organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10,13-Di­methyl-16-oxo-4,5,6,7,8,9,10,11,12,13,14,15,16,17-tetra­deca­hydro-1H-cyclo­penta­[a]phenanthren-17-yl acetate

aKey Laboratory of Forest Resources Conservation and Use in the Southwest Mountains of China (Ministry of Education), Southwest Forestry University, Kunming 650224, People's Republic of China, bZhejiang Apeloa Kangyu Pharmaceutical Co Ltd, Jinhua 322118, People's Republic of China, and cSchool of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources (Ministry of Education), Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: kunwei2008@126.com

(Received 29 June 2010; accepted 15 July 2010; online 24 July 2010)

In the title compound, C21H30O3, the five-membered ring adopts an envelope conformation, the cyclo­hexene ring displays a half-chair conformation and the two cyclo­hexane rings have normal chair conformations. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonding links the mol­ecules into supra­molecular chains running along [100].

Related literature

Rocuronium is a non-depolarizing neuromuscular blocking agent. The title compound was obtained as an inter­mediate during our ongoing investigation of the synthesis of rocuronium bromide; for further information on rocuronium bromide, see: Tuba et al. (2002[Tuba, Z., Maho, S. & Vizi, S. (2002). Curr. Med. Chem. 9, 1507-1536.]); Auer (2007[Auer, U. (2007). Vet. J. 173, 422-427.]). For the synthesis, see: Tuba (1980[Tuba, Z. (1980). Arzneim. Forschung. 30, 342-346.]); Newaz & Tcholakian (1984[Newaz, S. N. & Tcholakian, R. K. (1984). Steroids, 43, 445-456.]).

[Scheme 1]

Experimental

Crystal data
  • C21H30O3

  • Mr = 330.45

  • Monoclinic, P 21

  • a = 7.383 (5) Å

  • b = 13.200 (9) Å

  • c = 9.843 (7) Å

  • β = 95.687 (10)°

  • V = 954.5 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.45 × 0.40 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 5527 measured reflections

  • 1794 independent reflections

  • 864 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.136

  • S = 0.86

  • 1794 reflections

  • 221 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19C⋯O1i 0.96 2.55 3.496 (11) 170
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rocuronium is a nondepolarizing neuromuscular blocking agent, which produces neuromuscular blockade by competing with acetylcholine for cholinergic receptors at the motor end plate (Tuba et al., 2002; Auer, 2007). The title compound was obtained as an intermediate during our ongoing investigation of the synthese of rocuronium bromide. In this paper, we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. In the molecular structure, the cyclohexene ring displays a half-chair conformtion, the five ring adopts an envelope conformation, and two cyclohexane rings have the normal chair conformation. In the crystal structure weak intermolecular C—H···O hydrogen bonding links the molecules to form the supra-molecular chain running along the [1 0 0] direction (Table 1).

Related literature top

Rocuronium is a non-depolarizing neuromuscular blocking agent. The title compound was obtained as an intermediate during our ongoing investigation of the synthesis of rocuronium bromide; for further information on rocuronium bromide, see: Tuba et al. (2002); Auer (2007). For the synthesis, see: Tuba (1980); Newaz & Tcholakian (1984).

Experimental top

The title compound was synthesized according to the procedure reported by Tuba et al. (1980) and by Newaz & Tcholakian (1984). Single crystals were obtained from a mixture of ethyl acetate and petroleum ether by slow evaporation at room temperature.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C). Friedel paris were merged as no significant anomalous scattering.

Structure description top

Rocuronium is a nondepolarizing neuromuscular blocking agent, which produces neuromuscular blockade by competing with acetylcholine for cholinergic receptors at the motor end plate (Tuba et al., 2002; Auer, 2007). The title compound was obtained as an intermediate during our ongoing investigation of the synthese of rocuronium bromide. In this paper, we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. In the molecular structure, the cyclohexene ring displays a half-chair conformtion, the five ring adopts an envelope conformation, and two cyclohexane rings have the normal chair conformation. In the crystal structure weak intermolecular C—H···O hydrogen bonding links the molecules to form the supra-molecular chain running along the [1 0 0] direction (Table 1).

Rocuronium is a non-depolarizing neuromuscular blocking agent. The title compound was obtained as an intermediate during our ongoing investigation of the synthesis of rocuronium bromide; for further information on rocuronium bromide, see: Tuba et al. (2002); Auer (2007). For the synthesis, see: Tuba (1980); Newaz & Tcholakian (1984).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme and 30% probability displacement ellipsoids.
10,13-Dimethyl-16-oxo-4,5,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro- 1H-cyclopenta[a]phenanthren-17-yl acetate top
Crystal data top
C21H30O3F(000) = 360
Mr = 330.45Dx = 1.150 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 864 reflections
a = 7.383 (5) Åθ = 5.7–25.7°
b = 13.200 (9) ŵ = 0.08 mm1
c = 9.843 (7) ÅT = 293 K
β = 95.687 (10)°Block, colorless
V = 954.5 (11) Å30.45 × 0.40 × 0.32 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
864 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.102
Graphite monochromatorθmax = 25.2°, θmin = 2.1°
φ and ω scansh = 88
5527 measured reflectionsk = 915
1794 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0539P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max < 0.001
1794 reflectionsΔρmax = 0.13 e Å3
221 parametersΔρmin = 0.11 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (3)
Crystal data top
C21H30O3V = 954.5 (11) Å3
Mr = 330.45Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.383 (5) ŵ = 0.08 mm1
b = 13.200 (9) ÅT = 293 K
c = 9.843 (7) Å0.45 × 0.40 × 0.32 mm
β = 95.687 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
864 reflections with I > 2σ(I)
5527 measured reflectionsRint = 0.102
1794 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.136H-atom parameters constrained
S = 0.86Δρmax = 0.13 e Å3
1794 reflectionsΔρmin = 0.11 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2353 (9)0.8413 (7)0.3971 (7)0.089 (2)
H1A0.10470.83160.38090.107*
H1B0.27560.81000.48410.107*
C20.2742 (13)0.9525 (7)0.4068 (8)0.104 (3)
H20.19750.99380.45190.125*
C30.4149 (14)0.9942 (7)0.3531 (9)0.109 (3)
H30.43061.06400.35970.130*
C40.5469 (11)0.9345 (7)0.2835 (8)0.100 (2)
H4A0.66900.95450.31870.120*
H4B0.53180.95060.18680.120*
C50.5277 (9)0.8189 (6)0.3009 (7)0.084 (2)
H50.57530.80280.39490.100*
C60.6463 (9)0.7619 (6)0.2068 (8)0.090 (2)
H6A0.60530.77720.11230.108*
H6B0.77160.78420.22450.108*
C70.6356 (8)0.6477 (6)0.2303 (7)0.087 (2)
H7A0.70520.61290.16600.104*
H7B0.68960.63190.32170.104*
C80.4396 (8)0.6097 (5)0.2132 (6)0.0669 (18)
H80.38950.61920.11810.080*
C90.3222 (8)0.6712 (6)0.3088 (6)0.0703 (19)
H90.37700.65990.40230.084*
C100.3266 (8)0.7864 (5)0.2843 (6)0.0674 (18)
C110.1274 (8)0.6266 (6)0.3010 (7)0.083 (2)
H11A0.06030.66100.36730.100*
H11B0.06600.64000.21110.100*
C120.1231 (9)0.5120 (7)0.3282 (7)0.089 (2)
H12A0.17190.49870.42170.107*
H12B0.00190.48840.31700.107*
C130.2347 (8)0.4539 (5)0.2304 (6)0.0716 (19)
C140.4277 (8)0.4979 (5)0.2504 (6)0.067 (2)
H140.46740.49280.34810.081*
C150.5425 (9)0.4225 (6)0.1788 (7)0.091 (2)
H15A0.54040.43780.08230.110*
H15B0.66770.42230.21950.110*
C160.4499 (12)0.3221 (8)0.2014 (8)0.100 (3)
C170.2753 (9)0.3439 (6)0.2690 (7)0.0768 (19)
H170.30090.33850.36830.092*
C180.0718 (10)0.2130 (6)0.3117 (10)0.084 (2)
C190.0681 (10)0.1408 (6)0.2474 (8)0.116 (3)
H19A0.08500.08640.30970.174*
H19B0.02760.11380.16500.174*
H19C0.18130.17580.22620.174*
C200.2325 (8)0.8158 (5)0.1428 (6)0.083 (2)
H20A0.10550.79900.13840.125*
H20B0.28760.77940.07320.125*
H20C0.24570.88730.12880.125*
C210.1481 (8)0.4600 (5)0.0849 (6)0.083 (2)
H21A0.21560.41870.02730.125*
H21B0.14890.52900.05420.125*
H21C0.02490.43610.08060.125*
O10.4948 (9)0.2388 (5)0.1678 (7)0.129 (2)
O20.1340 (7)0.2744 (4)0.2230 (5)0.0994 (16)
O30.1307 (8)0.2124 (5)0.4295 (6)0.127 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.089 (5)0.107 (7)0.075 (5)0.001 (5)0.020 (4)0.015 (5)
C20.122 (7)0.091 (7)0.098 (6)0.004 (5)0.007 (5)0.003 (5)
C30.123 (7)0.094 (7)0.104 (7)0.012 (7)0.012 (6)0.010 (6)
C40.092 (6)0.108 (7)0.099 (6)0.036 (5)0.000 (5)0.003 (5)
C50.067 (5)0.100 (7)0.083 (5)0.012 (4)0.000 (4)0.001 (4)
C60.057 (4)0.096 (6)0.119 (6)0.014 (4)0.016 (4)0.008 (5)
C70.051 (4)0.103 (6)0.109 (6)0.010 (4)0.016 (4)0.003 (5)
C80.052 (4)0.082 (6)0.064 (4)0.001 (4)0.005 (3)0.015 (4)
C90.041 (4)0.102 (6)0.069 (5)0.014 (4)0.015 (3)0.002 (4)
C100.057 (4)0.083 (6)0.062 (4)0.005 (4)0.001 (4)0.001 (4)
C110.047 (4)0.114 (7)0.091 (6)0.010 (4)0.020 (4)0.005 (5)
C120.064 (5)0.125 (7)0.079 (5)0.025 (4)0.016 (4)0.011 (5)
C130.057 (4)0.104 (6)0.054 (4)0.014 (4)0.005 (3)0.002 (4)
C140.056 (4)0.090 (6)0.058 (4)0.001 (4)0.015 (3)0.005 (4)
C150.067 (5)0.102 (6)0.104 (6)0.006 (5)0.005 (4)0.009 (5)
C160.088 (6)0.109 (8)0.099 (6)0.004 (6)0.010 (5)0.012 (7)
C170.068 (5)0.083 (6)0.077 (5)0.018 (5)0.003 (4)0.014 (4)
C180.076 (5)0.083 (6)0.094 (6)0.002 (5)0.014 (5)0.020 (6)
C190.088 (6)0.096 (6)0.160 (8)0.033 (5)0.011 (5)0.000 (5)
C200.076 (4)0.095 (6)0.077 (5)0.000 (4)0.003 (4)0.006 (4)
C210.075 (4)0.104 (6)0.069 (5)0.007 (4)0.001 (4)0.002 (4)
O10.124 (5)0.096 (5)0.168 (6)0.011 (4)0.022 (4)0.013 (4)
O20.107 (4)0.100 (4)0.087 (4)0.037 (3)0.008 (3)0.020 (3)
O30.141 (5)0.142 (5)0.100 (4)0.057 (4)0.027 (4)0.001 (4)
Geometric parameters (Å, º) top
C1—C21.497 (11)C11—H11B0.9700
C1—C101.536 (8)C12—C131.534 (8)
C1—H1A0.9700C12—H12A0.9700
C1—H1B0.9700C12—H12B0.9700
C2—C31.331 (10)C13—C211.512 (8)
C2—H20.9300C13—C171.522 (9)
C3—C41.473 (10)C13—C141.534 (8)
C3—H30.9300C14—C151.524 (9)
C4—C51.544 (10)C14—H140.9800
C4—H4A0.9700C15—C161.517 (11)
C4—H4B0.9700C15—H15A0.9700
C5—C61.533 (8)C15—H15B0.9700
C5—C101.538 (8)C16—O11.204 (9)
C5—H50.9800C16—C171.536 (10)
C6—C71.528 (9)C17—O21.429 (7)
C6—H6A0.9700C17—H170.9800
C6—H6B0.9700C18—O31.197 (8)
C7—C81.525 (8)C18—O21.306 (9)
C7—H7A0.9700C18—C191.500 (9)
C7—H7B0.9700C19—H19A0.9600
C8—C141.525 (8)C19—H19B0.9600
C8—C91.568 (8)C19—H19C0.9600
C8—H80.9800C20—H20A0.9600
C9—C101.541 (8)C20—H20B0.9600
C9—C111.549 (7)C20—H20C0.9600
C9—H90.9800C21—H21A0.9600
C10—C201.543 (8)C21—H21B0.9600
C11—C121.536 (9)C21—H21C0.9600
C11—H11A0.9700
C2—C1—C10114.4 (7)C9—C11—H11B108.8
C2—C1—H1A108.7H11A—C11—H11B107.7
C10—C1—H1A108.7C13—C12—C11111.2 (5)
C2—C1—H1B108.7C13—C12—H12A109.4
C10—C1—H1B108.7C11—C12—H12A109.4
H1A—C1—H1B107.6C13—C12—H12B109.4
C3—C2—C1122.2 (8)C11—C12—H12B109.4
C3—C2—H2118.9H12A—C12—H12B108.0
C1—C2—H2118.9C21—C13—C17110.0 (5)
C2—C3—C4122.8 (8)C21—C13—C12111.4 (5)
C2—C3—H3118.6C17—C13—C12115.2 (6)
C4—C3—H3118.6C21—C13—C14113.6 (5)
C3—C4—C5113.9 (7)C17—C13—C1499.9 (5)
C3—C4—H4A108.8C12—C13—C14106.3 (5)
C5—C4—H4A108.8C15—C14—C8118.2 (5)
C3—C4—H4B108.8C15—C14—C13104.2 (5)
C5—C4—H4B108.8C8—C14—C13114.3 (6)
H4A—C4—H4B107.7C15—C14—H14106.4
C6—C5—C10113.7 (6)C8—C14—H14106.4
C6—C5—C4110.7 (6)C13—C14—H14106.4
C10—C5—C4111.2 (6)C16—C15—C14102.9 (6)
C6—C5—H5106.9C16—C15—H15A111.2
C10—C5—H5106.9C14—C15—H15A111.2
C4—C5—H5106.9C16—C15—H15B111.2
C7—C6—C5110.6 (6)C14—C15—H15B111.2
C7—C6—H6A109.5H15A—C15—H15B109.1
C5—C6—H6A109.5O1—C16—C15128.1 (8)
C7—C6—H6B109.5O1—C16—C17123.8 (9)
C5—C6—H6B109.5C15—C16—C17108.1 (8)
H6A—C6—H6B108.1O2—C17—C13114.5 (5)
C8—C7—C6111.8 (6)O2—C17—C16111.1 (6)
C8—C7—H7A109.3C13—C17—C16102.9 (6)
C6—C7—H7A109.3O2—C17—H17109.4
C8—C7—H7B109.3C13—C17—H17109.4
C6—C7—H7B109.3C16—C17—H17109.4
H7A—C7—H7B107.9O3—C18—O2122.2 (8)
C14—C8—C7111.6 (5)O3—C18—C19125.0 (9)
C14—C8—C9108.0 (5)O2—C18—C19112.7 (8)
C7—C8—C9109.8 (5)C18—C19—H19A109.5
C14—C8—H8109.1C18—C19—H19B109.5
C7—C8—H8109.1H19A—C19—H19B109.5
C9—C8—H8109.1C18—C19—H19C109.5
C10—C9—C11113.7 (6)H19A—C19—H19C109.5
C10—C9—C8113.3 (5)H19B—C19—H19C109.5
C11—C9—C8109.9 (5)C10—C20—H20A109.5
C10—C9—H9106.5C10—C20—H20B109.5
C11—C9—H9106.5H20A—C20—H20B109.5
C8—C9—H9106.5C10—C20—H20C109.5
C1—C10—C5106.3 (6)H20A—C20—H20C109.5
C1—C10—C9109.5 (6)H20B—C20—H20C109.5
C5—C10—C9107.1 (5)C13—C21—H21A109.5
C1—C10—C20110.1 (5)C13—C21—H21B109.5
C5—C10—C20111.7 (5)H21A—C21—H21B109.5
C9—C10—C20112.0 (5)C13—C21—H21C109.5
C12—C11—C9113.6 (6)H21A—C21—H21C109.5
C12—C11—H11A108.8H21B—C21—H21C109.5
C9—C11—H11A108.8C18—O2—C17118.7 (6)
C12—C11—H11B108.8
C10—C1—C2—C319.1 (10)C11—C12—C13—C2167.3 (7)
C1—C2—C3—C41.9 (13)C11—C12—C13—C17166.6 (5)
C2—C3—C4—C510.3 (11)C11—C12—C13—C1457.0 (7)
C3—C4—C5—C6170.4 (6)C7—C8—C14—C1554.7 (8)
C3—C4—C5—C1043.0 (8)C9—C8—C14—C15175.5 (5)
C10—C5—C6—C757.3 (8)C7—C8—C14—C13177.9 (5)
C4—C5—C6—C7176.7 (6)C9—C8—C14—C1361.3 (6)
C5—C6—C7—C855.4 (8)C21—C13—C14—C1570.3 (7)
C6—C7—C8—C14174.4 (6)C17—C13—C14—C1546.7 (6)
C6—C7—C8—C954.7 (7)C12—C13—C14—C15166.8 (5)
C14—C8—C9—C10178.5 (5)C21—C13—C14—C860.2 (7)
C7—C8—C9—C1056.5 (7)C17—C13—C14—C8177.3 (5)
C14—C8—C9—C1153.2 (7)C12—C13—C14—C862.7 (7)
C7—C8—C9—C11175.1 (6)C8—C14—C15—C16161.0 (5)
C2—C1—C10—C549.1 (8)C13—C14—C15—C1632.9 (7)
C2—C1—C10—C9164.4 (6)C14—C15—C16—O1177.1 (9)
C2—C1—C10—C2072.0 (7)C14—C15—C16—C176.5 (7)
C6—C5—C10—C1173.3 (7)C21—C13—C17—O242.2 (7)
C4—C5—C10—C160.9 (7)C12—C13—C17—O284.6 (6)
C6—C5—C10—C956.3 (7)C14—C13—C17—O2162.0 (5)
C4—C5—C10—C9177.9 (5)C21—C13—C17—C1678.5 (6)
C6—C5—C10—C2066.6 (8)C12—C13—C17—C16154.6 (6)
C4—C5—C10—C2059.2 (8)C14—C13—C17—C1641.3 (6)
C11—C9—C10—C163.0 (6)O1—C16—C17—O231.4 (11)
C8—C9—C10—C1170.6 (5)C15—C16—C17—O2145.2 (6)
C11—C9—C10—C5177.9 (5)O1—C16—C17—C13154.4 (8)
C8—C9—C10—C555.7 (6)C15—C16—C17—C1322.2 (7)
C11—C9—C10—C2059.4 (7)O3—C18—O2—C170.9 (11)
C8—C9—C10—C2067.0 (6)C19—C18—O2—C17176.8 (6)
C10—C9—C11—C12178.9 (6)C13—C17—O2—C18127.4 (6)
C8—C9—C11—C1253.0 (7)C16—C17—O2—C18116.5 (7)
C9—C11—C12—C1356.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19C···O1i0.962.553.496 (11)170
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H30O3
Mr330.45
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.383 (5), 13.200 (9), 9.843 (7)
β (°) 95.687 (10)
V3)954.5 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.40 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5527, 1794, 864
Rint0.102
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.136, 0.86
No. of reflections1794
No. of parameters221
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.11

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19C···O1i0.962.553.496 (11)170
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge computing time provided by the X-ray Diffraction Analysis Centre of the Key Laboratory of Medicinal Chemistry for Natural Resources (Ministry of Education), Yunnan University, China.

References

First citationAuer, U. (2007). Vet. J. 173, 422–427.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNewaz, S. N. & Tcholakian, R. K. (1984). Steroids, 43, 445–456.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuba, Z. (1980). Arzneim. Forschung. 30, 342–346.  CAS Google Scholar
First citationTuba, Z., Maho, S. & Vizi, S. (2002). Curr. Med. Chem. 9, 1507–1536.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds