organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Hy­dr­oxy­benzyl­­idene)furan-2-carbohydrazide

aDepartment of Chemistry, Zanjan University, 45195-313 Zanjan, Iran, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55019 Kurupelit, Samsun, Turkey, and cFaculty of Chemistry, Iran University of Science and Technology (IUST), 16846 Tehran, Iran
*Correspondence e-mail: bikas_r@yahoo.com

(Received 18 May 2010; accepted 24 June 2010; online 14 July 2010)

In the title compound, C12H10N2O3, the dihedral angle between the benzene ring and the furan ring is 16.12 (13)°. The conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond. Inter­molecular N—H⋯O hydrogen bonds with the keto group as acceptor lead to strands along [001]. The mol­ecule displays a trans configuration with respect to the C=N and N—N bonds.

Related literature

For historical background to aroylhydrazones, see: Offe et al. (1952[Offe, H. A., Siefken, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 462-468.]); Craliz et al. (1955[Craliz, J. C., Rub, J. C., Willis, D. & Edger, J. (1955). Nature (London), 34, 176.]); Pickart et al. (1983[Pickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868-3871.]); Arapov et al. (1987[Arapov, O. V., Alferva, O. F., Levocheskaya, E. I. & Krasilnikov, I. (1987). Radiobiologiya, 27, 843-846.]); Ranford et al. (1998[Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]); Savanini et al. (2002[Savanini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193-2198.]). For related structures, see: Monfared et al. (2010[Monfared, H. H., Bikas, R. & Mayer, P. (2010). Acta Cryst. E66, o236-o237.]); Ali et al. (2005[Ali, H. M., Puvaneswary, S., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, o1079-o1080.]); Li et al. (2007[Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.]); Diao et al. (2007[Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O3

  • Mr = 230.22

  • Orthorhombic, P c a 21

  • a = 17.3539 (15) Å

  • b = 6.3320 (4) Å

  • c = 9.8613 (7) Å

  • V = 1083.61 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.46 × 0.29 × 0.20 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • 6705 measured reflections

  • 1130 independent reflections

  • 792 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.043

  • S = 0.81

  • 1130 reflections

  • 159 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.21 2.900 (2) 137
O1—H22⋯N1 0.90 (3) 1.89 (3) 2.651 (3) 141 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our studies on the synthesis and characterization of aroylhydrazone derivatives, we report the crystal structure of (E)—N'-(2-hydroxybenzylidene)furan-2-carbohydrazide.

The asymmetric unit contains one molecule of the title compound, which is shown in Figure 1. The molecule is almost planar with a dihedral angle of 16.12 (13)° between the benzene ring and the furan ring. This configuration is stabilized by an intramolecular O—H···N hydrogen bond, with the nitrogen of the azomethine group (–C=N–) acting as acceptor. Intermolecular N—H···O hydrogen bonds with the keto group as acceptor lead to strands along [001] (Fig. 2).

Related literature top

For historical background to aroylhydrazones, see: Offe et al. (1952); Craliz et al. (1955); Pickart et al. (1983); Arapov et al. (1987); Ranford et al. (1998); Savanini et al. (2002). For related structures, see: Monfared et al. (2010); Ali et al. (2005); Li et al. (2007); Diao et al. (2007).

Experimental top

All reagents were commercially available and used as received. A methanol (10 ml) solution of 2-hydroxybenzaldehyde (1.5 mmol) was drop-wise added to a methanol solution (10 ml) of 2-furanecarboxylic acid hydrazide (1.5 mmol), and the mixture was refluxed for 3 h. Then the solution was evaporated on a steam bath to 5 cm3 and cooled to room temperature. Light yellow precipitates of the title compound were separated and filtered off, washed with 3 ml of cooled methanol and then dried in air. X-ray quality crystals of the title compound were obtained from methanol by slow solvent evaporation. Yield: 78%, mp 191 °C.

Refinement top

O– and N–bound H atoms were refined freely. C-bonded H atoms were positioned geometrically (C—H = 0.93 Å) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)]. 9672 Friedel pairs have been merged. The Flack parameter is meaningless.

Structure description top

As part of our studies on the synthesis and characterization of aroylhydrazone derivatives, we report the crystal structure of (E)—N'-(2-hydroxybenzylidene)furan-2-carbohydrazide.

The asymmetric unit contains one molecule of the title compound, which is shown in Figure 1. The molecule is almost planar with a dihedral angle of 16.12 (13)° between the benzene ring and the furan ring. This configuration is stabilized by an intramolecular O—H···N hydrogen bond, with the nitrogen of the azomethine group (–C=N–) acting as acceptor. Intermolecular N—H···O hydrogen bonds with the keto group as acceptor lead to strands along [001] (Fig. 2).

For historical background to aroylhydrazones, see: Offe et al. (1952); Craliz et al. (1955); Pickart et al. (1983); Arapov et al. (1987); Ranford et al. (1998); Savanini et al. (2002). For related structures, see: Monfared et al. (2010); Ali et al. (2005); Li et al. (2007); Diao et al. (2007).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms. The dashed line indicates intramolecular O–H···N hydrogen bond.
[Figure 2] Fig. 2. View of the unit cell of the title compound viewed along [010]. Hydrogen bonds are drawn as dashed lines.
(E)-N'-(2-Hydroxybenzylidene)furan-2-carbohydrazide top
Crystal data top
C12H10N2O3F(000) = 480
Mr = 230.22Dx = 1.411 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 6480 reflections
a = 17.3539 (15) Åθ = 2.1–26.9°
b = 6.3320 (4) ŵ = 0.10 mm1
c = 9.8613 (7) ÅT = 293 K
V = 1083.61 (14) Å3Prism, light yellow
Z = 40.46 × 0.29 × 0.20 mm
Data collection top
Stoe IPDS 2
diffractometer
792 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 26.0°, θmin = 2.4°
Detector resolution: 6.67 pixels mm-1h = 2121
w scansk = 67
6705 measured reflectionsl = 1112
1130 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.0138P)2]
where P = (Fo2 + 2Fc2)/3
1130 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.10 e Å3
3 restraintsΔρmin = 0.11 e Å3
Crystal data top
C12H10N2O3V = 1083.61 (14) Å3
Mr = 230.22Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 17.3539 (15) ŵ = 0.10 mm1
b = 6.3320 (4) ÅT = 293 K
c = 9.8613 (7) Å0.46 × 0.29 × 0.20 mm
Data collection top
Stoe IPDS 2
diffractometer
792 reflections with I > 2σ(I)
6705 measured reflectionsRint = 0.056
1130 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.043H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.10 e Å3
1130 reflectionsΔρmin = 0.11 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44074 (10)0.4371 (3)0.5468 (2)0.0396 (5)
C20.43426 (12)0.2756 (4)0.6432 (2)0.0459 (6)
C30.48301 (13)0.1039 (4)0.6372 (3)0.0594 (7)
H30.47810.00390.70060.071*
C40.53899 (13)0.0898 (4)0.5384 (3)0.0616 (7)
H40.57100.02780.53490.074*
C50.54754 (12)0.2496 (4)0.4452 (3)0.0579 (7)
H50.58590.24170.37960.070*
C60.49918 (11)0.4207 (4)0.4496 (3)0.0496 (6)
H60.50540.52850.38650.060*
C70.38950 (11)0.6177 (4)0.5438 (2)0.0461 (6)
H70.39280.71230.47180.055*
C80.25245 (13)0.9022 (4)0.7261 (2)0.0447 (5)
C90.21197 (12)1.0979 (4)0.6958 (2)0.0449 (6)
C100.16454 (13)1.2205 (4)0.7684 (3)0.0569 (6)
H100.14721.19480.85610.068*
C110.14591 (15)1.3964 (4)0.6865 (3)0.0626 (8)
H110.11391.50850.70970.075*
C120.18302 (13)1.3702 (4)0.5694 (3)0.0607 (7)
H120.18081.46340.49660.073*
N10.33997 (9)0.6505 (3)0.63712 (19)0.0455 (5)
N20.29468 (9)0.8264 (3)0.62150 (19)0.0489 (5)
H20.29310.88920.54420.059*
O10.38068 (10)0.2824 (3)0.74331 (17)0.0594 (5)
O20.24940 (11)0.8172 (2)0.83793 (16)0.0575 (4)
O30.22438 (8)1.1887 (3)0.57132 (16)0.0557 (4)
H220.3504 (17)0.397 (4)0.736 (3)0.095 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0403 (11)0.0426 (14)0.0360 (12)0.0038 (10)0.0032 (11)0.0029 (12)
C20.0445 (12)0.0538 (16)0.0395 (13)0.0066 (11)0.0031 (12)0.0030 (13)
C30.0668 (15)0.0509 (16)0.0604 (17)0.0002 (14)0.0073 (15)0.0084 (14)
C40.0566 (14)0.0627 (18)0.0653 (18)0.0127 (13)0.0034 (15)0.0040 (18)
C50.0463 (14)0.074 (2)0.0536 (16)0.0036 (13)0.0022 (13)0.0168 (15)
C60.0493 (14)0.0584 (16)0.0412 (15)0.0033 (13)0.0019 (11)0.0001 (15)
C70.0469 (11)0.0547 (16)0.0366 (12)0.0040 (11)0.0014 (12)0.0014 (11)
C80.0444 (12)0.0533 (14)0.0364 (13)0.0000 (12)0.0023 (10)0.0041 (14)
C90.0428 (12)0.0559 (15)0.0360 (13)0.0037 (12)0.0005 (10)0.0039 (13)
C100.0599 (14)0.0665 (18)0.0444 (14)0.0099 (15)0.0048 (13)0.0046 (14)
C110.0652 (17)0.0651 (18)0.0576 (17)0.0197 (14)0.0024 (13)0.0115 (16)
C120.0649 (15)0.0568 (19)0.0604 (17)0.0135 (13)0.0125 (14)0.0000 (15)
N10.0450 (10)0.0506 (13)0.0409 (10)0.0042 (9)0.0020 (10)0.0045 (10)
N20.0587 (10)0.0532 (12)0.0349 (11)0.0110 (10)0.0020 (10)0.0009 (10)
O10.0615 (10)0.0708 (13)0.0459 (10)0.0058 (10)0.0095 (9)0.0086 (10)
O20.0702 (10)0.0643 (10)0.0382 (10)0.0069 (9)0.0059 (9)0.0018 (9)
O30.0592 (10)0.0644 (11)0.0434 (10)0.0118 (8)0.0015 (8)0.0016 (10)
Geometric parameters (Å, º) top
C1—C61.399 (3)C8—O21.228 (3)
C1—C21.401 (3)C8—N21.354 (3)
C1—C71.449 (3)C8—C91.456 (3)
C2—O11.357 (3)C9—C101.339 (3)
C2—C31.379 (3)C9—O31.372 (3)
C3—C41.378 (3)C10—C111.413 (3)
C3—H30.9300C10—H100.9300
C4—C51.375 (4)C11—C121.332 (4)
C4—H40.9300C11—H110.9300
C5—C61.371 (3)C12—O31.355 (3)
C5—H50.9300C12—H120.9300
C6—H60.9300N1—N21.371 (2)
C7—N11.277 (3)N2—H20.8600
C7—H70.9300O1—H220.90 (3)
C6—C1—C2117.9 (2)O2—C8—N2123.5 (2)
C6—C1—C7119.3 (2)O2—C8—C9122.5 (2)
C2—C1—C7122.75 (19)N2—C8—C9114.0 (2)
O1—C2—C3118.5 (2)C10—C9—O3109.4 (2)
O1—C2—C1121.7 (2)C10—C9—C8132.8 (2)
C3—C2—C1119.8 (2)O3—C9—C8117.72 (19)
C4—C3—C2120.9 (2)C9—C10—C11106.9 (2)
C4—C3—H3119.5C9—C10—H10126.5
C2—C3—H3119.5C11—C10—H10126.5
C5—C4—C3120.0 (2)C12—C11—C10106.7 (2)
C5—C4—H4120.0C12—C11—H11126.7
C3—C4—H4120.0C10—C11—H11126.7
C6—C5—C4119.6 (2)C11—C12—O3110.5 (2)
C6—C5—H5120.2C11—C12—H12124.8
C4—C5—H5120.2O3—C12—H12124.8
C5—C6—C1121.6 (2)C7—N1—N2115.92 (19)
C5—C6—H6119.2C8—N2—N1120.84 (19)
C1—C6—H6119.2C8—N2—H2119.6
N1—C7—C1121.8 (2)N1—N2—H2119.6
N1—C7—H7119.1C2—O1—H22111.8 (19)
C1—C7—H7119.1C12—O3—C9106.5 (2)
C6—C1—C2—O1178.0 (2)N2—C8—C9—C10179.1 (2)
C7—C1—C2—O12.3 (3)O2—C8—C9—O3174.7 (2)
C6—C1—C2—C32.2 (3)N2—C8—C9—O33.9 (3)
C7—C1—C2—C3177.5 (2)O3—C9—C10—C110.1 (3)
O1—C2—C3—C4179.3 (2)C8—C9—C10—C11177.4 (2)
C1—C2—C3—C40.9 (3)C9—C10—C11—C120.0 (3)
C2—C3—C4—C50.9 (4)C10—C11—C12—O30.1 (3)
C3—C4—C5—C61.2 (4)C1—C7—N1—N2179.55 (19)
C4—C5—C6—C10.2 (3)O2—C8—N2—N12.7 (3)
C2—C1—C6—C51.9 (3)C9—C8—N2—N1175.82 (18)
C7—C1—C6—C5177.8 (2)C7—N1—N2—C8165.59 (19)
C6—C1—C7—N1173.37 (19)C11—C12—O3—C90.2 (3)
C2—C1—C7—N16.9 (3)C10—C9—O3—C120.2 (2)
O2—C8—C9—C102.3 (4)C8—C9—O3—C12177.90 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.212.900 (2)137
O1—H22···N10.90 (3)1.89 (3)2.651 (3)141 (3)
Symmetry code: (i) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC12H10N2O3
Mr230.22
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)17.3539 (15), 6.3320 (4), 9.8613 (7)
V3)1083.61 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.46 × 0.29 × 0.20
Data collection
DiffractometerStoe IPDS 2
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6705, 1130, 792
Rint0.056
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.043, 0.81
No. of reflections1130
No. of parameters159
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.10, 0.11

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.212.900 (2)136.9
O1—H22···N10.90 (3)1.89 (3)2.651 (3)141 (3)
Symmetry code: (i) x+1/2, y, z1/2.
 

Acknowledgements

The authors are grateful to Zanjan University and Ondokuz Mayis University.

References

First citationAli, H. M., Puvaneswary, S., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, o1079–o1080.  CSD CrossRef IUCr Journals Google Scholar
First citationArapov, O. V., Alferva, O. F., Levocheskaya, E. I. & Krasilnikov, I. (1987). Radiobiologiya, 27, 843–846.  CAS Google Scholar
First citationCraliz, J. C., Rub, J. C., Willis, D. & Edger, J. (1955). Nature (London), 34, 176.  Google Scholar
First citationDiao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMonfared, H. H., Bikas, R. & Mayer, P. (2010). Acta Cryst. E66, o236–o237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOffe, H. A., Siefken, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 462–468.  Google Scholar
First citationPickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. & Johnson, D. K. (1983). Biochem. Pharmacol. 32, 3868–3871.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSavanini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193–2198.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds