organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Opipramol dipicrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, V. V. Puram College of Science, Bangalore 560 004, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 17 June 2010; accepted 5 July 2010; online 10 July 2010)

In the crystal structure of the title compound, C23H31N3O2+·2C6H2N3O7, {systematic name: 1-[3-(5H-dibenz[b,f]azepin-5-yl)prop­yl]-4-(2-hy­droxy­eth­yl)piperazine-1,4-diium bis­(2,4,6-trinitro­phrenolate)} the piperazine group in the opipramol dication is protonated at both N atoms. Each picrate anion inter­acts with the protonated N atom in the cation through a bifurcated N—H⋯O hydrogen bond, forming an R21(6) ring motif. In the cation, the dihedral angle between the mean planes of the two benzene rings is 50.81 (8) Å. Inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds, and weak π-ring and ππ stacking inter­actions dominate the crystal packing.

Related literature

For the use of opipramol in the treatment of anxiety disorder, see: Moller et al. (2001[Moller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59-65.]). For its use in the preparation of amine derivatives, see: Shriner et al. (1980[Shriner, R. L., Fuson, R. C., Curtin, D. Y. & Morrill, T. C. (1980). Qualitative Identification of Organic Compounds, 6th ed., pp. 236-237. New York: Wiley.]). For crystal engineering research, see: Desiraju et al. (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]). For related structures, see: Bindya et al. (2007[Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546-o548.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o411-o412.]); Yathirajan et al. (2007[Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1693-o1695.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H31N3O2+·2C6H2N3O7

  • Mr = 821.72

  • Triclinic, [P \overline 1]

  • a = 7.3838 (8) Å

  • b = 12.0400 (13) Å

  • c = 22.074 (2) Å

  • α = 74.821 (1)°

  • β = 84.355 (2)°

  • γ = 73.866 (2)°

  • V = 1818.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.55 × 0.50 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.937, Tmax = 0.983

  • 10692 measured reflections

  • 10692 independent reflections

  • 7831 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.123

  • S = 0.98

  • 10692 reflections

  • 669 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1Bi 0.91 (2) 1.85 (2) 2.6901 (16) 152.6 (18)
N1—H1⋯O7Bi 0.91 (2) 2.383 (19) 3.0466 (17) 130.0 (16)
N2—H2⋯O1Aii 0.90 (2) 1.78 (2) 2.6204 (16) 154.6 (19)
N2—H2⋯O2Aii 0.90 (2) 2.43 (2) 3.0711 (16) 128.2 (16)
O1—H1C⋯O1Bi 0.82 2.50 3.1600 (19) 138
O1—H1C⋯O7Bi 0.82 2.38 3.0841 (18) 144
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Table 2
YXCg π ring inter­actions (Å)

Cg3 and Cg9 are the centroids of the C10–C15 and C1A–C6A rings, respectively. CgX⋯Perp and CgY⋯Perp are the perpendicular distances between atoms X and Y and the ring centroid.

YXCg XCg YCg X⋯Perp
C1A—O1ACg3i 3.5674 (13) 3.6471 (17) 3.494
N3A—O4ACg9 3.8172 (17) 3.8173 (17) −3.357
N3B—O4BCg9ii 3.4320 (15) 3.9391 (15) 3.288
Symmetry codes: (i) x, −1 + y, z; (ii) 1 − x, −y, 1 − z.

Table 3
CgCg π stacking inter­actions (Å)

Cg2, Cg3, Cg8 and Cg9 are the centroids of the C10–C15, C18–C23, C1A–C6A and C1B–C6B rings, respectively. CgX⋯Perp and CgY⋯Perp are the perpendicular distances between the ring centroid and the other ring.

  CgXCgY CgX⋯Perp CgY⋯Perp
Cg2⋯Cg2i 3.8038 (11) −3.5589 (7) −3.5590 (7)
Cg3⋯Cg3i 3.7164 (10) −3.6624 (7) −3.6623 (7)
Cg8⋯Cg9 3.9558 (10) −3.2475 (6) 3.3731 (6)
Symmetry code: (i) 2 − x, 1 − y, −z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Opipramol (systematic IUPAC name: 4-[3-(5H-dibenz[b,f]azepin-5-yl)propyl]-1-piperazinethanol) is an antidepressant and anxiolytic typically used in the treatment of generalized anxiety disorder (Moller et al., 2001). Opipramol, a drug widely prescribed in Germany, is a tricyclic compound with no reuptake-inhibiting properties. However, it has pronounced D2-, 5-HT2-, and H1-blocking potential and high affinity to sigma receptors (sigma-1 and sigma-2). Crystalline picrates have commonly been used in the preparation of amine derivatives in qualitative organic chemistry (Shriner et al., 1980). Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju et al., 1989). The crystal structures of trifluoperazinium dipicrate (Yathirajan et al., 2007), amitriptylinium picrate (Bindya et al., 2007) and imatinibium dipicrate (Jasinski et al., 2010) have been reported. The present work reports the crystal structure of the salt formed by the interaction between 4-[3-(5H-dibenz[b,f]azepin-5-yl)propyl]-1-piperazinethanol dihydrochloride and 2,4,6-trinitrophenol in aqueous medium.

In opipramol dipicrate, C23H33N3O+, (C6H2N3O7-)2, the piperazine group in the opipramol cation is protonated at both of the N atoms. The 6-membered piperazine group (N1/C5/C6/N2/C4/C3) adopts a slightly distorted chair conformation with puckering parameters Q, θ and φ of 0.584 (7)A%, 178.40°, and 312.658 (8)°, respectively (Fig.1). For an ideal chair θ has a value of 0 or 180°. Bond distances and angles are in normal ranges (Allen et al., 1987). R21(6) graph-set motifs are formed between piperazine N1—H1 and N2—H2 groups and the picrate anions (labeled A and B) through bifurcated N—H···O hydrgen bonds (Fig. 2). The mean plane of the two o-NO2 groups in the two picrate anions are twisted by 31.8 (8)°, 31.8 (8)° in both the A ring B rings with respect to the mean planes of the 6-membered benzene rings. The p-NO2 groups in both picrate anions are nearly in the plane of the ring (torsion angles O4A—N3A—C4A—C3A = -1.7 (2)°; O4B—N3B—C4B—C3B = -12.1 (2)°). An extensive array of weak O—H···O and C—H···O intermolecular hydrogen bonds (Table 1), weak π-ring (Table 2) and π-π (Table 3) stacking interactions dominate crystal packing in the unit cell (Fig. 3).

Related literature top

For the use of the title compound in the treatment of anxiety disorder, see: Moller et al. (2001). For its use in the preparation of amine derivatives, see: Shriner et al. (1980). For crystal engineering research, see: Desiraju et al. (1989). For related structures, see: Bindya et al. (2007); Jasinski et al. (2010); Yathirajan et al. (2007). For bond-length data, see: Allen et al. (1987 ).

Experimental top

Opipramol dihydrochloride (4.38 g, 0.01 mol) was dissolved in 25 ml of water and picric acid (2.4 g, 0.01 mol) was dissolved in 25 ml of water. Both the solutions were mixed and stirred in a beaker at room temperature for one hour. The mixture was kept aside for two days at room temperature. The formed salt was filtered & dried in vacuum desiccator over phosphorous pentoxide. The salt was recrystallized from DMSO by slow evaporation (m.p: 453–455 K).

Refinement top

The H1C, H1 and H2 atoms were located by a Fourier map. These H atoms and the rest of the H atoms were then positioned geometrically and allowed to ride on their parent atoms with Atom—H lengths of 0.82Å (O1), 0.91Å (NH), 0.93 Å (CH), 0.97Å (CH2) or (CH3). Isotropic displacement parameters for these atoms were set to 1.40 times (OH), 1.20 times (NH), 1.20 (CH) or 1.22 (CH2) times (CH3) Ueq of the parent atom. The highest and lowest peaks (0.64 & 0.31 eÅ-3) are located 1.21Å and 0.31Å from atoms N1A and H1C, respectively.

Structure description top

Opipramol (systematic IUPAC name: 4-[3-(5H-dibenz[b,f]azepin-5-yl)propyl]-1-piperazinethanol) is an antidepressant and anxiolytic typically used in the treatment of generalized anxiety disorder (Moller et al., 2001). Opipramol, a drug widely prescribed in Germany, is a tricyclic compound with no reuptake-inhibiting properties. However, it has pronounced D2-, 5-HT2-, and H1-blocking potential and high affinity to sigma receptors (sigma-1 and sigma-2). Crystalline picrates have commonly been used in the preparation of amine derivatives in qualitative organic chemistry (Shriner et al., 1980). Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju et al., 1989). The crystal structures of trifluoperazinium dipicrate (Yathirajan et al., 2007), amitriptylinium picrate (Bindya et al., 2007) and imatinibium dipicrate (Jasinski et al., 2010) have been reported. The present work reports the crystal structure of the salt formed by the interaction between 4-[3-(5H-dibenz[b,f]azepin-5-yl)propyl]-1-piperazinethanol dihydrochloride and 2,4,6-trinitrophenol in aqueous medium.

In opipramol dipicrate, C23H33N3O+, (C6H2N3O7-)2, the piperazine group in the opipramol cation is protonated at both of the N atoms. The 6-membered piperazine group (N1/C5/C6/N2/C4/C3) adopts a slightly distorted chair conformation with puckering parameters Q, θ and φ of 0.584 (7)A%, 178.40°, and 312.658 (8)°, respectively (Fig.1). For an ideal chair θ has a value of 0 or 180°. Bond distances and angles are in normal ranges (Allen et al., 1987). R21(6) graph-set motifs are formed between piperazine N1—H1 and N2—H2 groups and the picrate anions (labeled A and B) through bifurcated N—H···O hydrgen bonds (Fig. 2). The mean plane of the two o-NO2 groups in the two picrate anions are twisted by 31.8 (8)°, 31.8 (8)° in both the A ring B rings with respect to the mean planes of the 6-membered benzene rings. The p-NO2 groups in both picrate anions are nearly in the plane of the ring (torsion angles O4A—N3A—C4A—C3A = -1.7 (2)°; O4B—N3B—C4B—C3B = -12.1 (2)°). An extensive array of weak O—H···O and C—H···O intermolecular hydrogen bonds (Table 1), weak π-ring (Table 2) and π-π (Table 3) stacking interactions dominate crystal packing in the unit cell (Fig. 3).

For the use of the title compound in the treatment of anxiety disorder, see: Moller et al. (2001). For its use in the preparation of amine derivatives, see: Shriner et al. (1980). For crystal engineering research, see: Desiraju et al. (1989). For related structures, see: Bindya et al. (2007); Jasinski et al. (2010); Yathirajan et al. (2007). For bond-length data, see: Allen et al. (1987 ).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of, C23H33N3O+, (C6H2N3O7-)2, showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Diagram for the R21(6)···ab..graph-set motif in the cation of the title compound, C23H33N3O+, (C6H2N3O7-)2.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate intermolecular N—H···O and C—H···O hydrogen bond interactions.
1-[3-(5H-dibenz[b,f]azepin-5-yl)propyl]-4-(2- hydroxyethyl)piperazine-1,4-diium bis(2,4,6-trinitrophrenolate) top
Crystal data top
C23H31N3O2+·2C6H2N3O7Z = 2
Mr = 821.72F(000) = 856
Triclinic, P1Dx = 1.501 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3838 (8) ÅCell parameters from 5178 reflections
b = 12.0400 (13) Åθ = 2.9–30.4°
c = 22.074 (2) ŵ = 0.12 mm1
α = 74.821 (1)°T = 100 K
β = 84.355 (2)°Plate, yellow
γ = 73.866 (2)°0.55 × 0.50 × 0.14 mm
V = 1818.6 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
10692 independent reflections
Radiation source: fine-focus sealed tube7831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 31.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.937, Tmax = 0.983k = 1617
10692 measured reflectionsl = 030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0431P)2 + 1.3196P]
where P = (Fo2 + 2Fc2)/3
10692 reflections(Δ/σ)max < 0.001
669 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C23H31N3O2+·2C6H2N3O7γ = 73.866 (2)°
Mr = 821.72V = 1818.6 (3) Å3
Triclinic, P1Z = 2
a = 7.3838 (8) ÅMo Kα radiation
b = 12.0400 (13) ŵ = 0.12 mm1
c = 22.074 (2) ÅT = 100 K
α = 74.821 (1)°0.55 × 0.50 × 0.14 mm
β = 84.355 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
10692 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
7831 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.983Rint = 0.000
10692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.64 e Å3
10692 reflectionsΔρmin = 0.39 e Å3
669 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.02455 (17)0.60675 (11)0.37838 (6)0.0151 (2)
N1A0.8758 (2)0.06526 (12)0.19787 (7)0.0288 (3)
N1B0.49985 (18)0.35440 (11)0.34309 (6)0.0191 (2)
N20.83911 (17)0.63062 (11)0.26315 (5)0.0154 (2)
N2A0.36714 (18)0.11954 (11)0.30334 (6)0.0201 (3)
N2B0.0123 (2)0.16475 (12)0.46259 (7)0.0240 (3)
N30.65920 (18)0.69770 (11)0.08383 (6)0.0183 (2)
N3A0.2539 (2)0.30858 (12)0.23707 (7)0.0296 (3)
N3B0.6228 (2)0.07470 (12)0.40742 (6)0.0262 (3)
O11.32600 (16)0.50804 (10)0.47765 (5)0.0238 (2)
H1C1.33550.46650.45280.036*
O1A0.73234 (15)0.13584 (9)0.23643 (5)0.0225 (2)
O1B0.13483 (17)0.36702 (10)0.41214 (6)0.0335 (3)
O2A0.45142 (16)0.22069 (9)0.29802 (6)0.0243 (2)
O2B0.12159 (18)0.22565 (14)0.43026 (7)0.0439 (4)
O3A0.23060 (17)0.10226 (11)0.33974 (6)0.0309 (3)
O3B0.00152 (19)0.10754 (10)0.51708 (6)0.0302 (3)
O4A0.0937 (2)0.31534 (12)0.25984 (7)0.0451 (4)
O4B0.5803 (2)0.16385 (10)0.44083 (6)0.0363 (3)
O5A0.3147 (2)0.39677 (10)0.21386 (6)0.0366 (3)
O5B0.76309 (19)0.07890 (11)0.37238 (6)0.0350 (3)
O6A0.9082 (2)0.14690 (14)0.15701 (10)0.0721 (6)
O6B0.64141 (15)0.33702 (10)0.30921 (5)0.0240 (2)
O7A0.99987 (19)0.02019 (13)0.22406 (7)0.0419 (3)
O7B0.40979 (18)0.45584 (10)0.34673 (6)0.0327 (3)
C11.2578 (2)0.63008 (14)0.44618 (8)0.0226 (3)
C1A0.6250 (2)0.03839 (12)0.24106 (7)0.0169 (3)
C1B0.2478 (2)0.27017 (12)0.40804 (7)0.0188 (3)
C21.0532 (2)0.65724 (14)0.43134 (7)0.0201 (3)
C2A0.4357 (2)0.01908 (12)0.26842 (7)0.0174 (3)
C2B0.2017 (2)0.15826 (13)0.43494 (7)0.0180 (3)
C30.8236 (2)0.60313 (13)0.37804 (7)0.0158 (3)
C3A0.3154 (2)0.09238 (13)0.26613 (7)0.0203 (3)
C3B0.3198 (2)0.04765 (13)0.43780 (7)0.0203 (3)
C40.7918 (2)0.55480 (12)0.32445 (6)0.0157 (3)
C4A0.3782 (2)0.19229 (13)0.23820 (7)0.0223 (3)
C4B0.4978 (2)0.04110 (12)0.40896 (7)0.0196 (3)
C51.0750 (2)0.68021 (13)0.31640 (7)0.0173 (3)
C5A0.5629 (2)0.18292 (13)0.21535 (7)0.0224 (3)
C5B0.5537 (2)0.14175 (13)0.37891 (7)0.0180 (3)
C61.0402 (2)0.63363 (13)0.26278 (7)0.0181 (3)
C6A0.6808 (2)0.07208 (13)0.21871 (7)0.0202 (3)
C6B0.4335 (2)0.25296 (12)0.37819 (7)0.0170 (3)
C70.8042 (2)0.58956 (14)0.20786 (7)0.0208 (3)
C80.5958 (2)0.61594 (14)0.19562 (7)0.0199 (3)
C90.5705 (2)0.61345 (14)0.12799 (7)0.0217 (3)
C100.7251 (2)0.67135 (13)0.02498 (7)0.0196 (3)
C110.6288 (3)0.61785 (14)0.00504 (7)0.0252 (3)
C120.7035 (3)0.58299 (15)0.05966 (8)0.0309 (4)
C130.8755 (3)0.60076 (16)0.08394 (8)0.0327 (4)
C140.9697 (3)0.65574 (15)0.05503 (8)0.0296 (4)
C150.8954 (2)0.69466 (14)0.00106 (7)0.0229 (3)
C160.9953 (2)0.75994 (16)0.02502 (8)0.0280 (3)
C170.9182 (3)0.84618 (16)0.05467 (8)0.0284 (4)
C180.7192 (2)0.89186 (14)0.07048 (7)0.0228 (3)
C190.6521 (3)1.01141 (15)0.07358 (8)0.0312 (4)
C200.4661 (3)1.05952 (16)0.08865 (8)0.0359 (4)
C210.3421 (3)0.98862 (17)0.10155 (8)0.0345 (4)
C220.4037 (2)0.87034 (16)0.09885 (7)0.0264 (3)
C230.5914 (2)0.82097 (13)0.08345 (7)0.0198 (3)
H11.096 (3)0.5306 (18)0.3834 (9)0.027 (5)*
H20.769 (3)0.7069 (19)0.2581 (9)0.032 (5)*
H1A1.334 (3)0.6519 (17)0.4086 (9)0.029 (5)*
H1B1.265 (3)0.6790 (17)0.4736 (9)0.028 (5)*
H2A1.000 (3)0.7399 (18)0.4188 (9)0.028 (5)*
H2B0.984 (2)0.6202 (16)0.4667 (9)0.019 (4)*
H3A0.748 (2)0.6818 (15)0.3746 (8)0.014 (4)*
H3B0.797 (2)0.5526 (16)0.4172 (8)0.018 (4)*
H3C0.192 (3)0.0976 (17)0.2851 (9)0.027 (5)*
H3D0.280 (3)0.0219 (17)0.4569 (9)0.025 (5)*
H4A0.871 (2)0.4727 (15)0.3266 (8)0.014 (4)*
H4B0.660 (3)0.5557 (15)0.3244 (8)0.018 (4)*
H5A1.205 (3)0.6769 (16)0.3158 (8)0.020 (4)*
H5B0.995 (3)0.7623 (16)0.3130 (8)0.022 (5)*
H5C0.608 (3)0.2514 (18)0.1990 (9)0.031 (5)*
H5D0.670 (3)0.1386 (17)0.3592 (9)0.029 (5)*
H6A1.064 (3)0.6881 (17)0.2241 (9)0.028 (5)*
H6B1.119 (3)0.5537 (17)0.2650 (8)0.023 (5)*
H7A0.868 (3)0.5037 (18)0.2157 (9)0.028 (5)*
H7B0.865 (3)0.6356 (16)0.1722 (9)0.021 (4)*
H8A0.530 (2)0.6955 (15)0.2024 (8)0.015 (4)*
H8B0.537 (2)0.5596 (16)0.2237 (8)0.019 (4)*
H9A0.637 (3)0.5335 (17)0.1205 (8)0.023 (5)*
H9B0.430 (3)0.6262 (17)0.1206 (9)0.029 (5)*
H110.513 (3)0.6024 (18)0.0116 (10)0.033 (5)*
H120.632 (3)0.5471 (19)0.0806 (10)0.038 (6)*
H130.932 (3)0.5741 (19)0.1207 (10)0.038 (6)*
H141.085 (3)0.6724 (17)0.0727 (9)0.030 (5)*
H161.129 (3)0.746 (2)0.0137 (10)0.044 (6)*
H170.998 (3)0.8897 (18)0.0633 (10)0.036 (6)*
H190.740 (3)1.0580 (18)0.0661 (10)0.034 (5)*
H200.426 (3)1.1418 (19)0.0917 (10)0.040 (6)*
H210.213 (3)1.023 (2)0.1115 (11)0.045 (6)*
H220.313 (3)0.8197 (17)0.1082 (9)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0133 (6)0.0123 (5)0.0194 (6)0.0018 (4)0.0006 (4)0.0052 (4)
N1A0.0266 (7)0.0211 (6)0.0364 (8)0.0088 (6)0.0042 (6)0.0022 (6)
N1B0.0171 (6)0.0173 (6)0.0237 (6)0.0042 (5)0.0011 (5)0.0073 (5)
N20.0164 (6)0.0132 (5)0.0158 (5)0.0026 (5)0.0005 (4)0.0032 (4)
N2A0.0165 (6)0.0203 (6)0.0246 (6)0.0040 (5)0.0010 (5)0.0083 (5)
N2B0.0241 (7)0.0248 (7)0.0272 (7)0.0115 (6)0.0024 (5)0.0092 (5)
N30.0225 (6)0.0187 (6)0.0144 (5)0.0071 (5)0.0001 (5)0.0036 (5)
N3A0.0403 (9)0.0184 (6)0.0229 (7)0.0090 (6)0.0089 (6)0.0073 (5)
N3B0.0341 (8)0.0167 (6)0.0246 (7)0.0057 (6)0.0132 (6)0.0082 (5)
O10.0223 (6)0.0215 (5)0.0244 (5)0.0004 (4)0.0065 (4)0.0047 (4)
O1A0.0192 (5)0.0133 (5)0.0306 (6)0.0006 (4)0.0033 (4)0.0030 (4)
O1B0.0281 (6)0.0145 (5)0.0456 (7)0.0017 (5)0.0160 (5)0.0005 (5)
O2A0.0216 (6)0.0166 (5)0.0340 (6)0.0045 (4)0.0040 (5)0.0071 (5)
O2B0.0188 (6)0.0655 (10)0.0417 (8)0.0087 (6)0.0041 (5)0.0047 (7)
O3A0.0267 (6)0.0318 (6)0.0347 (7)0.0081 (5)0.0110 (5)0.0126 (5)
O3B0.0439 (7)0.0259 (6)0.0256 (6)0.0174 (5)0.0102 (5)0.0098 (5)
O4A0.0434 (8)0.0295 (7)0.0431 (8)0.0164 (6)0.0061 (6)0.0060 (6)
O4B0.0476 (8)0.0139 (5)0.0443 (8)0.0005 (5)0.0108 (6)0.0065 (5)
O5A0.0537 (9)0.0153 (5)0.0377 (7)0.0023 (5)0.0136 (6)0.0090 (5)
O5B0.0374 (7)0.0278 (6)0.0285 (6)0.0135 (5)0.0034 (5)0.0101 (5)
O6A0.0530 (10)0.0301 (8)0.1039 (15)0.0083 (7)0.0356 (10)0.0170 (9)
O6B0.0191 (5)0.0256 (6)0.0279 (6)0.0064 (4)0.0065 (4)0.0094 (5)
O7A0.0241 (7)0.0411 (8)0.0543 (9)0.0092 (6)0.0031 (6)0.0005 (7)
O7B0.0311 (7)0.0154 (5)0.0498 (8)0.0068 (5)0.0170 (6)0.0109 (5)
C10.0212 (8)0.0202 (7)0.0256 (8)0.0051 (6)0.0080 (6)0.0018 (6)
C1A0.0175 (7)0.0139 (6)0.0171 (6)0.0010 (5)0.0033 (5)0.0022 (5)
C1B0.0182 (7)0.0141 (6)0.0218 (7)0.0019 (5)0.0004 (5)0.0031 (5)
C20.0185 (7)0.0190 (7)0.0239 (7)0.0002 (6)0.0065 (6)0.0103 (6)
C2A0.0166 (7)0.0159 (6)0.0193 (6)0.0018 (5)0.0034 (5)0.0052 (5)
C2B0.0180 (7)0.0176 (6)0.0186 (6)0.0057 (5)0.0017 (5)0.0034 (5)
C30.0123 (6)0.0174 (6)0.0173 (6)0.0030 (5)0.0003 (5)0.0049 (5)
C3A0.0182 (7)0.0214 (7)0.0198 (7)0.0021 (6)0.0060 (5)0.0081 (6)
C3B0.0285 (8)0.0149 (6)0.0187 (7)0.0060 (6)0.0052 (6)0.0042 (5)
C40.0173 (7)0.0137 (6)0.0165 (6)0.0053 (5)0.0012 (5)0.0028 (5)
C4A0.0294 (8)0.0146 (6)0.0193 (7)0.0042 (6)0.0072 (6)0.0061 (5)
C4B0.0243 (8)0.0128 (6)0.0200 (7)0.0020 (5)0.0073 (6)0.0060 (5)
C50.0144 (7)0.0142 (6)0.0222 (7)0.0039 (5)0.0003 (5)0.0021 (5)
C5A0.0325 (9)0.0144 (6)0.0193 (7)0.0041 (6)0.0043 (6)0.0032 (5)
C5B0.0162 (7)0.0188 (7)0.0186 (6)0.0000 (5)0.0041 (5)0.0075 (5)
C60.0147 (7)0.0178 (7)0.0192 (7)0.0024 (5)0.0007 (5)0.0026 (5)
C6A0.0223 (7)0.0162 (6)0.0208 (7)0.0041 (6)0.0015 (6)0.0029 (5)
C6B0.0176 (7)0.0143 (6)0.0192 (6)0.0036 (5)0.0011 (5)0.0044 (5)
C70.0246 (8)0.0203 (7)0.0162 (6)0.0002 (6)0.0034 (6)0.0078 (6)
C80.0246 (8)0.0210 (7)0.0149 (6)0.0085 (6)0.0005 (5)0.0031 (5)
C90.0275 (8)0.0239 (7)0.0164 (6)0.0115 (6)0.0009 (6)0.0046 (6)
C100.0237 (7)0.0167 (6)0.0155 (6)0.0027 (6)0.0013 (5)0.0011 (5)
C110.0337 (9)0.0235 (8)0.0191 (7)0.0096 (7)0.0014 (6)0.0041 (6)
C120.0503 (11)0.0242 (8)0.0189 (7)0.0099 (8)0.0037 (7)0.0052 (6)
C130.0464 (11)0.0259 (8)0.0182 (7)0.0012 (8)0.0028 (7)0.0051 (6)
C140.0295 (9)0.0263 (8)0.0232 (8)0.0008 (7)0.0052 (7)0.0000 (6)
C150.0220 (8)0.0211 (7)0.0200 (7)0.0004 (6)0.0022 (6)0.0001 (6)
C160.0195 (8)0.0325 (9)0.0283 (8)0.0076 (7)0.0019 (6)0.0000 (7)
C170.0286 (9)0.0300 (8)0.0290 (8)0.0148 (7)0.0065 (7)0.0017 (7)
C180.0314 (8)0.0204 (7)0.0168 (7)0.0077 (6)0.0052 (6)0.0021 (6)
C190.0537 (12)0.0206 (8)0.0207 (8)0.0128 (8)0.0081 (7)0.0019 (6)
C200.0590 (13)0.0199 (8)0.0207 (8)0.0056 (8)0.0101 (8)0.0046 (6)
C210.0375 (10)0.0329 (9)0.0219 (8)0.0107 (8)0.0051 (7)0.0073 (7)
C220.0242 (8)0.0307 (8)0.0197 (7)0.0003 (7)0.0041 (6)0.0046 (6)
C230.0258 (8)0.0186 (7)0.0134 (6)0.0029 (6)0.0049 (5)0.0027 (5)
Geometric parameters (Å, º) top
N1—C51.4973 (18)C3B—C4B1.394 (2)
N1—C31.4973 (18)C3B—H3D0.944 (19)
N1—C21.5077 (18)C4—H4A0.992 (17)
N1—H10.91 (2)C4—H4B0.970 (18)
N1A—O6A1.2087 (19)C4A—C5A1.391 (2)
N1A—O7A1.2250 (19)C4B—C5B1.372 (2)
N1A—C6A1.455 (2)C5—C61.506 (2)
N1B—O6B1.2256 (16)C5—H5A0.947 (19)
N1B—O7B1.2370 (16)C5—H5B0.988 (18)
N1B—C6B1.4473 (18)C5A—C6A1.364 (2)
N2—C41.4913 (18)C5A—H5C0.95 (2)
N2—C61.4944 (19)C5B—C6B1.383 (2)
N2—C71.4996 (18)C5B—H5D0.92 (2)
N2—H20.90 (2)C6—H6A0.97 (2)
N2A—O3A1.2316 (16)C6—H6B0.968 (19)
N2A—O2A1.2344 (16)C7—C81.519 (2)
N2A—C2A1.4451 (19)C7—H7A0.99 (2)
N2B—O2B1.2189 (19)C7—H7B0.983 (18)
N2B—O3B1.2298 (18)C8—C91.532 (2)
N2B—C2B1.460 (2)C8—H8A0.989 (17)
N3—C101.4250 (18)C8—H8B0.960 (18)
N3—C231.4264 (19)C9—H9A1.000 (18)
N3—C91.4609 (19)C9—H9B1.03 (2)
N3A—O4A1.229 (2)C10—C111.389 (2)
N3A—O5A1.235 (2)C10—C151.400 (2)
N3A—C4A1.4408 (19)C11—C121.393 (2)
N3B—O5B1.2277 (19)C11—H110.95 (2)
N3B—O4B1.2334 (19)C12—C131.379 (3)
N3B—C4B1.4493 (19)C12—H120.98 (2)
O1—C11.4207 (18)C13—C141.377 (3)
O1—H1C0.8200C13—H130.97 (2)
O1A—C1A1.2431 (17)C14—C151.400 (2)
O1B—C1B1.2504 (18)C14—H140.95 (2)
C1—C21.505 (2)C15—C161.462 (2)
C1—H1A0.97 (2)C16—C171.336 (3)
C1—H1B0.96 (2)C16—H160.97 (2)
C1A—C2A1.449 (2)C17—C181.461 (2)
C1A—C6A1.450 (2)C17—H170.95 (2)
C1B—C2B1.442 (2)C18—C231.403 (2)
C1B—C6B1.447 (2)C18—C191.404 (2)
C2—H2A0.94 (2)C19—C201.379 (3)
C2—H2B0.965 (18)C19—H190.95 (2)
C2A—C3A1.379 (2)C20—C211.380 (3)
C2B—C3B1.364 (2)C20—H200.97 (2)
C3—C41.5114 (19)C21—C221.385 (3)
C3—H3A0.944 (17)C21—H210.95 (2)
C3—H3B0.956 (18)C22—C231.395 (2)
C3A—C4A1.381 (2)C22—H221.00 (2)
C3A—H3C0.960 (19)
C5—N1—C3109.19 (11)N1—C5—H5A108.6 (11)
C5—N1—C2110.78 (11)C6—C5—H5A108.5 (11)
C3—N1—C2110.41 (11)N1—C5—H5B106.6 (10)
C5—N1—H1109.1 (12)C6—C5—H5B110.4 (11)
C3—N1—H1106.7 (12)H5A—C5—H5B111.4 (15)
C2—N1—H1110.5 (12)C6A—C5A—C4A118.59 (14)
O6A—N1A—O7A123.06 (16)C6A—C5A—H5C120.0 (12)
O6A—N1A—C6A118.13 (15)C4A—C5A—H5C121.4 (12)
O7A—N1A—C6A118.74 (13)C4B—C5B—C6B119.73 (14)
O6B—N1B—O7B122.01 (13)C4B—C5B—H5D122.4 (12)
O6B—N1B—C6B118.63 (12)C6B—C5B—H5D117.8 (12)
O7B—N1B—C6B119.32 (12)N2—C6—C5111.06 (12)
C4—N2—C6109.13 (11)N2—C6—H6A107.4 (12)
C4—N2—C7112.96 (11)C5—C6—H6A107.9 (12)
C6—N2—C7110.53 (11)N2—C6—H6B108.0 (11)
C4—N2—H2110.9 (13)C5—C6—H6B111.3 (11)
C6—N2—H2106.2 (13)H6A—C6—H6B111.0 (16)
C7—N2—H2106.9 (13)C5A—C6A—C1A124.68 (15)
O3A—N2A—O2A121.74 (13)C5A—C6A—N1A117.16 (14)
O3A—N2A—C2A118.85 (12)C1A—C6A—N1A118.16 (13)
O2A—N2A—C2A119.34 (12)C5B—C6B—C1B123.28 (13)
O2B—N2B—O3B124.29 (15)C5B—C6B—N1B116.20 (13)
O2B—N2B—C2B118.14 (13)C1B—C6B—N1B120.47 (12)
O3B—N2B—C2B117.58 (14)N2—C7—C8112.82 (12)
C10—N3—C23116.26 (11)N2—C7—H7A107.2 (11)
C10—N3—C9117.10 (12)C8—C7—H7A112.1 (11)
C23—N3—C9118.09 (12)N2—C7—H7B104.2 (11)
O4A—N3A—O5A123.17 (14)C8—C7—H7B109.4 (11)
O4A—N3A—C4A118.62 (15)H7A—C7—H7B110.9 (15)
O5A—N3A—C4A118.21 (15)C7—C8—C9109.79 (13)
O5B—N3B—O4B123.64 (14)C7—C8—H8A109.1 (10)
O5B—N3B—C4B118.44 (14)C9—C8—H8A109.9 (10)
O4B—N3B—C4B117.91 (15)C7—C8—H8B112.2 (11)
C1—O1—H1C109.5C9—C8—H8B108.8 (11)
O1—C1—C2110.26 (13)H8A—C8—H8B107.1 (14)
O1—C1—H1A111.6 (12)N3—C9—C8110.31 (12)
C2—C1—H1A111.5 (12)N3—C9—H9A105.3 (10)
O1—C1—H1B109.2 (12)C8—C9—H9A110.6 (11)
C2—C1—H1B106.8 (12)N3—C9—H9B114.5 (11)
H1A—C1—H1B107.3 (16)C8—C9—H9B109.6 (11)
O1A—C1A—C2A126.28 (13)H9A—C9—H9B106.4 (15)
O1A—C1A—C6A121.87 (14)C11—C10—C15119.85 (14)
C2A—C1A—C6A111.85 (12)C11—C10—N3121.27 (14)
O1B—C1B—C2B121.18 (14)C15—C10—N3118.80 (14)
O1B—C1B—C6B127.15 (14)C10—C11—C12120.62 (17)
C2B—C1B—C6B111.66 (12)C10—C11—H11120.9 (12)
C1—C2—N1112.61 (12)C12—C11—H11118.4 (13)
C1—C2—H2A110.8 (12)C13—C12—C11119.76 (17)
N1—C2—H2A106.4 (12)C13—C12—H12121.0 (12)
C1—C2—H2B110.7 (11)C11—C12—H12119.2 (12)
N1—C2—H2B104.6 (11)C14—C13—C12119.82 (16)
H2A—C2—H2B111.4 (16)C14—C13—H13119.3 (13)
C3A—C2A—N2A116.23 (13)C12—C13—H13120.9 (13)
C3A—C2A—C1A123.64 (14)C13—C14—C15121.58 (17)
N2A—C2A—C1A120.05 (12)C13—C14—H14120.5 (12)
C3B—C2B—C1B125.93 (14)C15—C14—H14117.8 (12)
C3B—C2B—N2B117.41 (13)C10—C15—C14118.24 (16)
C1B—C2B—N2B116.65 (13)C10—C15—C16122.62 (14)
N1—C3—C4111.05 (11)C14—C15—C16119.13 (16)
N1—C3—H3A107.0 (10)C17—C16—C15126.76 (16)
C4—C3—H3A111.2 (10)C17—C16—H16118.1 (13)
N1—C3—H3B107.5 (11)C15—C16—H16114.5 (13)
C4—C3—H3B109.9 (11)C16—C17—C18127.92 (16)
H3A—C3—H3B110.0 (14)C16—C17—H17117.6 (13)
C2A—C3A—C4A119.18 (15)C18—C17—H17114.2 (13)
C2A—C3A—H3C118.5 (11)C23—C18—C19118.16 (16)
C4A—C3A—H3C122.3 (11)C23—C18—C17122.83 (14)
C2B—C3B—C4B117.56 (14)C19—C18—C17119.01 (16)
C2B—C3B—H3D121.2 (11)C20—C19—C18121.74 (18)
C4B—C3B—H3D121.2 (11)C20—C19—H19120.6 (13)
N2—C4—C3110.39 (11)C18—C19—H19117.6 (13)
N2—C4—H4A106.7 (10)C19—C20—C21119.48 (17)
C3—C4—H4A112.7 (10)C19—C20—H20119.4 (13)
N2—C4—H4B108.1 (10)C21—C20—H20121.1 (13)
C3—C4—H4B109.6 (10)C20—C21—C22120.24 (18)
H4A—C4—H4B109.3 (14)C20—C21—H21119.0 (14)
C3A—C4A—C5A121.45 (14)C22—C21—H21120.7 (14)
C3A—C4A—N3A119.11 (15)C21—C22—C23120.70 (17)
C5A—C4A—N3A119.27 (15)C21—C22—H22119.7 (11)
C5B—C4B—C3B121.63 (13)C23—C22—H22119.6 (11)
C5B—C4B—N3B119.06 (14)C22—C23—C18119.68 (15)
C3B—C4B—N3B119.21 (14)C22—C23—N3121.32 (14)
N1—C5—C6111.44 (12)C18—C23—N3118.92 (14)
O1—C1—C2—N173.47 (17)O6A—N1A—C6A—C5A30.2 (2)
C5—N1—C2—C175.95 (15)O7A—N1A—C6A—C5A146.94 (16)
C3—N1—C2—C1162.96 (13)O6A—N1A—C6A—C1A149.37 (18)
O3A—N2A—C2A—C3A16.0 (2)O7A—N1A—C6A—C1A33.4 (2)
O2A—N2A—C2A—C3A167.07 (13)C4B—C5B—C6B—C1B0.1 (2)
O3A—N2A—C2A—C1A160.72 (14)C4B—C5B—C6B—N1B177.32 (13)
O2A—N2A—C2A—C1A16.2 (2)O1B—C1B—C6B—C5B176.23 (16)
O1A—C1A—C2A—C3A172.63 (14)C2B—C1B—C6B—C5B3.3 (2)
C6A—C1A—C2A—C3A7.6 (2)O1B—C1B—C6B—N1B6.4 (2)
O1A—C1A—C2A—N2A10.9 (2)C2B—C1B—C6B—N1B174.07 (12)
C6A—C1A—C2A—N2A168.85 (12)O6B—N1B—C6B—C5B10.6 (2)
O1B—C1B—C2B—C3B174.15 (15)O7B—N1B—C6B—C5B171.39 (14)
C6B—C1B—C2B—C3B5.4 (2)O6B—N1B—C6B—C1B166.93 (13)
O1B—C1B—C2B—N2B4.6 (2)O7B—N1B—C6B—C1B11.1 (2)
C6B—C1B—C2B—N2B175.85 (12)C4—N2—C7—C872.88 (16)
O2B—N2B—C2B—C3B127.14 (16)C6—N2—C7—C8164.52 (12)
O3B—N2B—C2B—C3B52.44 (19)N2—C7—C8—C9160.20 (12)
O2B—N2B—C2B—C1B54.0 (2)C10—N3—C9—C8152.17 (13)
O3B—N2B—C2B—C1B126.42 (15)C23—N3—C9—C861.06 (17)
C5—N1—C3—C456.93 (14)C7—C8—C9—N356.46 (17)
C2—N1—C3—C4178.96 (12)C23—N3—C10—C11111.87 (16)
N2A—C2A—C3A—C4A174.47 (13)C9—N3—C10—C1135.5 (2)
C1A—C2A—C3A—C4A2.1 (2)C23—N3—C10—C1571.41 (18)
C1B—C2B—C3B—C4B4.1 (2)C9—N3—C10—C15141.22 (14)
N2B—C2B—C3B—C4B177.17 (13)C15—C10—C11—C122.4 (2)
C6—N2—C4—C358.56 (15)N3—C10—C11—C12174.26 (14)
C7—N2—C4—C3178.06 (12)C10—C11—C12—C130.6 (3)
N1—C3—C4—N259.29 (15)C11—C12—C13—C141.8 (3)
C2A—C3A—C4A—C5A3.5 (2)C12—C13—C14—C150.0 (3)
C2A—C3A—C4A—N3A178.66 (13)C11—C10—C15—C144.1 (2)
O4A—N3A—C4A—C3A1.6 (2)N3—C10—C15—C14172.67 (14)
O5A—N3A—C4A—C3A177.50 (14)C11—C10—C15—C16174.51 (15)
O4A—N3A—C4A—C5A176.91 (15)N3—C10—C15—C168.7 (2)
O5A—N3A—C4A—C5A2.2 (2)C13—C14—C15—C102.9 (2)
C2B—C3B—C4B—C5B0.2 (2)C13—C14—C15—C16175.71 (16)
C2B—C3B—C4B—N3B176.01 (13)C10—C15—C16—C1731.2 (3)
O5B—N3B—C4B—C5B9.7 (2)C14—C15—C16—C17147.44 (18)
O4B—N3B—C4B—C5B171.44 (14)C15—C16—C17—C183.0 (3)
O5B—N3B—C4B—C3B166.71 (14)C16—C17—C18—C2330.6 (3)
O4B—N3B—C4B—C3B12.2 (2)C16—C17—C18—C19150.09 (18)
C3—N1—C5—C656.04 (15)C23—C18—C19—C200.2 (2)
C2—N1—C5—C6177.86 (12)C17—C18—C19—C20179.58 (16)
C3A—C4A—C5A—C6A2.6 (2)C18—C19—C20—C210.5 (3)
N3A—C4A—C5A—C6A177.78 (14)C19—C20—C21—C220.5 (3)
C3B—C4B—C5B—C6B1.6 (2)C20—C21—C22—C230.3 (2)
N3B—C4B—C5B—C6B177.86 (13)C21—C22—C23—C180.1 (2)
C4—N2—C6—C557.85 (15)C21—C22—C23—N3176.53 (14)
C7—N2—C6—C5177.35 (12)C19—C18—C23—C220.0 (2)
N1—C5—C6—N257.52 (15)C17—C18—C23—C22179.34 (15)
C4A—C5A—C6A—C1A4.0 (2)C19—C18—C23—N3176.67 (13)
C4A—C5A—C6A—N1A176.42 (14)C17—C18—C23—N32.7 (2)
O1A—C1A—C6A—C5A171.60 (15)C10—N3—C23—C22116.62 (16)
C2A—C1A—C6A—C5A8.7 (2)C9—N3—C23—C2230.4 (2)
O1A—C1A—C6A—N1A8.0 (2)C10—N3—C23—C1866.76 (18)
C2A—C1A—C6A—N1A171.77 (13)C9—N3—C23—C18146.20 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Bi0.91 (2)1.85 (2)2.6901 (16)152.6 (18)
N1—H1···O7Bi0.91 (2)2.383 (19)3.0466 (17)130.0 (16)
N2—H2···O1Aii0.90 (2)1.78 (2)2.6204 (16)154.6 (19)
N2—H2···O2Aii0.90 (2)2.43 (2)3.0711 (16)128.2 (16)
O1—H1C···O1Bi0.822.503.1600 (19)138
O1—H1C···O7Bi0.822.383.0841 (18)144
C2—H2A···O5Bii0.94 (2)2.43 (2)3.3130 (19)155.7 (16)
C2—H2A···O3Biii0.94 (2)2.60 (2)3.2350 (19)125.4 (15)
C3—H3B···O1iv0.956 (18)2.410 (18)3.3250 (18)160.0 (14)
C3B—H3D···O3Bv0.944 (19)2.503 (19)3.318 (2)144.7 (15)
C4—H4B···O2Aii0.970 (18)2.648 (17)3.1064 (18)109.3 (12)
C5—H5A···O2Avi0.947 (19)2.418 (19)3.2683 (18)149.3 (14)
C5—H5B···O1Aii0.988 (18)2.523 (18)3.1842 (18)124.1 (13)
C5—H5B···O5Bii0.988 (18)2.714 (18)3.5844 (19)147.2 (14)
C6—H6B···O5Ai0.968 (19)2.492 (19)3.3728 (19)151.2 (15)
C7—H7A···O4Ai0.99 (2)2.44 (2)3.371 (2)158.0 (16)
C8—H8A···O2Aii0.989 (17)2.521 (17)3.2870 (19)134.1 (13)
C14—H14···O6Avii0.95 (2)2.47 (2)3.085 (2)122.0 (15)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x, y, z+1; (vi) x+1, y+1, z; (vii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H31N3O2+·2C6H2N3O7
Mr821.72
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3838 (8), 12.0400 (13), 22.074 (2)
α, β, γ (°)74.821 (1), 84.355 (2), 73.866 (2)
V3)1818.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.55 × 0.50 × 0.14
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.937, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10692, 10692, 7831
Rint0.000
(sin θ/λ)max1)0.727
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.123, 0.98
No. of reflections10692
No. of parameters669
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.39

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Bi0.91 (2)1.85 (2)2.6901 (16)152.6 (18)
N1—H1···O7Bi0.91 (2)2.383 (19)3.0466 (17)130.0 (16)
N2—H2···O1Aii0.90 (2)1.78 (2)2.6204 (16)154.6 (19)
N2—H2···O2Aii0.90 (2)2.43 (2)3.0711 (16)128.2 (16)
O1—H1C···O1Bi0.822.503.1600 (19)138.4
O1—H1C···O7Bi0.822.383.0841 (18)144.4
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
YX···Cg π ring interactions (Å) top
Cg3 and Cg9 are the centroids of the C10–C15 and C1A–C6A rings, respectively.
YX···CgX···CgY···CgX···Perp
C1A-O1A···Cg3i3.5674 (13)3.6471 (17)3.494
N3A-O4A···Cg9ii3.8172 (17)3.8173 (17)-3.357
N3B-O4B···Cg9iii3.4320 (15)3.9391 (15)3.288
Symmetry codes: (i) x, -1+y, z; (ii) x, y, z; (iii) 1-x, -y, 1-z.
Cg···Cg π stacking interactions (Å) top
Cg2, Cg3 , Cg8 and Cg9 are the centroids of the C10–C15, C18–C23, C1A–C6A and C1B–C6B rings, respectively.
CgX···CgYCgX···PerpCgY···Perp
Cg2···Cg2i3.8038 (11)-3.5589 (7)-3.5590 (7)
Cg3···Cg3i3.7164 (10)-3.6624 (7)-3.6623 (7)
Cg8···Cg9ii3.9558 (10)-3.2475 (6)3.3731 (6)
Cg9···Cg8ii3.9557 (10)3.3730 (6)-3.2475 (6)
Symmetry codes: (i) 2-x, 1-y, -z; (ii) x, y, z.
 

Acknowledgements

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. HSY thanks the UOM for research facilities and for sabbatical leave. BPS thanks R. L. Fine Chem, Bangalore, for a gift sample of opipramol dihydro­chloride.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546–o548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o411–o412.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59–65.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShriner, R. L., Fuson, R. C., Curtin, D. Y. & Morrill, T. C. (1980). Qualitative Identification of Organic Compounds, 6th ed., pp. 236–237. New York: Wiley.  Google Scholar
First citationYathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1693–o1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds