organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-3-Chloro-4-(4-ethyl­piperazin-1-yl)-5-[(1R,2S,5R)-2-iso­propyl-5-methyl­cyclo­hex­yl­oxy]furan-2(5H)-one

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wangwangzhaoyang@tom.com

(Received 17 June 2010; accepted 7 July 2010; online 14 July 2010)

The title compound, C20H33ClN2O3, was obtained via a tandem asymmetric Michael addition–elimination reaction of 3,4-dichloro-5-(S)-(l-menth­yloxy)furan-2(5H)-one and 1-ethyl­piperazine in the presence of potassium fluoride. The mol­ecular structure contains an approximately planar five-membered furan­one ring [maximum atomic deviation = 0.024 (2) Å] and two six-membered rings adopting chair conformations. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

The title compound is a 4-amino-2(5H)-furan­one derivative. For the biological activity of 4-amino-2(5H)-furan­ones, see: Kimura et al. (2000[Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829-831.]); Tanoury et al. (2008[Tanoury, G. J., Chen, M.-Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185-188.]). For the asymmetric Michael addition reactions of 2(5H)-furan­ones, see: Bertrand et al. (2000[Bertrand, S., Hoffmann, N. & Pete, J. P. (2000). Eur. J. Org. Chem. 12, 2227-2238.]); He et al. (2006[He, L., Liu, Y.-M., Li, M. & Chen, Q.-H. (2006). Chem. J. Chin. Univ. 27, 464-467.]); Sarma et al. (2007[Sarma, D. K., Zhang, J. & Curran, T. T. (2007). J. Org. Chem. 72, 3311-3318.]). For the synthesis of the title compound, see: Song et al. (2009[Song, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804-1810.]).

[Scheme 1]

Experimental

Crystal data
  • C20H33ClN2O3

  • Mr = 384.93

  • Orthorhombic, P 21 21 21

  • a = 8.7168 (15) Å

  • b = 10.1470 (18) Å

  • c = 24.478 (4) Å

  • V = 2165.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.969

  • 12202 measured reflections

  • 4384 independent reflections

  • 2730 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.107

  • S = 1.01

  • 4384 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1866 Friedel pairs

  • Flack parameter: 0.00 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.98 2.53 3.361 (4) 142
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

With their poly-functional groups and highly active reactivity, 5-menthyloxy-2(5H)-furanones, serving as a kind of important building blocks, were widely used for the synthesis of a variety of chiral 5-menthyloxy-2(5H)-furanone derivatives. Until now, the asymmetric Michael addition reactions of 2(5H)-furanone with nucleophiles, to construct C-X (X=N, O, S, P, C) bond, have been a prominent objective in furanone chemistry (Bertrand et al., 2000; He et al., 2006; Sarma et al., 2007). At the same time, 4-amino-2(5H)-furanone is an attractive moiety in chemical, pharmaceutical and agrochemical research (Kimura et al., 2000; Tanoury et al., 2008).

Therefore we are interested in the tandem Michael addition-elimination reaction of the chiral synthon 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone and 1-ethylpiperazine in the present of potassium fluoride. The structure of the title compound (I) is illustrated in Fig. 1. The crystal structure of the title compound which has four chiral centers ( C4(S), C5(R), C6(S), C9(R)) contains a five-membered furanone ring and two six-membered rings connected each other via C4—O3—C5 ether bond and C3—N2 bond. The furanone ring of C2—C3—C4—O1—C1 is approximately planar, whereas the six-membered ring displays a chair conformation.

Related literature top

The title compound is a 4-amino-2(5H)-furanone derivative. For the biological activity of 4-amino-2(5H)-furanones, see: Kimura et al. (2000); Tanoury et al. (2008). For the asymmetric Michael addition reactions of 2(5H)-furanones, see: Bertrand et al. (2000); He et al. (2006); Sarma et al. (2007). For the synthesis of the title compound, see: Song et al. (2009).

Experimental top

The precursor 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone was prepared according to the literature procedure (Song et al., 2009). After the mixture of 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone (2.0 mmol) and potassium fluoride (6.0 mmol) was dissolved in absolute tetrahydrofuran(2.0 mL) under nitrogen atmosphere, tetrahydrofuran solution of 1-ethylpiperazine (3.0 mmol) was added. The reaction was carried out under the stirring at room temperature for 24 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.280 g (36.1%).

Refinement top

H atoms were positioned in calculated positions with C—H = 0.93-0.98 Å and were refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Structure description top

With their poly-functional groups and highly active reactivity, 5-menthyloxy-2(5H)-furanones, serving as a kind of important building blocks, were widely used for the synthesis of a variety of chiral 5-menthyloxy-2(5H)-furanone derivatives. Until now, the asymmetric Michael addition reactions of 2(5H)-furanone with nucleophiles, to construct C-X (X=N, O, S, P, C) bond, have been a prominent objective in furanone chemistry (Bertrand et al., 2000; He et al., 2006; Sarma et al., 2007). At the same time, 4-amino-2(5H)-furanone is an attractive moiety in chemical, pharmaceutical and agrochemical research (Kimura et al., 2000; Tanoury et al., 2008).

Therefore we are interested in the tandem Michael addition-elimination reaction of the chiral synthon 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone and 1-ethylpiperazine in the present of potassium fluoride. The structure of the title compound (I) is illustrated in Fig. 1. The crystal structure of the title compound which has four chiral centers ( C4(S), C5(R), C6(S), C9(R)) contains a five-membered furanone ring and two six-membered rings connected each other via C4—O3—C5 ether bond and C3—N2 bond. The furanone ring of C2—C3—C4—O1—C1 is approximately planar, whereas the six-membered ring displays a chair conformation.

The title compound is a 4-amino-2(5H)-furanone derivative. For the biological activity of 4-amino-2(5H)-furanones, see: Kimura et al. (2000); Tanoury et al. (2008). For the asymmetric Michael addition reactions of 2(5H)-furanones, see: Bertrand et al. (2000); He et al. (2006); Sarma et al. (2007). For the synthesis of the title compound, see: Song et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing.
(S)-3-Chloro-4-(4-ethylpiperazin-1-yl)- 5-[(1R,2S,5R)-2-isopropyl-5- methylcyclohexyloxy]furan-2(5H)-one top
Crystal data top
C20H33ClN2O3F(000) = 832.0
Mr = 384.93Dx = 1.181 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1893 reflections
a = 8.7168 (15) Åθ = 2.6–19.0°
b = 10.1470 (18) ŵ = 0.20 mm1
c = 24.478 (4) ÅT = 298 K
V = 2165.1 (6) Å3Block, colourless
Z = 40.23 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4384 independent reflections
Radiation source: fine-focus sealed tube2730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scanθmax = 26.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.956, Tmax = 0.969k = 812
12202 measured reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.0387P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4384 reflectionsΔρmax = 0.13 e Å3
240 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 1866 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (8)
Crystal data top
C20H33ClN2O3V = 2165.1 (6) Å3
Mr = 384.93Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.7168 (15) ŵ = 0.20 mm1
b = 10.1470 (18) ÅT = 298 K
c = 24.478 (4) Å0.23 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4384 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2730 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.969Rint = 0.045
12202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.107Δρmax = 0.13 e Å3
S = 1.01Δρmin = 0.17 e Å3
4384 reflectionsAbsolute structure: Flack (1983), 1866 Friedel pairs
240 parametersAbsolute structure parameter: 0.00 (8)
0 restraints
Special details top

Experimental. Data for (I): [α]20°D = -32.5° (c 0.452, CH3CH2OH); 1H NMR (400 MHz, CDCl3, TMS): 0.720 (3H, d, J = 6.8 Hz, CH3), 0.766-1.142 (12H, m, CH, CH2, 3CH3), 1.221-1.388 (2H, m, 2CH), 1.611-1.660 (2H, m, CH2), 2.103-2.227 (2H, m, CH2), 2.435 (2H, d, J = 7.2 Hz, CH2), 2.495-2.515 (4H, m, 2CH2), 3.484-3.548 (1H, ddd, J = 4.4 Hz, J = 4.4 Hz,J = 4.4 Hz,CH), 3.591-3.624 (2H, m, CH2), 3.729-3.761 (2H, m, CH2), 5.751 (1H, s, CH), ESI-MS, m/z (%): Calcd for C20H34ClN2O3+([M+H]+): 385.22, Found: 385.39 (72.0).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.92355 (9)0.19339 (9)0.15783 (3)0.0824 (3)
C11.0114 (3)0.1277 (3)0.25997 (11)0.0600 (7)
C20.8953 (3)0.1150 (3)0.21895 (10)0.0527 (7)
C30.7814 (3)0.0351 (2)0.23643 (9)0.0464 (6)
C40.8249 (3)0.0073 (3)0.29384 (9)0.0486 (6)
H40.83000.10350.29670.058*
C50.7051 (3)0.0215 (3)0.38183 (9)0.0526 (6)
H50.66990.11200.37560.063*
C60.5819 (3)0.0524 (3)0.41368 (10)0.0604 (7)
H60.62170.14140.42000.072*
C70.5633 (4)0.0115 (4)0.46984 (11)0.0893 (10)
H7A0.52200.09970.46530.107*
H7B0.49030.03910.49110.107*
C80.7140 (4)0.0195 (4)0.50074 (12)0.1017 (12)
H8A0.69750.06480.53510.122*
H8B0.74940.06900.50890.122*
C90.8364 (4)0.0913 (4)0.46850 (12)0.0842 (10)
H90.80150.18200.46260.101*
C110.9897 (4)0.0966 (4)0.49839 (12)0.1230 (15)
H11A0.97750.14390.53210.185*
H11B1.06400.14070.47600.185*
H11C1.02410.00860.50600.185*
C120.4297 (3)0.0685 (3)0.38336 (12)0.0701 (8)
H120.45430.10310.34700.084*
C130.3255 (4)0.1697 (4)0.41080 (14)0.1061 (13)
H13A0.38100.25040.41610.159*
H13B0.23780.18590.38800.159*
H13C0.29210.13650.44550.159*
C140.3423 (4)0.0598 (4)0.37461 (14)0.0934 (11)
H14A0.25440.04360.35190.140*
H14B0.40810.12290.35710.140*
H14C0.30920.09380.40930.140*
N20.6474 (2)0.0035 (2)0.21506 (8)0.0520 (5)
C150.5990 (3)0.0392 (3)0.16045 (10)0.0684 (8)
H15A0.63710.12750.15350.082*
H15B0.64250.01920.13320.082*
C160.4266 (3)0.0384 (3)0.15570 (10)0.0656 (8)
H16A0.39680.06540.11920.079*
H16B0.38310.10050.18150.079*
N10.3681 (2)0.0924 (2)0.16674 (9)0.0557 (6)
C170.4034 (3)0.1223 (3)0.22317 (10)0.0628 (8)
H17A0.35790.05590.24660.075*
H17B0.35910.20690.23280.075*
C180.5741 (3)0.1263 (2)0.23249 (11)0.0581 (7)
H18A0.61780.19950.21230.070*
H18B0.59440.14060.27100.070*
C190.2032 (3)0.1040 (3)0.15658 (12)0.0750 (9)
H19A0.16860.18910.16980.090*
H19B0.15030.03670.17740.090*
C200.1589 (4)0.0909 (4)0.09789 (13)0.0967 (12)
H20A0.22300.14680.07600.145*
H20B0.05360.11650.09340.145*
H20C0.17150.00100.08650.145*
O30.71812 (18)0.04391 (16)0.32993 (6)0.0511 (4)
O10.97260 (19)0.05115 (19)0.30335 (7)0.0606 (5)
O21.1286 (2)0.1903 (2)0.25964 (9)0.0842 (7)
C100.8549 (3)0.0261 (3)0.41285 (10)0.0655 (8)
H10A0.93000.07470.39160.079*
H10B0.89310.06290.41780.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0705 (5)0.0943 (6)0.0825 (5)0.0125 (5)0.0059 (4)0.0335 (5)
C10.0460 (16)0.0667 (19)0.0674 (18)0.0018 (15)0.0059 (15)0.0001 (15)
C20.0478 (16)0.0528 (17)0.0576 (16)0.0012 (14)0.0048 (13)0.0056 (13)
C30.0434 (14)0.0465 (16)0.0492 (14)0.0033 (13)0.0018 (12)0.0005 (12)
C40.0420 (14)0.0505 (16)0.0532 (15)0.0018 (12)0.0031 (11)0.0020 (13)
C50.0592 (16)0.0538 (16)0.0448 (14)0.0042 (15)0.0001 (12)0.0004 (13)
C60.0641 (18)0.0607 (17)0.0564 (16)0.0063 (16)0.0095 (14)0.0025 (14)
C70.092 (2)0.120 (3)0.0563 (18)0.002 (2)0.0142 (17)0.0032 (19)
C80.109 (3)0.148 (4)0.0476 (17)0.007 (3)0.0026 (19)0.005 (2)
C90.091 (2)0.104 (3)0.0579 (19)0.005 (2)0.0121 (17)0.0102 (19)
C110.114 (3)0.186 (4)0.069 (2)0.008 (3)0.029 (2)0.019 (3)
C120.0611 (19)0.076 (2)0.0736 (18)0.0031 (18)0.0139 (16)0.0076 (17)
C130.092 (3)0.111 (3)0.115 (3)0.026 (2)0.037 (2)0.002 (2)
C140.069 (2)0.111 (3)0.101 (3)0.019 (2)0.0029 (18)0.004 (2)
N20.0535 (13)0.0548 (13)0.0477 (12)0.0074 (11)0.0039 (9)0.0076 (10)
C150.074 (2)0.079 (2)0.0519 (16)0.0173 (17)0.0076 (14)0.0158 (15)
C160.0697 (19)0.069 (2)0.0585 (16)0.0001 (17)0.0149 (15)0.0098 (15)
N10.0487 (13)0.0603 (15)0.0582 (13)0.0017 (11)0.0077 (10)0.0035 (12)
C170.0540 (17)0.070 (2)0.0643 (18)0.0115 (15)0.0043 (14)0.0135 (15)
C180.0570 (16)0.0541 (17)0.0631 (16)0.0097 (14)0.0130 (14)0.0084 (14)
C190.0573 (18)0.090 (2)0.077 (2)0.0004 (17)0.0157 (16)0.0069 (18)
C200.083 (2)0.113 (3)0.094 (2)0.000 (2)0.0368 (19)0.008 (2)
O30.0510 (10)0.0557 (11)0.0465 (9)0.0049 (9)0.0040 (8)0.0008 (8)
O10.0435 (10)0.0781 (13)0.0601 (11)0.0085 (10)0.0047 (8)0.0019 (10)
O20.0541 (12)0.0954 (16)0.1032 (17)0.0258 (12)0.0054 (11)0.0103 (14)
C100.0653 (18)0.079 (2)0.0524 (16)0.0018 (17)0.0031 (13)0.0017 (15)
Geometric parameters (Å, º) top
Cl1—C21.712 (2)C12—H120.9800
C1—O21.203 (3)C13—H13A0.9600
C1—O11.358 (3)C13—H13B0.9600
C1—C21.431 (4)C13—H13C0.9600
C2—C31.351 (3)C14—H14A0.9600
C3—N21.338 (3)C14—H14B0.9600
C3—C41.518 (3)C14—H14C0.9600
C4—O31.384 (3)N2—C181.463 (3)
C4—O11.437 (3)N2—C151.468 (3)
C4—H40.9800C15—C161.507 (4)
C5—O31.438 (3)C15—H15A0.9700
C5—C101.511 (3)C15—H15B0.9700
C5—C61.524 (4)C16—N11.447 (3)
C5—H50.9800C16—H16A0.9700
C6—C71.529 (4)C16—H16B0.9700
C6—C121.529 (4)N1—C171.447 (3)
C6—H60.9800N1—C191.463 (3)
C7—C81.518 (4)C17—C181.506 (3)
C7—H7A0.9700C17—H17A0.9700
C7—H7B0.9700C17—H17B0.9700
C8—C91.514 (5)C18—H18A0.9700
C8—H8A0.9700C18—H18B0.9700
C8—H8B0.9700C19—C201.494 (4)
C9—C101.523 (4)C19—H19A0.9700
C9—C111.524 (4)C19—H19B0.9700
C9—H90.9800C20—H20A0.9600
C11—H11A0.9600C20—H20B0.9600
C11—H11B0.9600C20—H20C0.9600
C11—H11C0.9600C10—H10A0.9700
C12—C141.524 (4)C10—H10B0.9700
C12—C131.527 (4)
O2—C1—O1121.2 (3)C12—C13—H13C109.5
O2—C1—C2130.0 (3)H13A—C13—H13C109.5
O1—C1—C2108.7 (2)H13B—C13—H13C109.5
C3—C2—C1110.6 (2)C12—C14—H14A109.5
C3—C2—Cl1131.4 (2)C12—C14—H14B109.5
C1—C2—Cl1118.0 (2)H14A—C14—H14B109.5
N2—C3—C2133.9 (2)C12—C14—H14C109.5
N2—C3—C4119.8 (2)H14A—C14—H14C109.5
C2—C3—C4106.2 (2)H14B—C14—H14C109.5
O3—C4—O1110.14 (19)C3—N2—C18121.1 (2)
O3—C4—C3108.46 (19)C3—N2—C15121.4 (2)
O1—C4—C3104.89 (19)C18—N2—C15113.0 (2)
O3—C4—H4111.1N2—C15—C16110.8 (2)
O1—C4—H4111.1N2—C15—H15A109.5
C3—C4—H4111.1C16—C15—H15A109.5
O3—C5—C10113.0 (2)N2—C15—H15B109.5
O3—C5—C6106.3 (2)C16—C15—H15B109.5
C10—C5—C6111.5 (2)H15A—C15—H15B108.1
O3—C5—H5108.6N1—C16—C15110.0 (2)
C10—C5—H5108.6N1—C16—H16A109.7
C6—C5—H5108.6C15—C16—H16A109.7
C5—C6—C7109.0 (2)N1—C16—H16B109.7
C5—C6—C12114.6 (2)C15—C16—H16B109.7
C7—C6—C12112.9 (2)H16A—C16—H16B108.2
C5—C6—H6106.6C17—N1—C16107.2 (2)
C7—C6—H6106.6C17—N1—C19110.7 (2)
C12—C6—H6106.6C16—N1—C19112.9 (2)
C8—C7—C6112.2 (3)N1—C17—C18111.1 (2)
C8—C7—H7A109.2N1—C17—H17A109.4
C6—C7—H7A109.2C18—C17—H17A109.4
C8—C7—H7B109.2N1—C17—H17B109.4
C6—C7—H7B109.2C18—C17—H17B109.4
H7A—C7—H7B107.9H17A—C17—H17B108.0
C9—C8—C7112.1 (3)N2—C18—C17111.4 (2)
C9—C8—H8A109.2N2—C18—H18A109.4
C7—C8—H8A109.2C17—C18—H18A109.4
C9—C8—H8B109.2N2—C18—H18B109.4
C7—C8—H8B109.2C17—C18—H18B109.4
H8A—C8—H8B107.9H18A—C18—H18B108.0
C8—C9—C10109.4 (3)N1—C19—C20114.2 (3)
C8—C9—C11112.6 (3)N1—C19—H19A108.7
C10—C9—C11110.6 (3)C20—C19—H19A108.7
C8—C9—H9108.0N1—C19—H19B108.7
C10—C9—H9108.0C20—C19—H19B108.7
C11—C9—H9108.0H19A—C19—H19B107.6
C9—C11—H11A109.5C19—C20—H20A109.5
C9—C11—H11B109.5C19—C20—H20B109.5
H11A—C11—H11B109.5H20A—C20—H20B109.5
C9—C11—H11C109.5C19—C20—H20C109.5
H11A—C11—H11C109.5H20A—C20—H20C109.5
H11B—C11—H11C109.5H20B—C20—H20C109.5
C14—C12—C13109.8 (3)C4—O3—C5116.3 (2)
C14—C12—C6114.3 (3)C1—O1—C4109.41 (19)
C13—C12—C6112.0 (3)C5—C10—C9111.8 (2)
C14—C12—H12106.8C5—C10—H10A109.3
C13—C12—H12106.8C9—C10—H10A109.3
C6—C12—H12106.8C5—C10—H10B109.3
C12—C13—H13A109.5C9—C10—H10B109.3
C12—C13—H13B109.5H10A—C10—H10B107.9
H13A—C13—H13B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.982.533.361 (4)142
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H33ClN2O3
Mr384.93
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.7168 (15), 10.1470 (18), 24.478 (4)
V3)2165.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.23 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
12202, 4384, 2730
Rint0.045
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.107, 1.01
No. of reflections4384
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17
Absolute structureFlack (1983), 1866 Friedel pairs
Absolute structure parameter0.00 (8)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.982.533.361 (4)142
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

References

First citationBertrand, S., Hoffmann, N. & Pete, J. P. (2000). Eur. J. Org. Chem. 12, 2227–2238.  CrossRef Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, L., Liu, Y.-M., Li, M. & Chen, Q.-H. (2006). Chem. J. Chin. Univ. 27, 464–467.  CAS Google Scholar
First citationKimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSarma, D. K., Zhang, J. & Curran, T. T. (2007). J. Org. Chem. 72, 3311–3318.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804–1810.  Google Scholar
First citationTanoury, G. J., Chen, M.-Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185–188.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds