metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2-amino-1,3-thia­zole-κN3)(7-oxa­bi­cyclo­[2.2.1]heptane-2,3-di­carboxyl­ato-κ3O2,O3,O7)cadmium(II) dihydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and cCollege of Public Administration, Zhejiang University, Hangzhou, 310027, Zhejiang , People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 15 June 2010; accepted 8 July 2010; online 17 July 2010)

In the crystal structure of the title complex, [Cd(C8H8O5)(C3H4N2S)3]·2H2O, the CdII atom exhibits a slightly distorted octa­hedral CdO3N3 coordination, defined by the bridging O atom of the bicyclo­heptane unit, two O atoms from the carboxyl­ate groups and by three N atoms from three 2-amino­thia­zole ligands. Uncoordinated lattice water mol­ecules are also present in the crystal structure. N—H⋯O and O—H⋯O hydrogen-bonding inter­actions link the components into a three-dimensional structure.

Related literature

For synthetic aspects, see: Yin et al. (2003[Yin, F. L., Shen, J., Zou, J. J. & Li, R. C. (2003). Acta Chim. Sin. 61, 556-561.]). For background to 7-oxabicyclo­(2,2,1) heptane-2,3-dicarb­oxy­lic anhydride (nor­can­tharidin), see: Shimi et al. (1982[Shimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785-789.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H8O5)(C3H4N2S)3]·2H2O

  • Mr = 633.00

  • Monoclinic, P 21 /c

  • a = 9.6457 (3) Å

  • b = 9.9255 (3) Å

  • c = 25.4653 (9) Å

  • β = 101.980 (2)°

  • V = 2384.91 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 296 K

  • 0.08 × 0.08 × 0.04 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.90, Tmax = 0.95

  • 19757 measured reflections

  • 5480 independent reflections

  • 2777 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.119

  • S = 1.01

  • 5480 reflections

  • 319 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O4 2.268 (4)
Cd1—N4 2.302 (5)
Cd1—N2 2.305 (5)
Cd1—O2 2.312 (4)
Cd1—N6 2.341 (5)
Cd1—O1 2.467 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.04 2.867 (6) 161
N1—H1B⋯O3i 0.86 2.19 2.931 (6) 144
N3—H3B⋯O4 0.86 2.00 2.803 (7) 156
N3—H3C⋯O1Wii 0.86 2.14 2.965 (7) 160
N5—H5B⋯O1 0.86 2.15 2.917 (7) 149
N5—H5C⋯O3iii 0.86 2.46 3.177 (7) 141
N5—H5C⋯O2Wiv 0.86 2.47 3.052 (9) 125
O1W—H1⋯O5v 0.86 (2) 1.97 (2) 2.817 (6) 174 (7)
O1W—H2⋯O3vi 0.85 (2) 2.03 (2) 2.865 (6) 168 (6)
O2W—H3⋯O5vii 0.86 (6) 2.25 (6) 2.996 (9) 145 (9)
O2W—H4⋯O5 0.88 (7) 2.12 (4) 2.962 (10) 162 (12)
Symmetry codes: (i) -x, -y+2, -z; (ii) x-1, y, z; (iii) x+1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x+1, y-1, z; (vii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

7-oxabicyclo(2,2,1) heptane-2,3-dicarboxylic anhydride (norcantharidin), a traditional Chinese drug, has a great inhibitive effect on various cancer cells (Shimi et al., 1982) which makes norcantharidin and its derivatives interesting compounds. Cadmium acetate can react with 2-aminothiazole and disodium demethylcantharate to form the title compound, [Cd(C8H8O5)(C3H4N2S)3].2H2O.

The CdII atom exhibits a slightly distorted octahedral CdO3N3 coordination (Fig. 1), defined by the bridging O atom of the bicycloheptane unit, two O atoms from the carboxylate groups and by three N atoms from three different 2-aminothiazole ligands. O4, N6, N2 and O2 define the equatorial plane; O1 and N4 are in the axial positions. The bond angle O1—Cd1—N4 of 171.27 (14)° is indicative of the polyhedral distortion. Owing to the binding of the bridging oxygen atom to the CdII atom, two six-membered rings (Cd1—O1—C6—C4—C2—O2) and (Cd1—O1—C5—C3—C1—O4) are created. In addition, a seven-membered ring (Cd1—O2—C2—C4—C3—C1—O4) is formed which helps to stabilize the complex.

Uncoordinated lattice water molecules are also present in the crystal structure. N—H···O and O—H···O hydrogen-bonding interactions link the components into a three-dimensional structure.

Related literature top

For synthetic aspects, see: Yin et al. (2003). For background to 7-oxabicyclo(2,2,1) heptane-2,3-dicarboxylic anhydride (norcantharidin), see: Shimi et al. (1982).

Experimental top

Disodium demethylcantharate was prepared according to literature procedures (Yin et al., 2003). Cadmium acetate, disodium demethylcantharate and 2-aminothiazole were dissolved in 15 ml distilled water. The mixture was sealed in a 25 ml Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. Crystal suitable for X-ray diffraction were obtained.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97–0.98 Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq of the carrier atom]. The H atoms of the water molecule were located in difference Fourier maps and were refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Structure description top

7-oxabicyclo(2,2,1) heptane-2,3-dicarboxylic anhydride (norcantharidin), a traditional Chinese drug, has a great inhibitive effect on various cancer cells (Shimi et al., 1982) which makes norcantharidin and its derivatives interesting compounds. Cadmium acetate can react with 2-aminothiazole and disodium demethylcantharate to form the title compound, [Cd(C8H8O5)(C3H4N2S)3].2H2O.

The CdII atom exhibits a slightly distorted octahedral CdO3N3 coordination (Fig. 1), defined by the bridging O atom of the bicycloheptane unit, two O atoms from the carboxylate groups and by three N atoms from three different 2-aminothiazole ligands. O4, N6, N2 and O2 define the equatorial plane; O1 and N4 are in the axial positions. The bond angle O1—Cd1—N4 of 171.27 (14)° is indicative of the polyhedral distortion. Owing to the binding of the bridging oxygen atom to the CdII atom, two six-membered rings (Cd1—O1—C6—C4—C2—O2) and (Cd1—O1—C5—C3—C1—O4) are created. In addition, a seven-membered ring (Cd1—O2—C2—C4—C3—C1—O4) is formed which helps to stabilize the complex.

Uncoordinated lattice water molecules are also present in the crystal structure. N—H···O and O—H···O hydrogen-bonding interactions link the components into a three-dimensional structure.

For synthetic aspects, see: Yin et al. (2003). For background to 7-oxabicyclo(2,2,1) heptane-2,3-dicarboxylic anhydride (norcantharidin), see: Shimi et al. (1982).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level.
Tris(2-amino-1,3-thiazole-κN3)(7-oxabicyclo[2.2.1]heptane-2,3- dicarboxylato-κ3O2,O3,O7)cadmium(II) dihydrate top
Crystal data top
[Cd(C8H8O5)(C3H4N2S)3]·2H2OF(000) = 1280
Mr = 633.00Dx = 1.763 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1039 reflections
a = 9.6457 (3) Åθ = 1.6–27.6°
b = 9.9255 (3) ŵ = 1.23 mm1
c = 25.4653 (9) ÅT = 296 K
β = 101.980 (2)°Block, colorless
V = 2384.91 (13) Å30.08 × 0.08 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5480 independent reflections
Radiation source: fine-focus sealed tube2777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
φ– and ω–scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.90, Tmax = 0.95k = 1211
19757 measured reflectionsl = 3233
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0267P)2]
where P = (Fo2 + 2Fc2)/3
5480 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 0.80 e Å3
6 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cd(C8H8O5)(C3H4N2S)3]·2H2OV = 2384.91 (13) Å3
Mr = 633.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6457 (3) ŵ = 1.23 mm1
b = 9.9255 (3) ÅT = 296 K
c = 25.4653 (9) Å0.08 × 0.08 × 0.04 mm
β = 101.980 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
5480 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2777 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 0.95Rint = 0.100
19757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0576 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.80 e Å3
5480 reflectionsΔρmin = 0.69 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.30795 (4)0.70542 (5)0.098525 (16)0.03617 (15)
S10.40386 (19)0.91245 (19)0.06279 (6)0.0540 (5)
S20.07421 (19)0.28302 (19)0.04108 (8)0.0595 (5)
S30.8009 (2)0.5619 (2)0.15111 (8)0.0719 (6)
O10.4020 (4)0.9069 (4)0.15068 (14)0.0396 (10)
O20.1101 (4)0.8429 (4)0.08458 (15)0.0445 (11)
O30.0541 (4)0.9542 (5)0.11418 (16)0.0617 (14)
O40.2421 (5)0.6604 (4)0.17721 (17)0.0540 (12)
O50.1018 (5)0.7150 (5)0.23232 (19)0.0780 (16)
N10.1977 (5)0.9502 (5)0.00787 (19)0.0523 (15)
H1A0.15650.93210.01820.063*
H1B0.16371.01150.03080.063*
N20.3724 (5)0.7869 (5)0.02228 (18)0.0393 (12)
N30.1366 (5)0.4106 (5)0.1357 (2)0.0573 (16)
H3B0.16820.47550.15730.069*
H3C0.09380.34370.14670.069*
N40.2092 (5)0.5071 (5)0.06150 (18)0.0398 (12)
N50.6828 (6)0.8058 (6)0.1457 (3)0.086 (2)
H5B0.61220.86060.14040.104*
H5C0.76800.83640.15400.104*
N60.5362 (5)0.6186 (5)0.12915 (18)0.0429 (13)
C10.1932 (7)0.7435 (7)0.2067 (2)0.0464 (18)
C20.0712 (7)0.9216 (6)0.1179 (2)0.0381 (15)
C30.2499 (6)0.8860 (7)0.2105 (2)0.0426 (16)
H3A0.23690.92560.24440.051*
C40.1826 (6)0.9839 (6)0.1628 (2)0.0401 (15)
H4A0.14201.06260.17740.048*
C50.4063 (6)0.8950 (7)0.2080 (2)0.0450 (17)
H5A0.46250.81830.22480.054*
C60.3141 (6)1.0263 (6)0.1430 (2)0.0442 (16)
H6A0.29371.05900.10590.053*
C70.4675 (8)1.0305 (8)0.2285 (3)0.069 (2)
H7A0.57011.03020.23440.083*
H7B0.43911.05530.26150.083*
C80.4029 (7)1.1250 (7)0.1828 (3)0.061 (2)
H8A0.47531.16850.16740.073*
H8B0.34401.19330.19450.073*
C90.3141 (6)0.8822 (6)0.0122 (2)0.0368 (15)
C100.5278 (7)0.7915 (7)0.0356 (2)0.0503 (17)
H10A0.60700.76790.04920.060*
C110.4922 (6)0.7378 (6)0.0074 (2)0.0449 (17)
H11A0.54600.66960.02680.054*
C120.1458 (6)0.4122 (7)0.0845 (3)0.0451 (16)
C130.1311 (7)0.3632 (7)0.0100 (3)0.0530 (18)
H13A0.11620.33220.04520.064*
C140.2003 (6)0.4769 (7)0.0078 (2)0.0462 (17)
H14A0.24000.53230.01460.055*
C150.6606 (7)0.6740 (7)0.1417 (2)0.0463 (18)
C160.6826 (8)0.4331 (8)0.1364 (3)0.074 (2)
H16A0.70620.34250.13520.088*
C170.5514 (8)0.4817 (8)0.1269 (3)0.064 (2)
H17A0.47310.42500.11900.076*
O1W0.9253 (5)0.2156 (5)0.15966 (19)0.0631 (13)
H10.922 (8)0.211 (6)0.1930 (10)0.095*
H20.926 (8)0.134 (3)0.150 (2)0.095*
O2W0.1155 (7)0.4230 (9)0.2567 (3)0.134 (3)
H30.031 (5)0.395 (10)0.257 (5)0.200*
H40.101 (11)0.503 (6)0.242 (5)0.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0370 (3)0.0329 (3)0.0398 (2)0.0016 (2)0.01077 (17)0.0009 (2)
S10.0660 (12)0.0542 (13)0.0446 (10)0.0029 (10)0.0177 (9)0.0082 (9)
S20.0546 (11)0.0365 (12)0.0867 (13)0.0082 (9)0.0132 (10)0.0094 (10)
S30.0458 (12)0.0877 (18)0.0809 (14)0.0263 (11)0.0097 (10)0.0158 (12)
O10.041 (3)0.037 (3)0.038 (2)0.001 (2)0.0041 (18)0.004 (2)
O20.042 (3)0.043 (3)0.046 (2)0.006 (2)0.004 (2)0.011 (2)
O30.038 (3)0.080 (4)0.061 (3)0.024 (3)0.004 (2)0.011 (3)
O40.068 (3)0.041 (3)0.059 (3)0.004 (2)0.029 (2)0.002 (2)
O50.088 (4)0.076 (4)0.088 (4)0.015 (3)0.060 (3)0.012 (3)
N10.055 (4)0.052 (4)0.049 (3)0.013 (3)0.009 (3)0.013 (3)
N20.046 (3)0.032 (3)0.040 (3)0.004 (3)0.009 (2)0.000 (3)
N30.078 (4)0.040 (4)0.062 (4)0.014 (3)0.033 (3)0.000 (3)
N40.042 (3)0.034 (3)0.046 (3)0.000 (2)0.013 (2)0.001 (3)
N50.032 (3)0.055 (5)0.167 (7)0.012 (3)0.007 (4)0.022 (5)
N60.047 (4)0.034 (4)0.047 (3)0.007 (3)0.008 (2)0.002 (3)
C10.040 (4)0.062 (6)0.037 (4)0.001 (3)0.008 (3)0.001 (3)
C20.044 (4)0.028 (4)0.039 (4)0.003 (3)0.002 (3)0.003 (3)
C30.047 (4)0.045 (5)0.035 (3)0.000 (3)0.007 (3)0.008 (3)
C40.036 (4)0.038 (4)0.046 (4)0.007 (3)0.009 (3)0.011 (3)
C50.043 (4)0.051 (5)0.035 (3)0.000 (3)0.006 (3)0.003 (3)
C60.043 (4)0.026 (4)0.058 (4)0.001 (3)0.002 (3)0.002 (3)
C70.068 (5)0.074 (6)0.056 (4)0.006 (4)0.011 (4)0.013 (4)
C80.057 (5)0.041 (5)0.077 (5)0.011 (4)0.000 (4)0.013 (4)
C90.043 (4)0.030 (4)0.036 (3)0.003 (3)0.006 (3)0.003 (3)
C100.058 (4)0.050 (5)0.048 (4)0.007 (4)0.024 (3)0.004 (4)
C110.046 (4)0.041 (5)0.054 (4)0.001 (3)0.025 (3)0.002 (3)
C120.039 (4)0.039 (5)0.056 (4)0.002 (3)0.007 (3)0.000 (3)
C130.052 (4)0.049 (5)0.056 (4)0.010 (4)0.006 (3)0.013 (4)
C140.049 (4)0.047 (5)0.043 (4)0.001 (3)0.012 (3)0.001 (3)
C150.035 (4)0.048 (5)0.058 (4)0.008 (3)0.013 (3)0.017 (4)
C160.066 (6)0.058 (6)0.087 (6)0.021 (5)0.005 (4)0.016 (4)
C170.049 (5)0.054 (6)0.079 (5)0.005 (4)0.006 (4)0.009 (4)
O1W0.073 (3)0.048 (3)0.073 (3)0.014 (3)0.024 (3)0.001 (3)
O2W0.116 (6)0.159 (8)0.120 (5)0.020 (5)0.011 (5)0.032 (5)
Geometric parameters (Å, º) top
Cd1—O42.268 (4)N6—C151.299 (7)
Cd1—N42.302 (5)N6—C171.369 (8)
Cd1—N22.305 (5)C1—C31.513 (9)
Cd1—O22.312 (4)C2—C41.528 (8)
Cd1—N62.341 (5)C3—C51.526 (8)
Cd1—O12.467 (4)C3—C41.585 (8)
S1—C91.721 (6)C3—H3A0.9800
S1—C101.734 (6)C4—C61.520 (8)
S2—C131.709 (7)C4—H4A0.9800
S2—C121.740 (6)C5—C71.517 (9)
S3—C161.702 (8)C5—H5A0.9800
S3—C151.730 (6)C6—C81.536 (8)
O1—C61.446 (6)C6—H6A0.9800
O1—C51.457 (6)C7—C81.524 (9)
O2—C21.268 (6)C7—H7A0.9700
O3—C21.235 (6)C7—H7B0.9700
O4—C11.270 (7)C8—H8A0.9700
O5—C11.233 (7)C8—H8B0.9700
N1—C91.335 (7)C10—C111.327 (8)
N1—H1A0.8599C10—H10A0.9300
N1—H1B0.8601C11—H11A0.9300
N2—C91.332 (7)C13—C141.342 (8)
N2—C111.378 (7)C13—H13A0.9300
N3—C121.325 (7)C14—H14A0.9300
N3—H3B0.8600C16—C171.328 (9)
N3—H3C0.8600C16—H16A0.9300
N4—C121.323 (7)C17—H17A0.9300
N4—C141.385 (7)O1W—H10.855 (19)
N5—C151.325 (8)O1W—H20.849 (19)
N5—H5B0.8600O2W—H30.86 (6)
N5—H5C0.8601O2W—H40.88 (7)
O4—Cd1—N491.47 (16)C6—C4—H4A109.4
O4—Cd1—N2170.80 (16)C2—C4—H4A109.4
N4—Cd1—N296.67 (17)C3—C4—H4A109.4
O4—Cd1—O283.02 (15)O1—C5—C7101.5 (5)
N4—Cd1—O2100.56 (15)O1—C5—C3102.9 (4)
N2—Cd1—O291.26 (16)C7—C5—C3110.8 (6)
O4—Cd1—N692.84 (16)O1—C5—H5A113.5
N4—Cd1—N695.89 (18)C7—C5—H5A113.5
N2—Cd1—N690.59 (17)C3—C5—H5A113.5
O2—Cd1—N6163.12 (16)O1—C6—C4103.6 (5)
O4—Cd1—O179.80 (14)O1—C6—C8101.7 (5)
N4—Cd1—O1171.27 (14)C4—C6—C8110.3 (5)
N2—Cd1—O192.05 (14)O1—C6—H6A113.4
O2—Cd1—O178.69 (13)C4—C6—H6A113.4
N6—Cd1—O184.48 (15)C8—C6—H6A113.4
C9—S1—C1089.6 (3)C5—C7—C8102.5 (5)
C13—S2—C1289.6 (3)C5—C7—H7A111.3
C16—S3—C1589.0 (4)C8—C7—H7A111.3
C6—O1—C595.5 (4)C5—C7—H7B111.3
C6—O1—Cd1116.9 (3)C8—C7—H7B111.3
C5—O1—Cd1113.9 (3)H7A—C7—H7B109.2
C2—O2—Cd1127.7 (4)C7—C8—C6101.2 (5)
C1—O4—Cd1126.9 (4)C7—C8—H8A111.5
C9—N1—H1A119.3C6—C8—H8A111.5
C9—N1—H1B120.7C7—C8—H8B111.5
H1A—N1—H1B120.0C6—C8—H8B111.5
C9—N2—C11109.5 (5)H8A—C8—H8B109.4
C9—N2—Cd1130.8 (4)N2—C9—N1123.5 (5)
C11—N2—Cd1119.7 (4)N2—C9—S1114.1 (5)
C12—N3—H3B122.2N1—C9—S1122.4 (5)
C12—N3—H3C117.7C11—C10—S1109.4 (5)
H3B—N3—H3C120.0C11—C10—H10A125.3
C12—N4—C14110.1 (5)S1—C10—H10A125.3
C12—N4—Cd1128.1 (4)C10—C11—N2117.4 (6)
C14—N4—Cd1121.7 (4)C10—C11—H11A121.3
C15—N5—H5B120.1N2—C11—H11A121.3
C15—N5—H5C119.9N4—C12—N3125.1 (6)
H5B—N5—H5C120.0N4—C12—S2113.7 (5)
C15—N6—C17109.2 (6)N3—C12—S2121.2 (5)
C15—N6—Cd1133.1 (4)C14—C13—S2110.6 (5)
C17—N6—Cd1116.9 (4)C14—C13—H13A124.7
O5—C1—O4123.9 (7)S2—C13—H13A124.7
O5—C1—C3118.0 (6)C13—C14—N4116.1 (6)
O4—C1—C3118.1 (6)C13—C14—H14A122.0
O3—C2—O2122.1 (5)N4—C14—H14A122.0
O3—C2—C4118.5 (5)N6—C15—N5124.2 (6)
O2—C2—C4119.4 (5)N6—C15—S3114.7 (5)
C1—C3—C5113.5 (5)N5—C15—S3121.0 (5)
C1—C3—C4116.0 (5)C17—C16—S3109.7 (6)
C5—C3—C4100.6 (5)C17—C16—H16A125.1
C1—C3—H3A108.8S3—C16—H16A125.1
C5—C3—H3A108.8C16—C17—N6117.3 (7)
C4—C3—H3A108.8C16—C17—H17A121.3
C6—C4—C2111.7 (5)N6—C17—H17A121.3
C6—C4—C3100.7 (4)H1—O1W—H2104 (3)
C2—C4—C3116.0 (5)H3—O2W—H4103 (10)
O4—Cd1—O1—C696.4 (4)C1—C3—C4—C6122.3 (5)
N2—Cd1—O1—C679.4 (4)C5—C3—C4—C60.7 (6)
O2—Cd1—O1—C611.5 (4)C1—C3—C4—C21.6 (8)
N6—Cd1—O1—C6169.7 (4)C5—C3—C4—C2121.4 (5)
O4—Cd1—O1—C513.7 (3)C6—O1—C5—C757.5 (5)
N2—Cd1—O1—C5170.6 (3)Cd1—O1—C5—C7179.9 (4)
O2—Cd1—O1—C598.5 (3)C6—O1—C5—C357.3 (5)
N6—Cd1—O1—C580.2 (3)Cd1—O1—C5—C365.4 (5)
O4—Cd1—O2—C243.2 (5)C1—C3—C5—O189.2 (6)
N4—Cd1—O2—C2133.4 (5)C4—C3—C5—O135.5 (6)
N2—Cd1—O2—C2129.6 (5)C1—C3—C5—C7163.0 (5)
N6—Cd1—O2—C233.4 (8)C4—C3—C5—C772.4 (6)
O1—Cd1—O2—C237.7 (5)C5—O1—C6—C457.1 (5)
N4—Cd1—O4—C1139.6 (5)Cd1—O1—C6—C463.2 (5)
O2—Cd1—O4—C139.2 (5)C5—O1—C6—C857.4 (5)
N6—Cd1—O4—C1124.4 (5)Cd1—O1—C6—C8177.8 (3)
O1—Cd1—O4—C140.5 (5)C2—C4—C6—O189.0 (5)
N4—Cd1—N2—C9103.8 (5)C3—C4—C6—O134.7 (5)
O2—Cd1—N2—C93.0 (5)C2—C4—C6—C8162.8 (5)
N6—Cd1—N2—C9160.3 (5)C3—C4—C6—C873.5 (6)
O1—Cd1—N2—C975.8 (5)O1—C5—C7—C835.3 (6)
N4—Cd1—N2—C1178.4 (4)C3—C5—C7—C873.4 (6)
O2—Cd1—N2—C11179.2 (4)C5—C7—C8—C60.1 (7)
N6—Cd1—N2—C1117.6 (4)O1—C6—C8—C735.5 (6)
O1—Cd1—N2—C11102.1 (4)C4—C6—C8—C774.0 (6)
O4—Cd1—N4—C121.8 (5)C11—N2—C9—N1179.0 (5)
N2—Cd1—N4—C12177.5 (5)Cd1—N2—C9—N10.9 (9)
O2—Cd1—N4—C1285.0 (5)C11—N2—C9—S10.1 (6)
N6—Cd1—N4—C1291.2 (5)Cd1—N2—C9—S1178.1 (3)
O4—Cd1—N4—C14173.2 (4)C10—S1—C9—N20.6 (5)
N2—Cd1—N4—C142.5 (4)C10—S1—C9—N1178.4 (5)
O2—Cd1—N4—C1490.0 (4)C9—S1—C10—C111.0 (5)
N6—Cd1—N4—C1493.8 (4)S1—C10—C11—N21.2 (7)
O4—Cd1—N6—C15109.7 (5)C9—N2—C11—C100.7 (8)
N4—Cd1—N6—C15158.5 (5)Cd1—N2—C11—C10177.5 (4)
N2—Cd1—N6—C1561.7 (6)C14—N4—C12—N3179.4 (6)
O2—Cd1—N6—C1534.5 (9)Cd1—N4—C12—N35.1 (9)
O1—Cd1—N6—C1530.3 (5)C14—N4—C12—S20.2 (7)
O4—Cd1—N6—C1781.7 (4)Cd1—N4—C12—S2175.7 (2)
N4—Cd1—N6—C1710.0 (5)C13—S2—C12—N40.8 (5)
N2—Cd1—N6—C17106.8 (4)C13—S2—C12—N3180.0 (5)
O2—Cd1—N6—C17156.9 (5)C12—S2—C13—C141.1 (5)
O1—Cd1—N6—C17161.2 (4)S2—C13—C14—N41.2 (7)
Cd1—O4—C1—O5144.3 (5)C12—N4—C14—C130.6 (8)
Cd1—O4—C1—C335.5 (8)Cd1—N4—C14—C13175.2 (4)
Cd1—O2—C2—O3154.3 (4)C17—N6—C15—N5178.0 (6)
Cd1—O2—C2—C428.5 (8)Cd1—N6—C15—N58.8 (10)
O5—C1—C3—C5145.8 (6)C17—N6—C15—S30.1 (7)
O4—C1—C3—C534.4 (7)Cd1—N6—C15—S3169.1 (3)
O5—C1—C3—C498.4 (7)C16—S3—C15—N60.6 (5)
O4—C1—C3—C481.4 (7)C16—S3—C15—N5177.3 (6)
O3—C2—C4—C6137.0 (6)C15—S3—C16—C171.2 (6)
O2—C2—C4—C640.3 (7)S3—C16—C17—N61.5 (8)
O3—C2—C4—C3108.4 (6)C15—N6—C17—C161.1 (9)
O2—C2—C4—C374.4 (7)Cd1—N6—C17—C16170.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.042.867 (6)161
N1—H1B···O3i0.862.192.931 (6)144
N3—H3B···O40.862.002.803 (7)156
N3—H3C···O1Wii0.862.142.965 (7)160
N5—H5B···O10.862.152.917 (7)149
N5—H5C···O3iii0.862.463.177 (7)141
N5—H5C···O2Wiv0.862.473.052 (9)125
O1W—H1···O5v0.86 (2)1.97 (2)2.817 (6)174 (7)
O1W—H2···O3vi0.85 (2)2.03 (2)2.865 (6)168 (6)
O2W—H3···O5vii0.86 (6)2.25 (6)2.996 (9)145 (9)
O2W—H4···O50.88 (7)2.12 (4)2.962 (10)162 (12)
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y1, z; (vii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H8O5)(C3H4N2S)3]·2H2O
Mr633.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.6457 (3), 9.9255 (3), 25.4653 (9)
β (°) 101.980 (2)
V3)2384.91 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.08 × 0.08 × 0.04
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.90, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
19757, 5480, 2777
Rint0.100
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.119, 1.01
No. of reflections5480
No. of parameters319
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.69

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O42.268 (4)Cd1—O22.312 (4)
Cd1—N42.302 (5)Cd1—N62.341 (5)
Cd1—N22.305 (5)Cd1—O12.467 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.042.867 (6)161.1
N1—H1B···O3i0.862.192.931 (6)143.9
N3—H3B···O40.862.002.803 (7)155.7
N3—H3C···O1Wii0.862.142.965 (7)160.1
N5—H5B···O10.862.152.917 (7)148.6
N5—H5C···O3iii0.862.463.177 (7)141.0
N5—H5C···O2Wiv0.862.473.052 (9)125.3
O1W—H1···O5v0.855 (19)1.97 (2)2.817 (6)174 (7)
O1W—H2···O3vi0.849 (19)2.03 (2)2.865 (6)168 (6)
O2W—H3···O5vii0.86 (6)2.25 (6)2.996 (9)145 (9)
O2W—H4···O50.88 (7)2.12 (4)2.962 (10)162 (12)
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y1, z; (vii) x, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301).

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785–789.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYin, F. L., Shen, J., Zou, J. J. & Li, R. C. (2003). Acta Chim. Sin. 61, 556–561.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds