metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­iodidobis(N,N,N′,N′-tetra­methyl­thio­urea-κS)cadmium(II)

aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, and bDepartment of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
*Correspondence e-mail: saeed_a786@hotmail.com

(Received 5 July 2010; accepted 14 July 2010; online 17 July 2010)

In the title compound, [CdI2(C5H12N2S)2], the CdII ion is located on a twofold rotation axis and is coordinated in a distorted tetra­hedral mode by two iodide ions and by two tetra­methyl­thio­urea (tmtu) ligands through their S atoms. The crystal structure is stabilized by C—H⋯N and C—H⋯S hydrogen bonds.

Related literature

For background to thio­urea complexes of group 12 elements, see: Ahmad et al. (2009[Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191-m1192.]); Bell et al. (2001[Bell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130-136.], 2004[Bell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harrington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). Inorg. Chim. Acta, 357, 2091-2099.]); Lobana et al. (2008[Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718-723.]); Marcos et al. (1998[Marcos, C., Alía, J. M., Adovasio, V., Prieto, M. & García-Granda, S. (1998). Acta Cryst. C54, 1225-1229.]); Matsunaga et al. (2005[Matsunaga, Y., Fujisawa, K., Amir, N., Miyashita, Y. & Okamoto, K.-I. (2005). J. Coord. Chem. 58, 1047-1061.]); Moloto et al. (2003[Moloto, M. J., Malik, M. A., O'Brien, P., Motevalli, M. & Kolawole, G. A. (2003). Polyhedron, 22, 595-603.]); Wazeer et al. (2007[Wazeer, M. I. M., Isab, A. A. & Fettouhi, M. (2007). Polyhedron, 26, 1725-1730.]). The structure of the title compound is isotypic with [Cd(tmtu)2Br2] (Nawaz et al., 2010a[Nawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. & Ahmad, S. (2010a). Acta Cryst. E66, m950.]) and [Hg(tmtu)2Cl2] (Nawaz et al., 2010b[Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010b). Acta Cryst. E66, m952.]).

[Scheme 1]

Experimental

Crystal data
  • [CdI2(C5H12N2S)2]

  • Mr = 630.65

  • Monoclinic, C 2/c

  • a = 18.985 (5) Å

  • b = 10.395 (3) Å

  • c = 13.719 (4) Å

  • β = 130.740 (4)°

  • V = 2051.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.27 mm−1

  • T = 294 K

  • 0.33 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.333, Tmax = 0.482

  • 13642 measured reflections

  • 2557 independent reflections

  • 2235 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.054

  • S = 1.04

  • 2557 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N2 0.96 2.51 2.859 (6) 101
C4—H4A⋯N1 0.96 2.52 2.853 (5) 100
C5—H5A⋯S1 0.96 2.66 3.026 (5) 103

Data collection: SMART (Bruker, 2008[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A considerable amount of work has been done in recent years on the synthesis and characterization of cadmium(II) and mercury(II) complexes of thiourea type ligands due to their variable binding modes and because of the their importance in biological systems (Ahmad et al., 2009; Bell et al., 2001, 2004; Lobana et al., 2008; Marcos et al., 1998; Matsunaga et al., 2005; Moloto et al., 2003; Wazeer et al., 2007). Cadmium(II) complexes with thiones possess a variety of structures ranging from four- to six-coordinate species with tetrahedral and octahedral environments for the CdII atom, respectively. In some cases, these units further aggregate to form polymeric structures (Bell et al., 2001, 2004; Lobana et al., 2008; Matsunaga et al., 2005; Moloto, et al., 2003; Wazeer et al., 2007). We report here the crystal structure of a cadmium(II) iodide complex with tetramethylthiourea (tmtu).

In the title complex, the cadmium atom is bonded to two I- ions and to two tetramethylthiourea ligands through the sulfur atoms in a distorted tetrahedral mode (Fig. 1). The compound is isotypic with [Cd(tmtu)2Br2] (Nawaz et al., 2010a) and [Hg(tmtu)2Cl2] (Nawaz et al., 2010b).

For a more detailed description of the structure, see: Nawaz et al. (2010a).

Related literature top

For background to thiourea complexes of group 12 elements, see: Ahmad et al. (2009); Bell et al. (2001, 2004); Lobana et al. (2008); Marcos et al. (1998); Matsunaga et al. (2005); Moloto et al. (2003); Wazeer et al. (2007). The structure of the title compound is isotypic with [Cd(tmtu)2Br2] (Nawaz et al., 2010a) and [Hg(tmtu)2Cl2] (Nawaz et al., 2010b).

Experimental top

To 0.37 g (1.0 mmol) cadmium(II) iodide in 10 ml water was added to two equivalents of tetramethylthiourea in 15 ml methanol. A clear solution was obtained that was stirred for 30 minutes. The colorless solution was filtered and the filtrate was kept at room temperature for crystallization. As a result, a white crystalline product was obtained, that was washed with methanol and dried.

Refinement top

H atoms were placed in calculated positions with a C—H distance of 0.96 Å and Uiso(H) = 1.5 Ueq(C).

Structure description top

A considerable amount of work has been done in recent years on the synthesis and characterization of cadmium(II) and mercury(II) complexes of thiourea type ligands due to their variable binding modes and because of the their importance in biological systems (Ahmad et al., 2009; Bell et al., 2001, 2004; Lobana et al., 2008; Marcos et al., 1998; Matsunaga et al., 2005; Moloto et al., 2003; Wazeer et al., 2007). Cadmium(II) complexes with thiones possess a variety of structures ranging from four- to six-coordinate species with tetrahedral and octahedral environments for the CdII atom, respectively. In some cases, these units further aggregate to form polymeric structures (Bell et al., 2001, 2004; Lobana et al., 2008; Matsunaga et al., 2005; Moloto, et al., 2003; Wazeer et al., 2007). We report here the crystal structure of a cadmium(II) iodide complex with tetramethylthiourea (tmtu).

In the title complex, the cadmium atom is bonded to two I- ions and to two tetramethylthiourea ligands through the sulfur atoms in a distorted tetrahedral mode (Fig. 1). The compound is isotypic with [Cd(tmtu)2Br2] (Nawaz et al., 2010a) and [Hg(tmtu)2Cl2] (Nawaz et al., 2010b).

For a more detailed description of the structure, see: Nawaz et al. (2010a).

For background to thiourea complexes of group 12 elements, see: Ahmad et al. (2009); Bell et al. (2001, 2004); Lobana et al. (2008); Marcos et al. (1998); Matsunaga et al. (2005); Moloto et al. (2003); Wazeer et al. (2007). The structure of the title compound is isotypic with [Cd(tmtu)2Br2] (Nawaz et al., 2010a) and [Hg(tmtu)2Cl2] (Nawaz et al., 2010b).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with atomic numbering scheme. Displacement ellipsoids drawn at the 30% probability level. H-atoms were omitted for clarity.
Diiodidobis(N,N,N',N'-tetramethylthiourea- κS)cadmium(II) top
Crystal data top
[CdI2(C5H12N2S)2]F(000) = 1192
Mr = 630.65Dx = 2.042 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13642 reflections
a = 18.985 (5) Åθ = 2.4–28.3°
b = 10.395 (3) ŵ = 4.27 mm1
c = 13.719 (4) ÅT = 294 K
β = 130.740 (4)°Block, colorless
V = 2051.4 (9) Å30.33 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
2557 independent reflections
Radiation source: normal-focus sealed tube2235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.333, Tmax = 0.482k = 1313
13642 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0229P)2 + 2.9795P]
where P = (Fo2 + 2Fc2)/3
2557 reflections(Δ/σ)max = 0.002
91 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[CdI2(C5H12N2S)2]V = 2051.4 (9) Å3
Mr = 630.65Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.985 (5) ŵ = 4.27 mm1
b = 10.395 (3) ÅT = 294 K
c = 13.719 (4) Å0.33 × 0.22 × 0.20 mm
β = 130.740 (4)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
2557 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2235 reflections with I > 2σ(I)
Tmin = 0.333, Tmax = 0.482Rint = 0.022
13642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.04Δρmax = 0.67 e Å3
2557 reflectionsΔρmin = 0.58 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.00000.71325 (3)0.25000.04562 (8)
I11.155686 (14)0.56794 (2)0.35345 (2)0.06074 (8)
S11.03756 (5)0.84000 (9)0.43960 (7)0.05829 (19)
N10.92464 (19)0.7668 (2)0.4801 (3)0.0568 (6)
N20.85712 (18)0.8932 (3)0.3011 (2)0.0569 (6)
C10.93150 (19)0.8328 (3)0.4031 (3)0.0462 (6)
C20.8634 (3)0.8067 (4)0.5045 (4)0.0777 (10)
H2A0.83430.88690.46190.116*
H2B0.89920.81680.59540.116*
H2C0.81650.74230.47220.116*
C30.9920 (3)0.6671 (4)0.5676 (4)0.0870 (12)
H3A1.01540.62680.53080.130*
H3B0.96220.60370.58080.130*
H3C1.04250.70540.64860.130*
C40.7619 (2)0.8470 (4)0.2310 (4)0.0808 (11)
H4A0.76370.76320.26210.121*
H4B0.72990.84220.14080.121*
H4C0.72970.90540.24440.121*
C50.8660 (3)0.9963 (4)0.2369 (4)0.0840 (11)
H5A0.92591.03600.29720.126*
H5B0.81841.05940.20480.126*
H5C0.85940.96100.16660.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04989 (15)0.04876 (16)0.04920 (15)0.0000.03717 (13)0.000
I10.05619 (12)0.06315 (14)0.06036 (13)0.01437 (9)0.03692 (11)0.00562 (9)
S10.0509 (4)0.0769 (5)0.0529 (4)0.0122 (4)0.0365 (3)0.0185 (4)
N10.0677 (15)0.0552 (14)0.0648 (15)0.0083 (12)0.0508 (14)0.0065 (12)
N20.0576 (14)0.0651 (15)0.0490 (13)0.0072 (12)0.0352 (12)0.0014 (11)
C10.0517 (14)0.0473 (14)0.0470 (13)0.0003 (11)0.0355 (12)0.0087 (11)
C20.092 (3)0.090 (3)0.091 (3)0.005 (2)0.077 (2)0.003 (2)
C30.109 (3)0.067 (2)0.103 (3)0.025 (2)0.077 (3)0.030 (2)
C40.0502 (17)0.118 (3)0.068 (2)0.0085 (19)0.0360 (17)0.014 (2)
C50.102 (3)0.081 (3)0.064 (2)0.019 (2)0.052 (2)0.0211 (19)
Geometric parameters (Å, º) top
Cd1—S12.5670 (9)C2—H2B0.9600
Cd1—S1i2.5670 (10)C2—H2C0.9600
Cd1—I1i2.7489 (7)C3—H3A0.9600
Cd1—I12.7489 (7)C3—H3B0.9600
S1—C11.731 (3)C3—H3C0.9600
N1—C11.335 (4)C4—H4A0.9600
N1—C21.465 (4)C4—H4B0.9600
N1—C31.466 (4)C4—H4C0.9600
N2—C11.330 (4)C5—H5A0.9600
N2—C51.464 (5)C5—H5B0.9600
N2—C41.468 (4)C5—H5C0.9600
C2—H2A0.9600
S1—Cd1—S1i118.23 (5)H2A—C2—H2C109.5
S1—Cd1—I1i107.41 (2)H2B—C2—H2C109.5
S1i—Cd1—I1i105.36 (2)N1—C3—H3A109.5
S1—Cd1—I1105.36 (2)N1—C3—H3B109.5
S1i—Cd1—I1107.41 (2)H3A—C3—H3B109.5
I1i—Cd1—I1113.34 (3)N1—C3—H3C109.5
C1—S1—Cd1100.59 (9)H3A—C3—H3C109.5
C1—N1—C2122.5 (3)H3B—C3—H3C109.5
C1—N1—C3121.9 (3)N2—C4—H4A109.5
C2—N1—C3114.3 (3)N2—C4—H4B109.5
C1—N2—C5121.3 (3)H4A—C4—H4B109.5
C1—N2—C4122.9 (3)N2—C4—H4C109.5
C5—N2—C4114.9 (3)H4A—C4—H4C109.5
N2—C1—N1119.4 (3)H4B—C4—H4C109.5
N2—C1—S1121.3 (2)N2—C5—H5A109.5
N1—C1—S1119.3 (2)N2—C5—H5B109.5
N1—C2—H2A109.5H5A—C5—H5B109.5
N1—C2—H2B109.5N2—C5—H5C109.5
H2A—C2—H2B109.5H5A—C5—H5C109.5
N1—C2—H2C109.5H5B—C5—H5C109.5
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N20.962.512.859 (6)101
C4—H4A···N10.962.522.853 (5)100
C5—H5A···S10.962.663.026 (5)103

Experimental details

Crystal data
Chemical formula[CdI2(C5H12N2S)2]
Mr630.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)18.985 (5), 10.395 (3), 13.719 (4)
β (°) 130.740 (4)
V3)2051.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)4.27
Crystal size (mm)0.33 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.333, 0.482
No. of measured, independent and
observed [I > 2σ(I)] reflections
13642, 2557, 2235
Rint0.022
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.04
No. of reflections2557
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.58

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N20.962.512.859 (6)101
C4—H4A···N10.962.522.853 (5)100
C5—H5A···S10.962.663.026 (5)103
 

Acknowledgements

We gratefully acknowledge King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for providing the X-ray facility.

References

First citationAhmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191–m1192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationBell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harrington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). Inorg. Chim. Acta, 357, 2091–2099.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718–723.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarcos, C., Alía, J. M., Adovasio, V., Prieto, M. & García-Granda, S. (1998). Acta Cryst. C54, 1225–1229.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsunaga, Y., Fujisawa, K., Amir, N., Miyashita, Y. & Okamoto, K.-I. (2005). J. Coord. Chem. 58, 1047–1061.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoloto, M. J., Malik, M. A., O'Brien, P., Motevalli, M. & Kolawole, G. A. (2003). Polyhedron, 22, 595–603.  Web of Science CSD CrossRef CAS Google Scholar
First citationNawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. & Ahmad, S. (2010a). Acta Cryst. E66, m950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010b). Acta Cryst. E66, m952.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWazeer, M. I. M., Isab, A. A. & Fettouhi, M. (2007). Polyhedron, 26, 1725–1730.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds