_3—Mo2_3102 (2)
O6_1—S1_1—O7_1—Mo2_15 (2)O13_3—S2_3—O11_3—Mo2_3137 (2)
O4_1—Mo2_1—O7_1—S1_1117.3 (18)O10_3—S2_3—O11_3—Mo2_318 (3)
O5_1—Mo2_1—O7_1—S1_181 (3)O5_3—Mo2_3—O11_3—S2_399 (3)
O1_1—Mo2_1—O7_1—S1_119.1 (17)O4_3—Mo2_3—O11_3—S2_3106 (2)
O11_1—Mo2_1—O7_1—S1_164.9 (17)O1_3—Mo2_3—O11_3—S2_310 (2)
Cl2_1—Mo2_1—O7_1—S1_1149.0 (18)O7_3—Mo2_3—O11_3—S2_375 (2)
O12_1—S2_1—O10_1—Mo1_1146.7 (11)Cl2_3—Mo2_3—O11_3—S2_3156 (2)
O13_1—S2_1—O10_1—Mo1_192.0 (12)C5_4—N1_4—C1_4—C2_42 (3)
O11_1—S2_1—O10_1—Mo1_127.9 (14)N1_4—C1_4—C2_4—C3_40 (3)
O3_1—Mo1_1—O10_1—S2_168 (3)C1_4—C2_4—C3_4—C4_40 (3)
O2_1—Mo1_1—O10_1—S2_1138.0 (12)C2_4—C3_4—C4_4—C5_41 (3)
O1_1—Mo1_1—O10_1—S2_136.3 (11)C1_4—N1_4—C5_4—C4_43 (3)
O6_1—Mo1_1—O10_1—S2_148.0 (11)C3_4—C4_4—C5_4—N1_42 (3)
Cl1_1—Mo1_1—O10_1—S2_1129.8 (11)C5_5—N1_5—C1_5—C2_53 (3)
O12_1—S2_1—O11_1—Mo2_1120.1 (16)N1_5—C1_5—C2_5—C3_53 (3)
O13_1—S2_1—O11_1—Mo2_1118.3 (15)C1_5—C2_5—C3_5—C4_54 (3)
O10_1—S2_1—O11_1—Mo2_11.8 (19)C2_5—C3_5—C4_5—C5_53 (3)
O4_1—Mo2_1—O11_1—S2_198 (3)C1_5—N1_5—C5_5—C4_53 (3)
O5_1—Mo2_1—O11_1—S2_197.8 (17)C3_5—C4_5—C5_5—N1_53 (3)
O1_1—Mo2_1—O11_1—S2_12.7 (16)C5_6—N1_6—C1_6—C2_65 (3)
O7_1—Mo2_1—O11_1—S2_186.0 (17)N1_6—C1_6—C2_6—C3_62 (3)
Cl2_1—Mo2_1—O11_1—S2_1168.1 (17)C1_6—C2_6—C3_6—C4_60 (3)
O2_2—Mo1_2—O1_2—Mo2_2126.3 (16)C2_6—C3_6—C4_6—C5_61 (3)
O3_2—Mo1_2—O1_2—Mo2_2126.4 (16)C1_6—N1_6—C5_6—C4_65 (3)
O10_2—Mo1_2—O1_2—Mo2_237.0 (16)C3_6—C4_6—C5_6—N1_63 (3)
O6_2—Mo1_2—O1_2—Mo2_241.3 (16)C5_7—N1_7—C1_7—C2_74 (3)
Cl1_2—Mo1_2—O1_2—Mo2_20 (2)N1_7—C1_7—C2_7—C3_70 (4)
O5_2—Mo2_2—O1_2—Mo1_2132.0 (16)C1_7—C2_7—C3_7—C4_71 (3)
O4_2—Mo2_2—O1_2—Mo1_2122.9 (16)C2_7—C3_7—C4_7—C5_71 (3)
O7_2—Mo2_2—O1_2—Mo1_232.4 (16)C1_7—N1_7—C5_7—C4_76 (3)
O11_2—Mo2_2—O1_2—Mo1_245.9 (16)C3_7—C4_7—C5_7—N1_74 (3)
Cl2_2—Mo2_2—O1_2—Mo1_25 (3)C5_8—N1_8—C1_8—C2_84 (4)
O8_2—S1_2—O6_2—Mo1_2104.8 (16)N1_8—C1_8—C2_8—C3_81 (3)
O9_2—S1_2—O6_2—Mo1_2132.5 (14)C1_8—C2_8—C3_8—C4_80 (3)
O7_2—S1_2—O6_2—Mo1_215.7 (17)C2_8—C3_8—C4_8—C5_82 (4)
O2_2—Mo1_2—O6_2—S1_2109.7 (15)C1_8—N1_8—C5_8—C4_86 (4)
O3_2—Mo1_2—O6_2—S1_2107 (3)C3_8—C4_8—C5_8—N1_84 (3)
O1_2—Mo1_2—O6_2—S1_27.6 (14)C5_9—N1_9—C1_9—C2_95 (5)
O10_2—Mo1_2—O6_2—S1_276.8 (15)N1_9—C1_9—C2_9—C3_95 (6)
Cl1_2—Mo1_2—O6_2—S1_2157.9 (15)C1_9—C2_9—C3_9—C4_910 (6)
O8_2—S1_2—O7_2—Mo2_284.9 (15)C2_9—C3_9—C4_9—C5_914 (5)
O9_2—S1_2—O7_2—Mo2_2152.6 (11)C1_9—N1_9—C5_9—C4_911 (4)
O6_2—S1_2—O7_2—Mo2_234.9 (15)C3_9—C4_9—C5_9—N1_915 (4)
O5_2—Mo2_2—O7_2—S1_2125.1 (18)C5_10—N1_10—C1_10—C2_102 (3)
O4_2—Mo2_2—O7_2—S1_278.3 (12)N1_10—C1_10—C2_10—C3_102 (3)
O1_2—Mo2_2—O7_2—S1_220.9 (12)C1_10—C2_10—C3_10—C4_105 (3)
O11_2—Mo2_2—O7_2—S1_2104.0 (12)C2_10—C3_10—C4_10—C5_103 (3)
Cl2_2—Mo2_2—O7_2—S1_2171.9 (12)C3_10—C4_10—C5_10—N1_101 (3)
O13_2—S2_2—O10_2—Mo1_2122.3 (16)C1_10—N1_10—C5_10—C4_103 (3)
O11_2—S2_2—O10_2—Mo1_21 (2)C5_11—N1_11—C1_11—C2_113 (3)
O12_2—S2_2—O10_2—Mo1_2118.9 (17)N1_11—C1_11—C2_11—C3_110 (3)
O2_2—Mo1_2—O10_2—S2_2110 (2)C1_11—C2_11—C3_11—C4_113 (3)
O3_2—Mo1_2—O10_2—S2_299.5 (17)C2_11—C3_11—C4_11—C5_112 (3)
O1_2—Mo1_2—O10_2—S2_21.7 (17)C1_11—N1_11—C5_11—C4_113 (3)
O6_2—Mo1_2—O10_2—S2_287.0 (17)C3_11—C4_11—C5_11—N1_110 (3)
Cl1_2—Mo1_2—O10_2—S2_2168.3 (18)C5_12—N1_12—C1_12—C2_123 (5)
O13_2—S2_2—O11_2—Mo2_299.1 (14)N1_12—C1_12—C2_12—C3_125 (5)
O12_2—S2_2—O11_2—Mo2_2139.1 (13)C1_12—C2_12—C3_12—C4_121 (5)
O10_2—S2_2—O11_2—Mo2_219.0 (17)C2_12—C3_12—C4_12—C5_128 (4)
O5_2—Mo2_2—O11_2—S2_2129.1 (14)C3_12—C4_12—C5_12—N1_1211 (4)
O4_2—Mo2_2—O11_2—S2_269 (3)C1_12—N1_12—C5_12—C4_126 (5)
O1_2—Mo2_2—O11_2—S2_228.6 (13)C5_13—N1_13—C1_13—C2_131 (3)
O7_2—Mo2_2—O11_2—S2_256.5 (13)N1_13—C1_13—C2_13—C3_131 (3)
Cl2_2—Mo2_2—O11_2—S2_2137.7 (13)C1_13—C2_13—C3_13—C4_132 (3)
O5_3—Mo2_3—O1_3—Mo1_3125.4 (14)C2_13—C3_13—C4_13—C5_132 (3)
O4_3—Mo2_3—O1_3—Mo1_3130.8 (16)C1_13—N1_13—C5_13—C4_131 (3)
O11_3—Mo2_3—O1_3—Mo1_341.3 (15)C3_13—C4_13—C5_13—N1_131 (3)
O7_3—Mo2_3—O1_3—Mo1_337.7 (14)C5_14—N1_14—C1_14—C2_140 (4)
Cl2_3—Mo2_3—O1_3—Mo1_31 (2)N1_14—C1_14—C2_14—C3_142 (4)
O3_3—Mo1_3—O1_3—Mo2_3123.4 (15)C1_14—C2_14—C3_14—C4_142 (4)
O2_3—Mo1_3—O1_3—Mo2_3132.1 (14)C2_14—C3_14—C4_14—C5_147 (6)
O10_3—Mo1_3—O1_3—Mo2_331.5 (14)C3_14—C4_14—C5_14—N1_148 (6)
O6_3—Mo1_3—O1_3—Mo2_343.5 (14)C1_14—N1_14—C5_14—C4_145 (5)
Cl1_3—Mo1_3—O1_3—Mo2_36 (2)C5_15—C1_15—C2_15—C3_151 (4)
O8_3—S1_3—O6_3—Mo1_363.0 (12)C1_15—C2_15—C3_15—C4_151 (3)
O9_3—S1_3—O6_3—Mo1_3173.8 (9)C5_15—N1_15—C4_15—C3_156 (4)
O7_3—S1_3—O6_3—Mo1_357.9 (11)C2_15—C3_15—C4_15—N1_154 (3)
O3_3—Mo1_3—O6_3—S1_3127 (2)C4_15—N1_15—C5_15—C1_154 (4)
O2_3—Mo1_3—O6_3—S1_385.9 (11)C2_15—C1_15—C5_15—N1_151 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1_4—H1_4···O8_20.882.183.01 (3)157
N1_5—H1_5···O9_10.882.433.15 (2)139
N1_6—H1_6···O12_20.882.503.32 (3)157
N1_7—H1_7···O6_2i0.882.112.99 (2)176
N1_8—H1_8···O6_30.882.132.90 (2)146
N1_8—H1_8···O10_30.882.393.09 (2)137
N1_9—H1_9···O7_20.882.032.86 (3)157
N1_9—H1_9···O9_20.882.412.94 (2)119
N1_10—H1_10···O4_30.882.343.01 (3)133
N1_11—H1_11···O13_10.882.042.84 (2)149
N1_11—H1_11···O11_10.882.643.18 (2)121
N1_12—H1_12···O5_30.882.002.74 (3)141
N1_12—H1_12···O8_30.882.453.07 (3)128
N1_13—H1_13···O13_10.881.852.722 (18)173
N1_14—H1_14···O8_30.882.253.09 (3)160
N1_15—H1_15···O9_2ii0.882.253.02 (2)146
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C5H6N)4[Mo2Cl2O5(SO4)2]
Mr855.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)10.517 (4), 49.281 (15), 17.557 (6)
β (°) 95.07 (3)
V3)9064 (5)
Z12
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.03 × 0.02 × 0.01
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.965, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
49290, 16283, 6037
Rint0.255
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.098, 0.286, 0.94
No. of reflections16283
No. of parameters802
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.08, 1.28

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1_4—H1_4···O8_20.882.183.01 (3)157
N1_5—H1_5···O9_10.882.433.15 (2)139
N1_6—H1_6···O12_20.882.503.32 (3)157
N1_7—H1_7···O6_2i0.882.112.99 (2)176
N1_8—H1_8···O6_30.882.132.90 (2)146
N1_8—H1_8···O10_30.882.393.09 (2)137
N1_9—H1_9···O7_20.882.032.86 (3)157
N1_9—H1_9···O9_20.882.412.94 (2)119
N1_10—H1_10···O4_30.882.343.01 (3)133
N1_11—H1_11···O13_10.882.042.84 (2)149
N1_11—H1_11···O11_10.882.643.18 (2)121
N1_12—H1_12···O5_30.882.002.74 (3)141
N1_12—H1_12···O8_30.882.453.07 (3)128
N1_13—H1_13···O13_10.881.852.722 (18)173
N1_14—H1_14···O8_30.882.253.09 (3)160
N1_15—H1_15···O9_2ii0.882.253.02 (2)146
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z1/2.
Geometrical parameters (Å,°) for the three crystallographically independent molybdenum clusters top
Mo—O11.857 (13)–1.969 (14)
Mo—Oterminal1.678 (11)–1.717 (12)
Mo—Osulfato2.164 (16)–2.271 (14)
Mo—Cl2.271 (14)–2.442 (5)
Oterminal—Mo—Oterminal102.2 (7)–104.3 (8)
cis-Oterminal—Mo—Osulfato86.4 (6)–92.6 (7)
trans-Oterminal—Mo—Osulfato162.5 (6)–169.4 (4)
Oterminal—Mo—O196.4 (7)–101.6 (5)
Oterminal—Mo—Cl91.2 (5)–97.4 (6)
Osulfato—Mo—Osulfato74.8 (5)–79.8 (6)
Osulfato—Mo—O182 (5)–85.9 (5)
Osulfato—Mo—Cl77.8 (3)–82.6 (3)
O1—Mo—Cl158 (4)–159.4 (3)
Mo—O1—Mo149.3 (7)–155 (6)
Notes: O1 stands for the µ-O oxygen atom; Oterminal corresponds to O2, O3, O4 and O5; Osulfato corresponds to O6, O7, O10 and O11.
 

Acknowledgements

We wish to thank the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for the post-doctoral research grants SFRH/BPD/63736/2009 (to JAF) and SFRH/BPD/25269/2005 (to SG), the doctoral grant SFRH/BD/45116/2008 (to SF), and for specific funding toward the purchase of the diffractometer. We further wish to acknowledge the Associated Laboratory CICECO for a research grant to ACG.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Errington, R. J., Hockless, D. C. R., Glen, A. D. & Richards, D. G. (1990). J. Chem. Soc. Chem. Commun. pp. 1565–1566.  CrossRef Web of Science Google Scholar
First citationCunha-Silva, L., Monteiro, B., Pillinger, M., Gonçalves, I. S., Rocha, J. & Almeida Paz, F. A. (2007). Acta Cryst. E63, m376–m378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGago, S., Neves, P., Monteiro, B., Pêssego, M., Lopes, A. D., Valente, A. A., Paz, F. A. A., Pillinger, M., Moreira, J., Silva, C. M. & Gonçalves, I. S. (2009). Eur. J. Inorg. Chem. pp. 4528–4537.  Web of Science CSD CrossRef Google Scholar
First citationMonteiro, B., Cunha-Silva, L., Gago, S., Klinowski, J., Paz, F. A. A., Rocha, J., Gonçalves, I. S. & Pillinger, M. (2010). Polyhedron, 29, 719–730.  Web of Science CSD CrossRef CAS Google Scholar
First citationPereira, C. C. L., Balula, S. S., Paz, F. A. A., Valente, A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2007). Inorg. Chem. 46, 8508–8510.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieghardt, K., Drueke, S., Chaudhuri, P., Florke, U., Haupt, H.-J., Nuber, B. & Weiss, J. (1989). Z. Naturforsch. Teil B, 44, 1093–1101.  CAS Google Scholar
First citationZhang, Q. F., Lam, T. C. H., Yi, X.-Y., Chan, E. Y. Y., Wong, W. Y., Sung, H. H. Y., Williams, I. D. & Leung, W.-H. (2005). Chem. Eur. J. 11, 101–111.  Web of Science CSD CrossRef Google Scholar
First citationZhao, J., Zhang, H. & Ng, S. W. (2006). Acta Cryst. E62, m1890–m1891.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds