inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Strontium disodium hexa­thio­diphosphate(IV) octa­hydrate

aInstitute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Strasse 4, 38678 Clausthal-Zellerfeld, Germany
*Correspondence e-mail: mimoza.gjikaj@tu-clausthal.de

(Received 11 June 2010; accepted 28 June 2010; online 3 July 2010)

The crystal structure of SrNa2(P2S6)·8H2O is isotypic with that of its calcium analogue. The asymmetric unit consists of one Sr2+ cation (2 symmetry), two Na+ cations (2 and [\overline{1}] symmetry, respectively), one-half of a centrosymmetric (P2S6)4− anion with a staggered confirmation and four water mol­ecules. The crystal structure is built up from layers of cations and anions extending parallel to (101). Each SrO8 polyhedron is connected via edge-sharing to two NaO4S2 octa­hedra and to one NaO2S4 octa­hedron. The NaO4S2 octa­edra are, in turn, connected with two (P2S6)4− anions through common corners. Adjacent layers are held together by several O—H⋯S hydrogen-bonding inter­actions.

Related literature

For background to thio­diphosphates(IV), including their crystal structures, see: Jörgens et al. (2003[Jörgens, S., Mewis, A., Hoffmann, R.-D., Pöttgen, R. & Mosel, B. D. (2003). Z. Anorg. Allg. Chem. 629, 429-433.]); Klingen et al. (1973[Klingen, W., Ott, R. & Hahn, H. (1973). Z. Anorg. Allg. Chem. 396, 271-278.]). For the synthesis of Na4(P2S6)·6H2O, see: Fincher et al. (1998[Fincher, T., LeBret, G. & Cleary, D. A. (1998). J. Solid State Chem. 141, 274-281.]). For the isotypic structure of CaNa2(P2S6)·8H2O, see: Ehrhardt &Gjikaj (2010[Ehrhardt, C. & Gjikaj, M. (2010). Acta Cryst. E66, i54.]).

Experimental

Crystal data
  • SrNa2(P2S6)·8H2O

  • Mr = 532.03

  • Monoclinic, C 2/c

  • a = 14.9010 (19) Å

  • b = 9.3282 (7) Å

  • c = 14.1338 (19) Å

  • β = 114.918 (10)°

  • V = 1781.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.98 mm−1

  • T = 223 K

  • 0.28 × 0.26 × 0.25 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • 14472 measured reflections

  • 2544 independent reflections

  • 2302 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.12

  • 2544 reflections

  • 121 parameters

  • All H-atom parameters refined

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Selected bond lengths (Å)

Sr—O1 2.573 (2)
Sr—O2 2.596 (2)
Sr—O3 2.631 (2)
Sr—O4 2.6459 (19)
Na1—O3 2.345 (2)
Na1—O4 2.372 (2)
Na1—S2i 2.9741 (7)
Na2—O2 2.570 (3)
Na2—S1i 2.9525 (15)
Na2—S3 2.9924 (9)
P—S1 2.0162 (9)
P—S2 2.0243 (9)
P—S3 2.0248 (9)
P—Pi 2.2405 (12)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯S3ii 0.76 (7) 2.66 (6) 3.324 (3) 146 (6)
O1—H1B⋯S2iii 0.86 (6) 2.53 (6) 3.306 (3) 151 (5)
O2—H2A⋯S2ii 0.82 (6) 2.51 (6) 3.334 (2) 176 (6)
O2—H2B⋯S2i 0.79 (5) 2.43 (5) 3.214 (2) 176 (5)
O3—H3A⋯S1iv 0.76 (7) 2.44 (7) 3.169 (2) 163 (5)
O3—H3B⋯S1ii 0.88 (7) 2.40 (7) 3.222 (2) 157 (6)
O4—H4A⋯S3v 0.95 (5) 2.29 (5) 3.245 (2) 175 (4)
O4—H4B⋯S3 0.91 (6) 2.30 (6) 3.199 (2) 171 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+1, y-1, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Alkaline earth hypothiodiphosphates were first reported by Klingen et al. (1973). The structure of the title compound, SrNa2(P2S6).8H2O, is isotypic with that of its calcium analogue, CaNa2(P2S6).8H2O (Ehrhardt & Gjikaj, 2010). The asymmetric unit of SrNa2(P2S6).8H2O contains one Sr2+ cation, two Na+ cations, one half of a (P2S6)4- anion and four water molecules (Fig. 1)

Na(1) is octahedrally coordinated by four H2O molecules and two sulfur atoms of two (P2S6)4- anions (Fig. 2). Na(2) is also octahedrally coordinated by two H2O molecules and four sulfur atoms of two (P2S6)4- anions (Fig. 3). The strontium cation is eightfold coordinated by water O atoms with Sr—O distances from 2.573 (2) to 2.6459 (19) Å. The SrO8 coordination polyhedron can be described as a bicapped trigonal prism.

The crystal structure is built up from layers of cations and anions extending parallel to (101). Within the layer each SrO8 polyhedron is connected by edge-sharing to two Na(1)O4S2 octahedra and to one Na(2)O2S4 octaedron. Furthermore, the Na(1)O4S2 octaedra are connected through common corners with two (P2S6)4- anions.

The discrete ethane-like (P2S6)4- anion has a staggered conformation and is located on a centre of inversion associated with the midpoint of the P—P bond. The corresponding P—P distance is 2.2405 (12) Å; the P—S distances range from 2.0162 (9) to 2.0248 (9) Å. These values agree well with those reported previously for other hypothiodiphosphate structures (Jörgens et al., 2003).

Neighbouring layers are held together by various O—H···S hydrogen bonding interactions. The donor—acceptor distances between O atoms of water molecules and S atoms of (P2S6)4- units range from 3.169 to 3.334 Å (Table 2).

With the exception of the M-O bond lengths (M = Ca, Sr), all other bond lengths and angles as well as the O—H···S hydrogen bonding scheme are very similar in the two isotypic MNa2(P2S6).8H2O structures.

Related literature top

For background to thiodiphosphates(IV), including their crystal structures, see: Jörgens et al. (2003); Klingen et al. (1973). For the synthesis of Na4(P2S6).6H2O, see: Fincher et al. (1998). For the isotypic structure of CaNa2(P2S6).8H2O, see: Ehrhardt & Gjikaj (2010).

Experimental top

Na4(P2S6).6H2O has been prepared according to Fincher et al. (1998). The title compound was obtained by adding a molar equivalent of strontium hydroxide to a solution of Na4(P2S6).6H2O in 70 ml distilled water at 348 K. Slow cooling to room temperature yielded colorless crystals of the title compound within some days.

Refinement top

Hydrogen atoms were found from the difference Fourier map and were refined independently from their respective oxygen atoms with individual isotropic displacement parameters.

Structure description top

Alkaline earth hypothiodiphosphates were first reported by Klingen et al. (1973). The structure of the title compound, SrNa2(P2S6).8H2O, is isotypic with that of its calcium analogue, CaNa2(P2S6).8H2O (Ehrhardt & Gjikaj, 2010). The asymmetric unit of SrNa2(P2S6).8H2O contains one Sr2+ cation, two Na+ cations, one half of a (P2S6)4- anion and four water molecules (Fig. 1)

Na(1) is octahedrally coordinated by four H2O molecules and two sulfur atoms of two (P2S6)4- anions (Fig. 2). Na(2) is also octahedrally coordinated by two H2O molecules and four sulfur atoms of two (P2S6)4- anions (Fig. 3). The strontium cation is eightfold coordinated by water O atoms with Sr—O distances from 2.573 (2) to 2.6459 (19) Å. The SrO8 coordination polyhedron can be described as a bicapped trigonal prism.

The crystal structure is built up from layers of cations and anions extending parallel to (101). Within the layer each SrO8 polyhedron is connected by edge-sharing to two Na(1)O4S2 octahedra and to one Na(2)O2S4 octaedron. Furthermore, the Na(1)O4S2 octaedra are connected through common corners with two (P2S6)4- anions.

The discrete ethane-like (P2S6)4- anion has a staggered conformation and is located on a centre of inversion associated with the midpoint of the P—P bond. The corresponding P—P distance is 2.2405 (12) Å; the P—S distances range from 2.0162 (9) to 2.0248 (9) Å. These values agree well with those reported previously for other hypothiodiphosphate structures (Jörgens et al., 2003).

Neighbouring layers are held together by various O—H···S hydrogen bonding interactions. The donor—acceptor distances between O atoms of water molecules and S atoms of (P2S6)4- units range from 3.169 to 3.334 Å (Table 2).

With the exception of the M-O bond lengths (M = Ca, Sr), all other bond lengths and angles as well as the O—H···S hydrogen bonding scheme are very similar in the two isotypic MNa2(P2S6).8H2O structures.

For background to thiodiphosphates(IV), including their crystal structures, see: Jörgens et al. (2003); Klingen et al. (1973). For the synthesis of Na4(P2S6).6H2O, see: Fincher et al. (1998). For the isotypic structure of CaNa2(P2S6).8H2O, see: Ehrhardt & Gjikaj (2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of CaNa2(P2S6).8H2O in a projection along [010].
[Figure 2] Fig. 2. Coordination of Na1 with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. Symmetry codes as in Table 1. H atoms are represented as spheres of arbirtary radius.
[Figure 3] Fig. 3. View of the edge-shared CaO8 and Na(2)O2S4 polyhedra with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. Symmetry codes as in Table 1. H atoms are represented as spheres of arbirtary radius.
Strontium disodium hexathiodiphosphate(IV) octahydrate top
Crystal data top
SrNa2(P2S6)·8H2OF(000) = 1064
Mr = 532.03Dx = 1.983 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 14971 reflections
a = 14.9010 (19) Åθ = 1.0–29.8°
b = 9.3282 (7) ŵ = 3.98 mm1
c = 14.1338 (19) ÅT = 223 K
β = 114.918 (10)°Block, colorless
V = 1781.7 (4) Å30.28 × 0.26 × 0.25 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
2302 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 29.8°, θmin = 2.7°
ω–scansh = 2020
14472 measured reflectionsk = 1311
2544 independent reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0378P)2 + 5.0597P]
where P = (Fo2 + 2Fc2)/3
2544 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
SrNa2(P2S6)·8H2OV = 1781.7 (4) Å3
Mr = 532.03Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.9010 (19) ŵ = 3.98 mm1
b = 9.3282 (7) ÅT = 223 K
c = 14.1338 (19) Å0.28 × 0.26 × 0.25 mm
β = 114.918 (10)°
Data collection top
Stoe IPDS 2
diffractometer
2302 reflections with I > 2σ(I)
14472 measured reflectionsRint = 0.064
2544 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.087All H-atom parameters refined
S = 1.12Δρmax = 1.14 e Å3
2544 reflectionsΔρmin = 0.89 e Å3
121 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr0.50000.24637 (4)0.25000.01746 (10)
Na10.25000.25000.00000.0260 (3)
Na20.50000.6875 (3)0.25000.0440 (5)
P0.20406 (5)0.76351 (7)0.04496 (5)0.01570 (13)
S10.07286 (5)0.67170 (8)0.04401 (6)0.02445 (15)
S20.18992 (5)0.97603 (7)0.06433 (5)0.01959 (14)
S30.28146 (5)0.66742 (8)0.18434 (5)0.02452 (15)
O10.59794 (17)0.0300 (3)0.2305 (2)0.0318 (5)
O20.50855 (17)0.4687 (2)0.14363 (17)0.0259 (4)
O30.41245 (15)0.1665 (2)0.05340 (16)0.0238 (4)
O40.31300 (14)0.3293 (2)0.17560 (15)0.0220 (4)
H1A0.627 (5)0.042 (7)0.197 (5)0.08 (2)*
H1B0.638 (4)0.000 (6)0.292 (5)0.065 (17)*
H2A0.555 (5)0.473 (6)0.127 (5)0.070 (17)*
H2B0.461 (4)0.486 (5)0.093 (4)0.046 (13)*
H3A0.404 (4)0.086 (7)0.048 (5)0.067 (17)*
H3B0.450 (5)0.195 (8)0.023 (5)0.09 (2)*
H4A0.282 (3)0.283 (5)0.214 (4)0.037 (11)*
H4B0.302 (4)0.425 (7)0.170 (4)0.059 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr0.01698 (15)0.01714 (16)0.01694 (15)0.0000.00585 (11)0.000
Na10.0230 (7)0.0303 (9)0.0221 (7)0.0003 (6)0.0068 (6)0.0014 (6)
Na20.0384 (10)0.0598 (15)0.0284 (9)0.0000.0086 (8)0.000
P0.0192 (3)0.0137 (3)0.0171 (3)0.0002 (2)0.0104 (2)0.0003 (2)
S10.0209 (3)0.0200 (3)0.0336 (3)0.0042 (2)0.0127 (3)0.0043 (3)
S20.0232 (3)0.0145 (3)0.0219 (3)0.0012 (2)0.0103 (2)0.0008 (2)
S30.0343 (3)0.0226 (3)0.0197 (3)0.0094 (3)0.0144 (3)0.0058 (2)
O10.0232 (10)0.0306 (12)0.0366 (12)0.0049 (8)0.0076 (9)0.0042 (10)
O20.0237 (9)0.0299 (11)0.0224 (9)0.0016 (8)0.0081 (8)0.0062 (8)
O30.0277 (10)0.0218 (10)0.0236 (9)0.0005 (8)0.0126 (8)0.0037 (8)
O40.0242 (9)0.0205 (9)0.0229 (9)0.0013 (7)0.0115 (7)0.0007 (8)
Geometric parameters (Å, º) top
Sr—O12.573 (2)Na1—S2iv2.9741 (7)
Sr—O1i2.573 (2)Na2—O22.570 (3)
Sr—O2i2.596 (2)Na2—O2i2.570 (3)
Sr—O22.596 (2)Na2—S1iv2.9525 (15)
Sr—O32.631 (2)Na2—S1v2.9525 (15)
Sr—O3i2.631 (2)Na2—S32.9924 (9)
Sr—O42.6459 (19)Na2—S3i2.9925 (9)
Sr—O4i2.6459 (19)P—S12.0162 (9)
Na1—O3ii2.344 (2)P—S22.0243 (9)
Na1—O32.345 (2)P—S32.0248 (9)
Na1—O42.372 (2)P—Piv2.2405 (12)
Na1—O4ii2.372 (2)S1—Na2iv2.9525 (15)
Na1—S2iii2.9741 (7)S2—Na1vi2.9741 (7)
O1—Sr—O1i76.65 (12)O3—Na1—S2iii91.09 (6)
O1—Sr—O2i149.01 (7)O4—Na1—S2iii89.18 (5)
O1i—Sr—O2i113.34 (9)O4ii—Na1—S2iii90.82 (5)
O1—Sr—O2113.34 (9)O3ii—Na1—S2iv91.09 (6)
O1i—Sr—O2149.01 (7)O3—Na1—S2iv88.91 (6)
O2i—Sr—O273.96 (10)O4—Na1—S2iv90.82 (5)
O1—Sr—O373.49 (8)O4ii—Na1—S2iv89.18 (5)
O1i—Sr—O380.77 (8)S2iii—Na1—S2iv180.0
O2i—Sr—O3135.60 (7)O2—Na2—O2i74.82 (12)
O2—Sr—O374.82 (7)O2—Na2—S1iv82.23 (5)
O1—Sr—O3i80.78 (8)O2i—Na2—S1iv147.35 (8)
O1i—Sr—O3i73.50 (8)O2—Na2—S1v147.35 (8)
O2i—Sr—O3i74.82 (7)O2i—Na2—S1v82.23 (5)
O2—Sr—O3i135.59 (7)S1iv—Na2—S1v127.17 (10)
O3—Sr—O3i147.09 (10)O2—Na2—S394.85 (7)
O1—Sr—O4137.47 (7)O2i—Na2—S379.40 (6)
O1i—Sr—O473.86 (7)S1iv—Na2—S379.75 (3)
O2i—Sr—O472.30 (7)S1v—Na2—S3103.51 (3)
O2—Sr—O480.60 (7)O2—Na2—S3i79.40 (6)
O3—Sr—O472.10 (6)O2i—Na2—S3i94.85 (7)
O3i—Sr—O4118.24 (6)S1iv—Na2—S3i103.51 (3)
O1—Sr—O4i73.86 (7)S1v—Na2—S3i79.75 (3)
O1i—Sr—O4i137.47 (7)S3—Na2—S3i172.83 (11)
O2i—Sr—O4i80.60 (7)S1—P—S2111.81 (4)
O2—Sr—O4i72.30 (7)S1—P—S3115.08 (4)
O3—Sr—O4i118.23 (6)S2—P—S3110.55 (4)
O3i—Sr—O4i72.10 (6)S1—P—Piv105.20 (5)
O4—Sr—O4i145.98 (9)S2—P—Piv108.07 (5)
O3ii—Na1—O3180.0S3—P—Piv105.57 (5)
O3ii—Na1—O497.64 (7)P—S1—Na2iv106.45 (5)
O3—Na1—O482.36 (7)P—S2—Na1vi137.58 (3)
O3ii—Na1—O4ii82.36 (7)P—S3—Na2111.92 (4)
O3—Na1—O4ii97.64 (7)Na2—O2—Sr105.61 (9)
O4—Na1—O4ii180.0Na1—O3—Sr103.36 (8)
O3ii—Na1—S2iii88.91 (6)Na1—O4—Sr102.17 (7)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y1, z; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+3/2, z+1/2; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S3vii0.76 (7)2.66 (6)3.324 (3)146 (6)
O1—H1B···S2viii0.86 (6)2.53 (6)3.306 (3)151 (5)
O2—H2A···S2vii0.82 (6)2.51 (6)3.334 (2)176 (6)
O2—H2B···S2iv0.79 (5)2.43 (5)3.214 (2)176 (5)
O3—H3A···S1ii0.76 (7)2.44 (7)3.169 (2)163 (5)
O3—H3B···S1vii0.88 (7)2.40 (7)3.222 (2)157 (6)
O4—H4A···S3ix0.95 (5)2.29 (5)3.245 (2)175 (4)
O4—H4B···S30.91 (6)2.30 (6)3.199 (2)171 (5)
Symmetry codes: (ii) x+1/2, y+1/2, z; (iv) x+1/2, y+3/2, z; (vii) x+1/2, y1/2, z; (viii) x+1, y1, z+1/2; (ix) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaSrNa2(P2S6)·8H2O
Mr532.03
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)14.9010 (19), 9.3282 (7), 14.1338 (19)
β (°) 114.918 (10)
V3)1781.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.98
Crystal size (mm)0.28 × 0.26 × 0.25
Data collection
DiffractometerStoe IPDS 2
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14472, 2544, 2302
Rint0.064
(sin θ/λ)max1)0.700
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.12
No. of reflections2544
No. of parameters121
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.14, 0.89

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004).

Selected bond lengths (Å) top
Sr—O12.573 (2)Na2—O22.570 (3)
Sr—O22.596 (2)Na2—S1i2.9525 (15)
Sr—O32.631 (2)Na2—S32.9924 (9)
Sr—O42.6459 (19)P—S12.0162 (9)
Na1—O32.345 (2)P—S22.0243 (9)
Na1—O42.372 (2)P—S32.0248 (9)
Na1—S2i2.9741 (7)P—Pi2.2405 (12)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S3ii0.76 (7)2.66 (6)3.324 (3)146 (6)
O1—H1B···S2iii0.86 (6)2.53 (6)3.306 (3)151 (5)
O2—H2A···S2ii0.82 (6)2.51 (6)3.334 (2)176 (6)
O2—H2B···S2i0.79 (5)2.43 (5)3.214 (2)176 (5)
O3—H3A···S1iv0.76 (7)2.44 (7)3.169 (2)163 (5)
O3—H3B···S1ii0.88 (7)2.40 (7)3.222 (2)157 (6)
O4—H4A···S3v0.95 (5)2.29 (5)3.245 (2)175 (4)
O4—H4B···S30.91 (6)2.30 (6)3.199 (2)171 (5)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z; (iii) x+1, y1, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y1/2, z+1/2.
 

References

First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEhrhardt, C. & Gjikaj, M. (2010). Acta Cryst. E66, i54.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFincher, T., LeBret, G. & Cleary, D. A. (1998). J. Solid State Chem. 141, 274–281.  Web of Science CrossRef CAS Google Scholar
First citationJörgens, S., Mewis, A., Hoffmann, R.-D., Pöttgen, R. & Mosel, B. D. (2003). Z. Anorg. Allg. Chem. 629, 429–433.  Google Scholar
First citationKlingen, W., Ott, R. & Hahn, H. (1973). Z. Anorg. Allg. Chem. 396, 271–278.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds