organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-methyl­pyridinium (E)-3-carb­­oxy­prop-2-enoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 June 2010; accepted 4 July 2010; online 10 July 2010)

In the title salt, C6H9N2+·C4H3O4, the dihedral angle between the pyridine ring and the plane formed by the hydrogen fumarate anion is 85.67 (6)°. Excluding the amino and methyl groups, the atoms of the cation are coplanar, with a maximum deviation of 0.005 (1) Å. In the crystal structure, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. These motifs are further connected through N—H⋯O and C—H⋯O hydrogen bonds, leading to a supra­molecular chain along the c axis. These chains are further cross-linked via a pair of O—H⋯O hydrogen bonds involving centrosymmetrically related hydrogen fumarate anions, forming a two-dimensional network parallel to (101). These planes are further interconnected by O—H⋯O interactions into a three-dimensional network.

Related literature

For applications of inter­molecular inter­actions, see: Lam & Mak (2000[Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657-6665.]). For related structures, see: Büyükgüngör & Odabąsoğlu (2006[Büyükgüngör, O. & Odabąsoğlu, M. (2006). Acta Cryst. E62, o3816-o3818.]); Hosomi et al. (2000[Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e139.]); Smith et al. (2007[Smith, G., Wermuth, U. D., Young, D. J. & Healy, P. C. (2007). Acta Cryst. E63, o556-o557.]); Cao et al. (2004[Cao, X.-J., Sun, C.-R. & Pan, Y.-J. (2004). Acta Cryst. E60, o1546-o1548.]); Natarajan et al. (2009[Natarajan, S., Kalyanasundar, A., Suresh, J., Dhas, S. A. M. B. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o462.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C4H3O4

  • Mr = 224.22

  • Monoclinic, P 21 /c

  • a = 5.0058 (16) Å

  • b = 19.814 (7) Å

  • c = 11.286 (4) Å

  • β = 108.332 (13)°

  • V = 1062.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.36 × 0.10 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.992

  • 12900 measured reflections

  • 3387 independent reflections

  • 2573 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.168

  • S = 1.07

  • 3387 reflections

  • 181 parameters

  • All H-atom parameters refined

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O3i 0.928 (19) 1.720 (19) 2.6472 (17) 179 (2)
N1—H1N1⋯O1ii 0.987 (18) 1.689 (18) 2.6761 (16) 179.5 (17)
N2—H1N2⋯O2ii 0.994 (18) 1.804 (18) 2.7979 (16) 179.0 (16)
N2—H2N2⋯O1iii 0.816 (19) 2.028 (19) 2.8320 (18) 168.5 (18)
C2—H2A⋯O3iv 0.964 (18) 2.596 (18) 3.349 (2) 135.1 (14)
C5—H5A⋯O2v 1.015 (16) 2.239 (16) 3.189 (2) 155.0 (13)
C6—H6B⋯O3iv 0.954 (19) 2.592 (19) 3.360 (2) 137.8 (16)
Symmetry codes: (i) -x-1, -y+2, -z; (ii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Intermolecular interactions are responsible for crystal packing and gaining an understanding of them allows us to comprehend collective properties and permits the design of new crystals with specific physical and chemical properties (Lam & Mak, 2000). Fumaric acid, a key intermediate in organic acid biosynthesis, is known to readily form adducts/complexes with other organic molecules. The crystal structures of 2,6-diaminopyridinium hydrogen fumarate (Büyükgüngör & Odabąsoǧlu, 2006), triethylammonium hydrogen fumarate (Hosomi et al., 2000), anhydrous guanidinium hydrogen fumarate (Smith et al., 2007), tiamulin hydrogen fumarate methanol (Cao et al., 2004) and glycinium hydrogen fumarate glycine solvate monohydrate (Natarajan et al., 2009) have been reported. The present study has been undertaken to study the hydrogen bonding patterns involving the hydrogen fumarate anion with the 2-amino-4-methylpyridinium cation.

The asymmetric unit of the title compound consists of a 2-amino-4-methyl pyridinium cation and a hydrogen fumarate anion (Fig. 1). In the 2-amino- 4-methylpyridinium cation, a wider than normal angle [C1—N1—C5 121.94 (11)°] is subtended at the protonated N1 atom. The C10—O3 bond distance of 1.2259 (16) Å is much shorter than the C10—O4 bond distance of 1.3224 (15) Å, suggesting that the carboxyl group is not deprotonated in the crystal structure. The dihedral angle between the pyridine ring and the plane formed by the hydrogen fumarate anion is 85.67 (6)°. Excluding amino and methyl groups, the atoms of the cation are coplanar, with a maximum deviation of 0.005 (1) Å for atom C2. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds, forming a R22(8) ring motif (Bernstein et al., 1995). Furthermore, these motifs are connected through N—H···O and C—H···O hydrogen bonds (Table 1), leading to a one-dimensional supramolecular chain along the c-axis. These chains are further connected via a pair of O—H···O hydrogen bonds involving centrosymmetric hydrogen fumarate anions, forming a two-dimensional network parallel to (010). These planes are further interconnected by O4–H1O4···O3 hydrogen bonds into a 3D network.

Related literature top

For applications of intermolecular interactions, see: Lam & Mak (2000). For related structures, see: Büyükgüngör & Odabąsoǧlu (2006); Hosomi et al. (2000); Smith et al. (2007); Cao et al. (2004); Natarajan et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (54 mg, Aldrich) and fumaric acid (58 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All the H atoms were located from a difference Fourier map and refined freely [C—H = 0.953 (19)–1.027 (17) Å; N—H = 0.816 (19)–0.994 (18) Å and O—H = 0.93 (2) Å].

Structure description top

Intermolecular interactions are responsible for crystal packing and gaining an understanding of them allows us to comprehend collective properties and permits the design of new crystals with specific physical and chemical properties (Lam & Mak, 2000). Fumaric acid, a key intermediate in organic acid biosynthesis, is known to readily form adducts/complexes with other organic molecules. The crystal structures of 2,6-diaminopyridinium hydrogen fumarate (Büyükgüngör & Odabąsoǧlu, 2006), triethylammonium hydrogen fumarate (Hosomi et al., 2000), anhydrous guanidinium hydrogen fumarate (Smith et al., 2007), tiamulin hydrogen fumarate methanol (Cao et al., 2004) and glycinium hydrogen fumarate glycine solvate monohydrate (Natarajan et al., 2009) have been reported. The present study has been undertaken to study the hydrogen bonding patterns involving the hydrogen fumarate anion with the 2-amino-4-methylpyridinium cation.

The asymmetric unit of the title compound consists of a 2-amino-4-methyl pyridinium cation and a hydrogen fumarate anion (Fig. 1). In the 2-amino- 4-methylpyridinium cation, a wider than normal angle [C1—N1—C5 121.94 (11)°] is subtended at the protonated N1 atom. The C10—O3 bond distance of 1.2259 (16) Å is much shorter than the C10—O4 bond distance of 1.3224 (15) Å, suggesting that the carboxyl group is not deprotonated in the crystal structure. The dihedral angle between the pyridine ring and the plane formed by the hydrogen fumarate anion is 85.67 (6)°. Excluding amino and methyl groups, the atoms of the cation are coplanar, with a maximum deviation of 0.005 (1) Å for atom C2. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds, forming a R22(8) ring motif (Bernstein et al., 1995). Furthermore, these motifs are connected through N—H···O and C—H···O hydrogen bonds (Table 1), leading to a one-dimensional supramolecular chain along the c-axis. These chains are further connected via a pair of O—H···O hydrogen bonds involving centrosymmetric hydrogen fumarate anions, forming a two-dimensional network parallel to (010). These planes are further interconnected by O4–H1O4···O3 hydrogen bonds into a 3D network.

For applications of intermolecular interactions, see: Lam & Mak (2000). For related structures, see: Büyükgüngör & Odabąsoǧlu (2006); Hosomi et al. (2000); Smith et al. (2007); Cao et al. (2004); Natarajan et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) 2D networks parallel to (010). H atoms not involved in the intermolecular interactions have been omitted for clarity.
2-amino-4-methylpyridinium (E)-3-carboxyprop-2-enoate top
Crystal data top
C6H9N2+·C4H3O4F(000) = 472
Mr = 224.22Dx = 1.402 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2803 reflections
a = 5.0058 (16) Åθ = 2.8–31.0°
b = 19.814 (7) ŵ = 0.11 mm1
c = 11.286 (4) ÅT = 100 K
β = 108.332 (13)°Needle, colourless
V = 1062.6 (6) Å30.36 × 0.10 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3387 independent reflections
Radiation source: fine-focus sealed tube2573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 31.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.962, Tmax = 0.992k = 2228
12900 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.106P)2 + 0.0446P]
where P = (Fo2 + 2Fc2)/3
3387 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C6H9N2+·C4H3O4V = 1062.6 (6) Å3
Mr = 224.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0058 (16) ŵ = 0.11 mm1
b = 19.814 (7) ÅT = 100 K
c = 11.286 (4) Å0.36 × 0.10 × 0.07 mm
β = 108.332 (13)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3387 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2573 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.992Rint = 0.041
12900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.168All H-atom parameters refined
S = 1.07Δρmax = 0.51 e Å3
3387 reflectionsΔρmin = 0.32 e Å3
181 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1142 (2)0.80864 (6)0.55566 (10)0.0138 (2)
N20.0376 (2)0.76324 (6)0.75413 (11)0.0166 (2)
C10.0731 (3)0.80768 (7)0.67234 (11)0.0129 (3)
C20.2978 (3)0.85492 (7)0.70188 (12)0.0143 (3)
C30.3220 (3)0.90042 (7)0.61461 (12)0.0153 (3)
C40.1210 (3)0.89903 (7)0.49325 (12)0.0176 (3)
C50.0911 (3)0.85296 (7)0.46726 (12)0.0159 (3)
C60.5539 (3)0.95182 (8)0.64658 (13)0.0198 (3)
O10.4413 (2)0.77430 (5)0.00598 (9)0.0167 (2)
O20.5841 (2)0.82660 (5)0.17910 (9)0.0187 (2)
O30.33328 (19)0.94128 (5)0.04434 (9)0.0170 (2)
O40.2087 (2)0.98609 (5)0.14785 (9)0.0184 (2)
C70.4153 (3)0.81746 (7)0.07303 (11)0.0129 (3)
C80.1559 (3)0.86036 (7)0.03171 (12)0.0144 (3)
C90.0841 (3)0.90251 (7)0.10791 (12)0.0150 (3)
C100.1721 (3)0.94438 (7)0.06278 (12)0.0132 (3)
H1O40.368 (4)1.0119 (9)0.1114 (16)0.020*
H1N10.278 (4)0.7781 (9)0.5333 (16)0.016*
H1N20.124 (4)0.7315 (9)0.7264 (16)0.016*
H2N20.141 (4)0.7622 (9)0.8262 (17)0.016*
H2A0.428 (4)0.8529 (9)0.7855 (16)0.016*
H4A0.137 (4)0.9308 (9)0.4299 (16)0.016*
H5A0.244 (3)0.8495 (9)0.3834 (15)0.016*
H6A0.655 (4)0.9509 (10)0.5852 (16)0.020*
H6B0.683 (4)0.9461 (9)0.7285 (17)0.020*
H6C0.457 (4)0.9960 (10)0.6385 (16)0.020*
H8A0.029 (4)0.8563 (9)0.0593 (16)0.016*
H9A0.198 (4)0.9063 (9)0.1949 (16)0.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0130 (5)0.0153 (6)0.0118 (5)0.0028 (4)0.0020 (4)0.0010 (4)
N20.0164 (5)0.0181 (6)0.0123 (5)0.0050 (4)0.0004 (4)0.0012 (4)
C10.0126 (5)0.0137 (6)0.0119 (5)0.0010 (4)0.0031 (4)0.0015 (4)
C20.0145 (5)0.0156 (6)0.0127 (5)0.0027 (4)0.0039 (4)0.0025 (5)
C30.0161 (6)0.0164 (6)0.0146 (6)0.0032 (5)0.0064 (5)0.0024 (5)
C40.0206 (6)0.0197 (7)0.0135 (6)0.0038 (5)0.0065 (5)0.0001 (5)
C50.0167 (6)0.0184 (7)0.0115 (5)0.0012 (5)0.0029 (4)0.0011 (5)
C60.0208 (6)0.0206 (7)0.0188 (6)0.0082 (5)0.0074 (5)0.0024 (5)
O10.0160 (4)0.0174 (5)0.0143 (4)0.0045 (3)0.0013 (3)0.0027 (4)
O20.0155 (4)0.0238 (6)0.0132 (4)0.0066 (4)0.0007 (3)0.0031 (4)
O30.0152 (4)0.0195 (5)0.0144 (4)0.0052 (3)0.0019 (4)0.0021 (4)
O40.0167 (5)0.0194 (5)0.0169 (5)0.0057 (4)0.0022 (4)0.0046 (4)
C70.0121 (5)0.0129 (6)0.0131 (5)0.0014 (4)0.0033 (4)0.0014 (4)
C80.0127 (5)0.0150 (6)0.0147 (6)0.0027 (4)0.0030 (4)0.0002 (5)
C90.0131 (5)0.0166 (6)0.0141 (6)0.0028 (4)0.0023 (4)0.0003 (5)
C100.0121 (5)0.0134 (6)0.0143 (6)0.0001 (4)0.0043 (4)0.0009 (4)
Geometric parameters (Å, º) top
N1—C11.3553 (16)C6—H6A0.977 (18)
N1—C51.3611 (17)C6—H6B0.953 (19)
N1—H1N10.987 (18)C6—H6C0.991 (19)
N2—C11.3276 (17)O1—C71.2714 (15)
N2—H1N20.994 (18)O2—C71.2424 (16)
N2—H2N20.816 (19)O3—C101.2259 (16)
C1—C21.4202 (18)O4—C101.3224 (15)
C2—C31.3683 (18)O4—H1O40.93 (2)
C2—H2A0.964 (17)C7—C81.4987 (18)
C3—C41.4219 (19)C8—C91.3269 (18)
C3—C61.5006 (19)C8—H8A1.027 (17)
C4—C51.3604 (19)C9—C101.4769 (18)
C4—H4A0.976 (17)C9—H9A0.970 (18)
C5—H5A1.015 (17)
C1—N1—C5121.94 (11)N1—C5—H5A115.3 (10)
C1—N1—H1N1120.4 (10)C3—C6—H6A110.5 (11)
C5—N1—H1N1117.6 (10)C3—C6—H6B112.9 (11)
C1—N2—H1N2118.4 (10)H6A—C6—H6B110.0 (16)
C1—N2—H2N2121.9 (13)C3—C6—H6C105.0 (11)
H1N2—N2—H2N2119.7 (16)H6A—C6—H6C107.3 (15)
N2—C1—N1118.80 (11)H6B—C6—H6C110.9 (15)
N2—C1—C2122.92 (12)C10—O4—H1O4108.6 (11)
N1—C1—C2118.27 (11)O2—C7—O1125.82 (12)
C3—C2—C1120.53 (12)O2—C7—C8118.51 (11)
C3—C2—H2A123.2 (11)O1—C7—C8115.67 (11)
C1—C2—H2A116.3 (11)C9—C8—C7122.70 (12)
C2—C3—C4119.00 (12)C9—C8—H8A119.2 (10)
C2—C3—C6120.72 (12)C7—C8—H8A118.1 (10)
C4—C3—C6120.28 (12)C8—C9—C10120.85 (12)
C5—C4—C3119.24 (12)C8—C9—H9A120.8 (11)
C5—C4—H4A121.0 (10)C10—C9—H9A118.3 (11)
C3—C4—H4A119.7 (11)O3—C10—O4123.28 (12)
C4—C5—N1121.02 (12)O3—C10—C9122.87 (11)
C4—C5—H5A123.7 (10)O4—C10—C9113.83 (11)
C5—N1—C1—N2179.79 (12)C3—C4—C5—N10.3 (2)
C5—N1—C1—C20.38 (18)C1—N1—C5—C40.8 (2)
N2—C1—C2—C3178.88 (12)O2—C7—C8—C97.3 (2)
N1—C1—C2—C30.51 (19)O1—C7—C8—C9172.67 (13)
C1—C2—C3—C41.0 (2)C7—C8—C9—C10179.34 (11)
C1—C2—C3—C6178.11 (12)C8—C9—C10—O32.0 (2)
C2—C3—C4—C50.5 (2)C8—C9—C10—O4177.01 (12)
C6—C3—C4—C5178.53 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O3i0.928 (19)1.720 (19)2.6472 (17)179 (2)
N1—H1N1···O1ii0.987 (18)1.689 (18)2.6761 (16)179.5 (17)
N2—H1N2···O2ii0.994 (18)1.804 (18)2.7979 (16)179.0 (16)
N2—H2N2···O1iii0.816 (19)2.028 (19)2.8320 (18)168.5 (18)
C2—H2A···O3iv0.964 (18)2.596 (18)3.349 (2)135.1 (14)
C5—H5A···O2v1.015 (16)2.239 (16)3.189 (2)155.0 (13)
C6—H6B···O3iv0.954 (19)2.592 (19)3.360 (2)137.8 (16)
Symmetry codes: (i) x1, y+2, z; (ii) x1, y+3/2, z+1/2; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C4H3O4
Mr224.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.0058 (16), 19.814 (7), 11.286 (4)
β (°) 108.332 (13)
V3)1062.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.36 × 0.10 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
12900, 3387, 2573
Rint0.041
(sin θ/λ)max1)0.726
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.168, 1.07
No. of reflections3387
No. of parameters181
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.51, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O3i0.928 (19)1.720 (19)2.6472 (17)179 (2)
N1—H1N1···O1ii0.987 (18)1.689 (18)2.6761 (16)179.5 (17)
N2—H1N2···O2ii0.994 (18)1.804 (18)2.7979 (16)179.0 (16)
N2—H2N2···O1iii0.816 (19)2.028 (19)2.8320 (18)168.5 (18)
C2—H2A···O3iv0.964 (18)2.596 (18)3.349 (2)135.1 (14)
C5—H5A···O2v1.015 (16)2.239 (16)3.189 (2)155.0 (13)
C6—H6B···O3iv0.954 (19)2.592 (19)3.360 (2)137.8 (16)
Symmetry codes: (i) x1, y+2, z; (ii) x1, y+3/2, z+1/2; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBüyükgüngör, O. & Odabąsoğlu, M. (2006). Acta Cryst. E62, o3816–o3818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCao, X.-J., Sun, C.-R. & Pan, Y.-J. (2004). Acta Cryst. E60, o1546–o1548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e139.  CSD CrossRef IUCr Journals Google Scholar
First citationLam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657–6665.  Web of Science CSD CrossRef CAS Google Scholar
First citationNatarajan, S., Kalyanasundar, A., Suresh, J., Dhas, S. A. M. B. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & Healy, P. C. (2007). Acta Cryst. E63, o556–o557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds