metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[bis­­{μ3-2-[(3,5-di­methyl-1H-pyrazol-1-yl)(phen­yl)meth­yl]propane­dioato}tetra­sodium(I)] 7.5-hydrate]

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bLaboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex, France, cLaboratoire de Chimie des Matériaux, Université Mohammed 1ier, Oujda, Morocco, and dLaboratoires de Diffraction des Rayons X, Division UATRS, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: daoudimaria@yahoo.fr

(Received 6 July 2010; accepted 16 July 2010; online 24 July 2010)

The asymmetric unit of the title polymer, {[Na4(C15H14N2O4)2]·7.5H2O}n, contains two 2-[(3,5-dimethyl-1H-pyrazol-1-yl)(phen­yl)meth­yl]propane­dioate (ppmp) anions, eight water mol­ecules (one located on a twofold rotation axis) and five sodium cations (one located on an inversion center and the other one located on a twofold rotation axis). The carboxyl­ate groups of the ppmp anions and the water mol­ecules bridge the Na cations, forming a two-dimensional polymeric structure. In the structure there are two types of coordination environment around the metal cations: one Na cation is coordinated by five O atoms in a distorted square-pyramidal geometry while the other four Na cations are coordinated by six O atoms in a distorted octa­hedral geometry. Extensive O—H⋯O and O—H⋯N hydrogen bonding is present in the crystal structure. The H atoms of one methyl group of the ppmp anion are disordered equally over two positions.

Related literature

For related compounds displaying biological activity, see: Dayam et al. (2007[Dayam, R., Al-Mawsawi, L. Q. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6155-6159.]); Patil et al. (2007[Patil, S., Kamath, S., Sanchez, T., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2007). Bioorg. Med. Chem. 15, 1212-1228.]); Ramkumar et al. (2008[Ramkumar, K., Tambov, K. V., Gundla, R., Manaev, A. V., Yarovenko, V., Traven, V. F. & Neamati, N. (2008). Bioorg. Med. Chem. 16, 8988-8998.]); Sechi et al. (2009[Sechi, M., Carta, F., Sannia, L., Dallocchio, R., Dessì, A., Al-Safi, R. I. & Neamati, N. (2009). Antivir. Res. 81, 267-276.]); Zeng et al. (2008[Zeng, L.-F., Zhang, H.-S., Wang, Y.-H., Sanchez, T., Zheng, Y.-T., Neamati, N. & Long, Y.-Q. (2008). Bioorg. Med. Chem. Lett. 18, 4521-4524.]). For the synthetic procedure, see: Pommier & Neamati (2006[Pommier, Y. & Neamati, N. (2006). Bioorg. Med. Chem. 14, 3785-3792.]).

[Scheme 1]

Experimental

Crystal data
  • [Na4(C15H14N2O4)2]·7.5H2O

  • Mr = 799.64

  • Monoclinic, C 2/c

  • a = 31.8211 (11) Å

  • b = 14.4951 (4) Å

  • c = 16.1113 (5) Å

  • β = 102.139 (3)°

  • V = 7265.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.45 × 0.38 × 0.19 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • 76380 measured reflections

  • 9034 independent reflections

  • 6490 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.130

  • S = 1.02

  • 9034 reflections

  • 488 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Na1—O3 2.3113 (11)
Na1—O11 2.4177 (11)
Na1—O12 2.4028 (13)
Na2—O5i 2.3507 (13)
Na2—O5ii 2.3417 (13)
Na2—O8 2.2818 (13)
Na2—O21 2.4546 (13)
Na2—O22 2.3253 (13)
Na3—O2 2.4259 (14)
Na3—O31 2.4430 (14)
Na3—O4 2.5862 (13)
Na4—O3iii 2.6812 (15)
Na4—O6 2.6565 (14)
Na4—O11iv 2.3956 (14)
Na4—O12iii 2.4434 (15)
Na4—O41 2.4634 (11)
Na4—O42 2.3423 (15)
Na5—O4 2.3952 (13)
Na5—O5 2.5592 (13)
Na5—O21v 2.3176 (13)
Na5—O22i 2.4275 (14)
Na5—O31 2.5011 (14)
Na5—O51 2.4478 (14)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) -x, -y, -z; (v) [x, -y, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H111⋯O2i 0.86 1.97 2.7404 (16) 149
O11—H11B⋯O4 0.85 1.88 2.7067 (16) 165
O12—H121⋯O1i 0.84 1.90 2.7391 (17) 174
O21—H211⋯O6i 0.85 1.92 2.7566 (17) 167
O21—H212⋯O7 0.85 1.97 2.8007 (16) 165
O22—H221⋯O31 0.85 2.10 2.8381 (17) 145
O22—H222⋯O11i 0.85 2.31 2.9707 (16) 135
O22—H222⋯O6ii 0.85 2.45 3.0532 (18) 128
O31—H31A⋯O8 0.85 1.87 2.7128 (16) 169
O31—H31B⋯O51 0.84 2.09 2.8085 (17) 142
O41—H411⋯O7 0.84 2.27 3.1061 (16) 172
O42—H421⋯O1iii 0.85 1.92 2.7582 (17) 175
O42—H422⋯O7 0.85 2.03 2.8639 (17) 168
O51—H511⋯N4 0.86 1.99 2.8424 (18) 171
O51—H512⋯N2 0.85 1.94 2.7799 (18) 169
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The rational design of new HIV-1 Integrase (H–I) inhibitors, one validated target for chemotherapeutic intervention (Dayam et al., 2007), is fundamentally based on intermolecular coordination between H—I / chemical inhibitor / metals (Mg+2 and Mn+2, co-factors of the enzyme), leading in the formation of bimetallic complexes (Zeng et al., 2008; Sechi et al., 2009). Thereby, several bimetallic metal complexes, in many cases exploring the known-well polydentate ligands, appear in this scenario as the most promising concept to employ in either enzyme / drug interaction or electron transfer process, in the last case involving the biological oxygen transfer (Sechi et al., 2009; Ramkumar et al., 2008). Another exciting example of application for such polydentate ligand involves the synergic water activation, that occurs via the so-called -remote metallic atoms-. Such organometallic compounds are structurally deemed to promote or block the H—I activity (Zeng et al., 2008).

The asymmetric unit of the title polymer contains two (3,5-dimethyl-1H-pyrazol-1-yl)(phenyl)methylpropanedioate (ppmp) anions, eight water molecules (O41 atom located at a twofold rotation axis) and five sodium cations (Na1 located on an inversion center and Na3 located at a twofold rotation axis). The carboxyl groups of ppmp anions and water molecules bridge the Na cations to form the two-dimensional polymeric structure. In the structure there are two types of coodination environment around the metal cations. The Na2 cation is coordinated by five oxygen atoms with a distorted square-pyramidal geometry; the other four Na cations are coordinated by six oxygen atoms with the distorted octahedral geometry. The Na—O bond distances ate ranged from 2.3113 (11) to 2.6812 (15) Å (Table 1). The extensive O—H···O and O—H···N hydrogen bonding is present in the crystal structure (Table 2).

Related literature top

For related compounds displaying biological activity, see: Dayam et al. (2007); Patil et al. (2007); Ramkumar et al. (2008); Sechi et al. (2009); Zeng et al. (2008). For the synthetic procedure, see: Pommier & Neamati (2006).

Experimental top

A mixture of the sodium salt of 2-[(phenyl)-3,5-dimethyl-pyrazol-1-yl-]-malonic acid (Pommier & Neamati, 2006) (0.2 g, 0.61 mmol) and (0,13, 1.22 mmol) of sodium dicarbonate in water (5 ml) was stirred at room temperature, then (0.047 g, 0.305 mmol) of (VOSO4) was added. The mixture was allowed to stand to ambient temperature. Single crystals suitable for X-ray diffraction were obtained a few days later. Yield: 37%.

Refinement top

All H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.98 Å (methine) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.85 (1) Å and H···H = 1.39 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atoms. The H atoms of the one methyl group in the ligand are disordered equally over two positions.

Structure description top

The rational design of new HIV-1 Integrase (H–I) inhibitors, one validated target for chemotherapeutic intervention (Dayam et al., 2007), is fundamentally based on intermolecular coordination between H—I / chemical inhibitor / metals (Mg+2 and Mn+2, co-factors of the enzyme), leading in the formation of bimetallic complexes (Zeng et al., 2008; Sechi et al., 2009). Thereby, several bimetallic metal complexes, in many cases exploring the known-well polydentate ligands, appear in this scenario as the most promising concept to employ in either enzyme / drug interaction or electron transfer process, in the last case involving the biological oxygen transfer (Sechi et al., 2009; Ramkumar et al., 2008). Another exciting example of application for such polydentate ligand involves the synergic water activation, that occurs via the so-called -remote metallic atoms-. Such organometallic compounds are structurally deemed to promote or block the H—I activity (Zeng et al., 2008).

The asymmetric unit of the title polymer contains two (3,5-dimethyl-1H-pyrazol-1-yl)(phenyl)methylpropanedioate (ppmp) anions, eight water molecules (O41 atom located at a twofold rotation axis) and five sodium cations (Na1 located on an inversion center and Na3 located at a twofold rotation axis). The carboxyl groups of ppmp anions and water molecules bridge the Na cations to form the two-dimensional polymeric structure. In the structure there are two types of coodination environment around the metal cations. The Na2 cation is coordinated by five oxygen atoms with a distorted square-pyramidal geometry; the other four Na cations are coordinated by six oxygen atoms with the distorted octahedral geometry. The Na—O bond distances ate ranged from 2.3113 (11) to 2.6812 (15) Å (Table 1). The extensive O—H···O and O—H···N hydrogen bonding is present in the crystal structure (Table 2).

For related compounds displaying biological activity, see: Dayam et al. (2007); Patil et al. (2007); Ramkumar et al. (2008); Sechi et al. (2009); Zeng et al. (2008). For the synthetic procedure, see: Pommier & Neamati (2006).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the chain generated by C—H···O hydrogen bonds shown as dashed lines.
Poly[[bis{µ3-2-[(3,5-dimethyl-1H-pyrazol-1- yl)(phenyl)methyl]propanedioato}tetrasodium(I)] 7.5-hydrate] top
Crystal data top
[Na4(C15H14N2O4)2]·7.5H2OF(000) = 3352
Mr = 799.64Dx = 1.462 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2648 reflections
a = 31.8211 (11) Åθ = 1.5–26.3°
b = 14.4951 (4) ŵ = 0.16 mm1
c = 16.1113 (5) ÅT = 293 K
β = 102.139 (3)°Block, colourless
V = 7265.2 (4) Å30.45 × 0.38 × 0.19 mm
Z = 8
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
6490 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 28.3°, θmin = 1.3°
φ and ω scansh = 4242
76380 measured reflectionsk = 1919
9034 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0783P)2 + 2.736P]
where P = (Fo2 + 2Fc2)/3
9034 reflections(Δ/σ)max = 0.006
488 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Na4(C15H14N2O4)2]·7.5H2OV = 7265.2 (4) Å3
Mr = 799.64Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.8211 (11) ŵ = 0.16 mm1
b = 14.4951 (4) ÅT = 293 K
c = 16.1113 (5) Å0.45 × 0.38 × 0.19 mm
β = 102.139 (3)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
6490 reflections with I > 2σ(I)
76380 measured reflectionsRint = 0.049
9034 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.02Δρmax = 0.53 e Å3
9034 reflectionsΔρmin = 0.44 e Å3
488 parameters
Special details top

Experimental. IR (KBr, [UTF-8]I1/2 cm-1): 1592.46 (C=O), 3248 (OH).

The data collection nominally covered a sphere of reciprocal space, by a combination of seven sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.5° in ω and 20 s in time. The crystal-to-detector distance was 37.5 mm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.13673 (5)0.43818 (11)0.21255 (10)0.0157 (3)
H10.12880.50330.20360.019*
C20.09753 (5)0.38687 (10)0.23022 (10)0.0146 (3)
H20.10490.32150.23900.018*
N10.14699 (4)0.40316 (9)0.13308 (8)0.0171 (3)
N20.15635 (5)0.31192 (9)0.12560 (9)0.0217 (3)
C110.14801 (5)0.45027 (12)0.06112 (11)0.0211 (3)
C1110.17568 (5)0.43350 (12)0.28481 (10)0.0189 (3)
C1120.18973 (7)0.35192 (14)0.32677 (13)0.0351 (5)
H1120.17470.29750.31090.042*
C1130.22592 (7)0.35053 (16)0.39193 (15)0.0451 (6)
H1130.23500.29530.41930.054*
C1140.24851 (6)0.43032 (17)0.41628 (14)0.0420 (5)
H1140.27280.42920.45990.050*
C1150.23495 (7)0.51153 (16)0.37580 (16)0.0450 (6)
H1150.25010.56570.39200.054*
C1160.19862 (6)0.51313 (14)0.31076 (14)0.0328 (4)
H1160.18950.56870.28420.039*
C120.15814 (6)0.38751 (13)0.00471 (11)0.0268 (4)
H120.16100.39900.05060.032*
C130.16321 (6)0.30294 (12)0.04696 (12)0.0249 (4)
C140.17451 (8)0.21067 (14)0.01556 (14)0.0417 (5)
H14A0.17530.16530.05930.063*
H14B0.20220.21410.00090.063*
H14C0.15330.19350.03370.063*
C150.13940 (7)0.55134 (13)0.05108 (13)0.0308 (4)
H15A0.11110.56430.05980.046*
H15B0.14140.57010.00510.046*
H15C0.16020.58460.09200.046*
C210.08148 (5)0.42241 (11)0.30808 (10)0.0177 (3)
C220.05932 (5)0.39513 (11)0.15432 (10)0.0163 (3)
O10.09050 (4)0.50303 (8)0.33362 (8)0.0245 (3)
O20.05884 (4)0.36630 (9)0.33884 (8)0.0292 (3)
O30.04974 (4)0.47344 (8)0.12450 (8)0.0246 (3)
O40.03947 (4)0.32106 (8)0.12934 (8)0.0227 (3)
C30.12948 (5)0.12031 (11)0.19213 (10)0.0152 (3)
H30.12570.18480.20730.018*
C40.08996 (5)0.06637 (11)0.20531 (10)0.0141 (3)
H40.09680.00050.20540.017*
N30.16800 (4)0.08512 (9)0.25020 (9)0.0177 (3)
N40.17591 (4)0.00742 (9)0.25847 (9)0.0203 (3)
C310.20142 (6)0.13530 (13)0.29413 (12)0.0249 (4)
C3110.13456 (5)0.11851 (11)0.10044 (10)0.0175 (3)
C3120.13502 (6)0.20186 (12)0.05790 (12)0.0274 (4)
H3120.13300.25700.08630.033*
C3130.13850 (7)0.20368 (14)0.02656 (13)0.0345 (5)
H3130.13890.25980.05430.041*
C3140.14133 (6)0.12223 (14)0.06929 (12)0.0296 (4)
H3140.14350.12340.12600.035*
C3150.14097 (6)0.03861 (13)0.02781 (11)0.0255 (4)
H3150.14310.01630.05650.031*
C3160.13747 (5)0.03674 (12)0.05677 (11)0.0222 (3)
H3160.13710.01950.08430.027*
C320.23146 (6)0.07307 (13)0.33379 (13)0.0299 (4)
H320.25780.08620.36950.036*
C330.21456 (5)0.01393 (12)0.30977 (12)0.0243 (4)
C340.23424 (6)0.10641 (14)0.33425 (14)0.0369 (5)
H34A0.21500.15390.30780.055*0.50
H34B0.26100.11130.31590.055*0.50
H34C0.23940.11330.39480.055*0.50
H34D0.26190.09840.37120.055*0.50
H34E0.21590.14110.36310.055*0.50
H34F0.23750.13910.28420.055*0.50
C350.20217 (7)0.23784 (14)0.29361 (15)0.0399 (5)
H35A0.17820.26100.31490.060*
H35B0.22850.25930.32900.060*
H35C0.20030.25940.23660.060*
C410.05116 (5)0.08420 (11)0.13273 (10)0.0154 (3)
C420.07637 (5)0.08894 (11)0.28921 (10)0.0156 (3)
O50.03524 (4)0.01421 (8)0.09023 (7)0.0191 (2)
O60.03787 (4)0.16533 (8)0.11998 (8)0.0230 (3)
O70.08345 (4)0.16799 (8)0.32102 (8)0.0239 (3)
O80.05735 (4)0.02532 (8)0.31923 (7)0.0229 (3)
Na10.00000.50000.00000.0202 (2)
Na20.03995 (2)0.00005 (4)0.44768 (4)0.01928 (15)
Na30.00000.28300 (6)0.25000.0230 (2)
Na40.03267 (3)0.34679 (6)0.13857 (5)0.0347 (2)
Na50.04893 (2)0.15926 (4)0.10917 (4)0.02081 (15)
O110.03287 (4)0.35116 (8)0.00998 (7)0.0201 (2)
H1110.04800.36920.04500.030*
H11B0.00860.33650.04000.030*
O120.03957 (4)0.59680 (9)0.07746 (8)0.0276 (3)
H1210.05420.56420.10430.041*
H1220.05540.63690.04890.041*
O210.04694 (4)0.16789 (8)0.46475 (7)0.0231 (3)
H2110.02080.17620.44040.035*
H2120.06110.17490.42630.035*
O220.02907 (4)0.15783 (8)0.42770 (8)0.0231 (3)
H2210.04350.17220.39080.035*
H2220.03680.19420.46970.035*
O310.04933 (4)0.15204 (8)0.26444 (8)0.0225 (3)
H31A0.05000.09420.27490.034*
H31B0.07500.16730.26480.034*
O410.00000.27849 (13)0.25000.0307 (4)
H4110.02130.24700.27360.046*
O420.09668 (4)0.33909 (8)0.24137 (8)0.0279 (3)
H4210.09320.38700.26910.042*
H4220.09400.29250.27180.042*
O510.12258 (4)0.15927 (8)0.19318 (8)0.0242 (3)
H5110.14100.11690.21150.036*
H5120.13610.20270.17440.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0160 (7)0.0154 (7)0.0155 (8)0.0014 (6)0.0030 (6)0.0002 (6)
C20.0146 (7)0.0150 (7)0.0137 (7)0.0007 (5)0.0018 (6)0.0003 (6)
N10.0197 (7)0.0161 (6)0.0162 (7)0.0001 (5)0.0056 (5)0.0010 (5)
N20.0266 (7)0.0171 (7)0.0229 (8)0.0015 (6)0.0086 (6)0.0003 (6)
C110.0212 (8)0.0232 (9)0.0191 (8)0.0007 (6)0.0051 (7)0.0050 (7)
C1110.0150 (7)0.0245 (8)0.0174 (8)0.0013 (6)0.0039 (6)0.0019 (6)
C1120.0344 (11)0.0277 (10)0.0349 (11)0.0031 (8)0.0113 (9)0.0033 (8)
C1130.0409 (12)0.0434 (13)0.0409 (13)0.0032 (10)0.0145 (10)0.0094 (10)
C1140.0238 (10)0.0651 (15)0.0314 (12)0.0069 (10)0.0074 (8)0.0027 (10)
C1150.0347 (11)0.0490 (14)0.0448 (14)0.0203 (10)0.0066 (10)0.0067 (11)
C1160.0308 (10)0.0290 (10)0.0352 (11)0.0083 (8)0.0006 (8)0.0001 (8)
C120.0344 (10)0.0299 (10)0.0178 (9)0.0019 (7)0.0090 (7)0.0022 (7)
C130.0286 (9)0.0248 (9)0.0234 (9)0.0002 (7)0.0099 (7)0.0022 (7)
C140.0624 (15)0.0312 (11)0.0370 (12)0.0035 (10)0.0229 (11)0.0055 (9)
C150.0402 (11)0.0237 (9)0.0294 (10)0.0042 (8)0.0093 (8)0.0096 (8)
C210.0153 (7)0.0232 (8)0.0133 (8)0.0004 (6)0.0004 (6)0.0002 (6)
C220.0152 (7)0.0207 (8)0.0136 (7)0.0004 (6)0.0044 (6)0.0012 (6)
O10.0314 (7)0.0219 (6)0.0219 (6)0.0028 (5)0.0097 (5)0.0056 (5)
O20.0354 (7)0.0332 (7)0.0227 (7)0.0136 (6)0.0143 (6)0.0036 (5)
O30.0253 (6)0.0210 (6)0.0235 (7)0.0020 (5)0.0040 (5)0.0064 (5)
O40.0211 (6)0.0196 (6)0.0237 (6)0.0021 (5)0.0035 (5)0.0039 (5)
C30.0161 (7)0.0152 (7)0.0144 (7)0.0005 (6)0.0034 (6)0.0009 (6)
C40.0147 (7)0.0145 (7)0.0132 (7)0.0006 (5)0.0031 (6)0.0006 (6)
N30.0169 (6)0.0181 (7)0.0174 (7)0.0021 (5)0.0020 (5)0.0003 (5)
N40.0195 (7)0.0176 (7)0.0232 (8)0.0007 (5)0.0031 (6)0.0005 (6)
C310.0201 (8)0.0272 (9)0.0264 (9)0.0069 (7)0.0024 (7)0.0052 (7)
C3110.0146 (7)0.0219 (8)0.0167 (8)0.0012 (6)0.0053 (6)0.0013 (6)
C3120.0383 (10)0.0216 (9)0.0245 (9)0.0015 (7)0.0113 (8)0.0018 (7)
C3130.0460 (12)0.0328 (11)0.0262 (10)0.0016 (9)0.0110 (9)0.0115 (8)
C3140.0245 (9)0.0476 (12)0.0175 (9)0.0009 (8)0.0066 (7)0.0037 (8)
C3150.0236 (9)0.0345 (10)0.0184 (9)0.0029 (7)0.0044 (7)0.0041 (7)
C3160.0243 (8)0.0232 (9)0.0198 (9)0.0001 (7)0.0059 (7)0.0007 (7)
C320.0182 (8)0.0349 (11)0.0327 (11)0.0033 (7)0.0033 (7)0.0026 (8)
C330.0180 (8)0.0295 (10)0.0251 (9)0.0021 (7)0.0038 (7)0.0013 (7)
C340.0271 (10)0.0353 (11)0.0457 (13)0.0096 (8)0.0022 (9)0.0067 (9)
C350.0343 (11)0.0265 (10)0.0536 (14)0.0121 (8)0.0028 (10)0.0041 (9)
C410.0142 (7)0.0218 (8)0.0114 (7)0.0017 (6)0.0056 (6)0.0003 (6)
C420.0168 (7)0.0176 (7)0.0118 (7)0.0008 (6)0.0016 (6)0.0007 (6)
O50.0207 (6)0.0224 (6)0.0138 (6)0.0041 (4)0.0025 (4)0.0036 (4)
O60.0229 (6)0.0218 (6)0.0219 (6)0.0030 (5)0.0007 (5)0.0010 (5)
O70.0366 (7)0.0202 (6)0.0177 (6)0.0055 (5)0.0118 (5)0.0047 (5)
O80.0326 (7)0.0204 (6)0.0185 (6)0.0062 (5)0.0119 (5)0.0012 (5)
Na10.0243 (5)0.0168 (4)0.0175 (5)0.0013 (3)0.0003 (4)0.0014 (4)
Na20.0231 (3)0.0201 (3)0.0154 (3)0.0022 (2)0.0059 (3)0.0001 (2)
Na30.0219 (5)0.0212 (5)0.0263 (5)0.0000.0060 (4)0.000
Na40.0301 (4)0.0529 (5)0.0206 (4)0.0048 (3)0.0045 (3)0.0084 (3)
Na50.0230 (3)0.0220 (3)0.0168 (3)0.0017 (3)0.0027 (3)0.0014 (3)
O110.0199 (6)0.0241 (6)0.0160 (6)0.0008 (4)0.0033 (5)0.0002 (5)
O120.0253 (6)0.0326 (7)0.0259 (7)0.0014 (5)0.0080 (5)0.0062 (5)
O210.0230 (6)0.0302 (7)0.0165 (6)0.0021 (5)0.0049 (5)0.0016 (5)
O220.0264 (6)0.0201 (6)0.0236 (6)0.0001 (5)0.0073 (5)0.0035 (5)
O310.0241 (6)0.0185 (6)0.0260 (7)0.0012 (5)0.0078 (5)0.0035 (5)
O410.0288 (10)0.0320 (10)0.0328 (11)0.0000.0099 (8)0.000
O420.0353 (7)0.0197 (6)0.0292 (7)0.0003 (5)0.0080 (6)0.0001 (5)
O510.0214 (6)0.0181 (6)0.0337 (7)0.0005 (5)0.0073 (5)0.0057 (5)
Geometric parameters (Å, º) top
Na1—O32.3113 (11)C13—C141.500 (3)
Na1—O3i2.3113 (11)C14—H14A0.9600
Na1—O112.4177 (11)C14—H14B0.9600
Na1—O11i2.4177 (11)C14—H14C0.9600
Na1—O122.4028 (13)C15—H15A0.9600
Na1—O12i2.4028 (13)C15—H15B0.9600
Na2—O5ii2.3507 (13)C15—H15C0.9600
Na2—O5iii2.3417 (13)C21—O11.252 (2)
Na2—O82.2818 (13)C21—O21.256 (2)
Na2—O212.4546 (13)C22—O31.245 (2)
Na2—O222.3253 (13)C22—O41.2676 (19)
Na3—O22.4259 (14)C3—N31.468 (2)
Na3—O2ii2.4259 (14)C3—C3111.520 (2)
Na3—O312.4430 (14)C3—C41.533 (2)
Na3—O31ii2.4430 (14)C3—H30.9800
Na3—O42.5862 (13)C4—C411.533 (2)
Na3—O4ii2.5862 (13)C4—C421.538 (2)
Na4—O3iv2.6812 (15)C4—H40.9800
Na4—O62.6565 (14)N3—C311.358 (2)
Na4—O11v2.3956 (14)N3—N41.3661 (19)
Na4—O12iv2.4434 (15)N4—C331.333 (2)
Na4—O412.4634 (11)C31—C321.371 (3)
Na4—O422.3423 (15)C31—C351.487 (3)
Na5—O42.3952 (13)C311—C3121.391 (2)
Na5—O52.5592 (13)C311—C3161.391 (2)
Na5—O21vi2.3176 (13)C312—C3131.389 (3)
Na5—O22ii2.4275 (14)C312—H3120.9300
Na5—O312.5011 (14)C313—C3141.379 (3)
Na5—O512.4478 (14)C313—H3130.9300
Na1—Na4vii3.1655 (8)C314—C3151.385 (3)
Na1—Na4v3.1655 (8)C314—H3140.9300
Na1—H1112.6295C315—C3161.391 (2)
Na1—H11B2.4858C315—H3150.9300
Na2—Na2viii3.3331 (13)C316—H3160.9300
Na2—Na5iii3.4453 (9)C32—C331.393 (3)
Na2—Na5ii3.6158 (9)C32—H320.9300
Na2—H2112.6231C33—C341.497 (3)
Na2—H2122.6649C34—H34A0.9600
Na2—H2212.6683C34—H34B0.9600
Na3—Na53.5036 (8)C34—H34C0.9600
Na3—Na5ii3.5036 (8)C34—H34D0.9600
Na4—Na1iv3.1655 (8)C34—H34E0.9600
Na4—H4212.6015C34—H34F0.9600
Na5—Na2vi3.4453 (9)C35—H35A0.9600
Na5—Na2ii3.6158 (9)C35—H35B0.9600
Na5—H31B2.4723C35—H35C0.9600
C1—N11.476 (2)C41—O61.252 (2)
C1—C1111.513 (2)C41—O51.2684 (19)
C1—C21.530 (2)C42—O81.2544 (19)
C1—H10.9800C42—O71.2562 (19)
C2—C221.537 (2)O11—Na4v2.3956 (14)
C2—C211.539 (2)O11—H1110.8553
C2—H20.9800O11—H11B0.8487
N1—C111.352 (2)O12—Na4vii2.4434 (15)
N1—N21.3665 (19)O12—H1210.8438
N2—C131.337 (2)O12—H1220.8399
C11—C121.371 (2)O21—Na5iii2.3176 (13)
C11—C151.493 (2)O21—H2110.8507
C111—C1161.383 (2)O21—H2120.8458
C111—C1121.389 (3)O22—Na5ii2.4275 (14)
C112—C1131.386 (3)O22—H2210.8489
C112—H1120.9300O22—H2220.8522
C113—C1141.375 (3)O31—H31A0.8540
C113—H1130.9300O31—H31B0.8440
C114—C1151.371 (3)O41—Na4ii2.4634 (11)
C114—H1140.9300O41—H4110.8398
C115—C1161.388 (3)O42—H4210.8453
C115—H1150.9300O42—H4220.8494
C116—H1160.9300O51—H5110.8572
C12—C131.395 (3)O51—H5120.8533
C12—H120.9300
N1—C1—C111110.93 (13)H111—Na1—H11B30.6
N1—C1—C2109.38 (12)O8—Na2—O2295.19 (5)
C111—C1—C2113.78 (13)O8—Na2—O5iii168.93 (5)
N1—C1—H1107.5O22—Na2—O5iii90.64 (5)
C111—C1—H1107.5O8—Na2—O5ii100.26 (5)
C2—C1—H1107.5O22—Na2—O5ii86.37 (5)
C1—C2—C22110.71 (12)O5iii—Na2—O5ii89.48 (5)
C1—C2—C21114.35 (13)O8—Na2—O2184.74 (4)
C22—C2—C21106.25 (12)O22—Na2—O21176.60 (5)
C1—C2—H2108.5O5iii—Na2—O2190.00 (4)
C22—C2—H2108.5O5ii—Na2—O2190.30 (4)
C21—C2—H2108.5O8—Na2—Na2viii144.59 (5)
C11—N1—N2111.61 (13)O22—Na2—Na2viii87.89 (4)
C11—N1—C1128.29 (14)O5iii—Na2—Na2viii44.85 (3)
N2—N1—C1120.09 (12)O5ii—Na2—Na2viii44.63 (3)
C13—N2—N1105.07 (13)O21—Na2—Na2viii90.21 (4)
N1—C11—C12106.54 (15)O8—Na2—Na5iii125.41 (4)
N1—C11—C15123.48 (15)O22—Na2—Na5iii138.59 (4)
C12—C11—C15129.98 (16)O5iii—Na2—Na5iii47.97 (3)
C116—C111—C112117.92 (17)O5ii—Na2—Na5iii93.18 (4)
C116—C111—C1119.36 (16)O21—Na2—Na5iii42.23 (3)
C112—C111—C1122.72 (15)Na2viii—Na2—Na5iii64.45 (2)
C113—C112—C111120.82 (18)O8—Na2—Na5ii101.49 (4)
C113—C112—H112119.6O22—Na2—Na5ii41.53 (3)
C111—C112—H112119.6O5iii—Na2—Na5ii89.11 (4)
C114—C113—C112120.4 (2)O5ii—Na2—Na5ii44.86 (3)
C114—C113—H113119.8O21—Na2—Na5ii135.15 (4)
C112—C113—H113119.8Na2viii—Na2—Na5ii59.28 (2)
C115—C114—C113119.57 (19)Na5iii—Na2—Na5ii123.73 (2)
C115—C114—H114120.2O8—Na2—H21184.3
C113—C114—H114120.2O22—Na2—H211157.7
C114—C115—C116120.17 (19)O5iii—Na2—H21193.8
C114—C115—H115119.9O5ii—Na2—H21171.8
C116—C115—H115119.9O21—Na2—H21118.9
C111—C116—C115121.16 (19)Na2viii—Na2—H21180.0
C111—C116—H116119.4Na5iii—Na2—H21150.4
C115—C116—H116119.4Na5ii—Na2—H211116.6
C11—C12—C13106.19 (16)O8—Na2—H21267.3
C11—C12—H12126.9O22—Na2—H212162.3
C13—C12—H12126.9O5iii—Na2—H212106.3
N2—C13—C12110.59 (15)O5ii—Na2—H21298.9
N2—C13—C14120.33 (16)O21—Na2—H21218.4
C12—C13—C14129.07 (17)Na2viii—Na2—H212107.8
C13—C14—H14A109.5Na5iii—Na2—H21258.4
C13—C14—H14B109.5Na5ii—Na2—H212141.3
H14A—C14—H14B109.5H211—Na2—H21229.6
C13—C14—H14C109.5O8—Na2—H22178.7
H14A—C14—H14C109.5O22—Na2—H22117.9
H14B—C14—H14C109.5O5iii—Na2—H221105.7
C11—C15—H15A109.5O5ii—Na2—H22196.1
C11—C15—H15B109.5O21—Na2—H221163.0
H15A—C15—H15B109.5Na2viii—Na2—H221105.4
C11—C15—H15C109.5Na5iii—Na2—H221152.0
H15A—C15—H15C109.5Na5ii—Na2—H22153.4
H15B—C15—H15C109.5H211—Na2—H221157.1
O1—C21—O2125.86 (15)H212—Na2—H221144.6
O1—C21—C2119.19 (14)O2—Na3—O2ii120.30 (8)
O2—C21—C2114.91 (14)O2—Na3—O31ii147.53 (5)
O3—C22—O4125.76 (15)O2ii—Na3—O31ii85.97 (4)
O3—C22—C2117.81 (14)O2—Na3—O3185.97 (4)
O4—C22—C2116.40 (14)O2ii—Na3—O31147.53 (5)
C21—O2—Na3121.68 (11)O31ii—Na3—O3178.02 (6)
C22—O3—Na1123.65 (10)O2—Na3—O484.31 (4)
C22—O3—Na4vii152.98 (11)O2ii—Na3—O483.51 (4)
Na1—O3—Na4vii78.32 (4)O31ii—Na3—O4119.87 (4)
C22—O4—Na5143.51 (11)O31—Na3—O480.41 (4)
C22—O4—Na3103.32 (10)O2—Na3—O4ii83.51 (4)
Na5—O4—Na389.30 (5)O2ii—Na3—O4ii84.31 (4)
N3—C3—C311111.60 (12)O31ii—Na3—O4ii80.41 (4)
N3—C3—C4109.50 (12)O31—Na3—O4ii119.87 (4)
C311—C3—C4112.58 (13)O4—Na3—O4ii155.37 (7)
N3—C3—H3107.6O2—Na3—Na5104.12 (3)
C311—C3—H3107.6O2ii—Na3—Na5105.40 (3)
C4—C3—H3107.6O31ii—Na3—Na584.53 (4)
C3—C4—C41111.15 (12)O31—Na3—Na545.55 (3)
C3—C4—C42113.80 (12)O4—Na3—Na543.13 (3)
C41—C4—C42107.72 (12)O4ii—Na3—Na5161.48 (4)
C3—C4—H4108.0O2—Na3—Na5ii105.40 (3)
C41—C4—H4108.0O2ii—Na3—Na5ii104.12 (3)
C42—C4—H4108.0O31ii—Na3—Na5ii45.55 (3)
C31—N3—N4111.53 (14)O31—Na3—Na5ii84.53 (4)
C31—N3—C3127.11 (14)O4—Na3—Na5ii161.48 (4)
N4—N3—C3121.02 (13)O4ii—Na3—Na5ii43.13 (3)
C33—N4—N3104.89 (13)Na5—Na3—Na5ii118.41 (3)
N3—C31—C32106.47 (16)O42—Na4—O11v121.53 (5)
N3—C31—C35122.97 (17)O42—Na4—O12iv154.89 (6)
C32—C31—C35130.56 (17)O11v—Na4—O12iv77.79 (5)
C312—C311—C316118.83 (16)O42—Na4—O4184.44 (4)
C312—C311—C3118.58 (15)O11v—Na4—O41145.99 (5)
C316—C311—C3122.56 (14)O12iv—Na4—O4185.57 (4)
C313—C312—C311120.71 (17)O42—Na4—O688.10 (5)
C313—C312—H312119.6O11v—Na4—O684.27 (5)
C311—C312—H312119.6O12iv—Na4—O6111.20 (5)
C314—C313—C312120.00 (18)O41—Na4—O674.34 (5)
C314—C313—H313120.0O42—Na4—O3iv86.82 (5)
C312—C313—H313120.0O11v—Na4—O3iv81.18 (4)
C313—C314—C315120.01 (17)O12iv—Na4—O3iv80.27 (5)
C313—C314—H314120.0O41—Na4—O3iv125.19 (6)
C315—C314—H314120.0O6—Na4—O3iv159.10 (5)
C314—C315—C316120.01 (17)O42—Na4—Na1iv129.79 (4)
C314—C315—H315120.0O11v—Na4—Na1iv49.18 (3)
C316—C315—H315120.0O12iv—Na4—Na1iv48.66 (3)
C315—C316—C311120.43 (16)O41—Na4—Na1iv132.04 (4)
C315—C316—H316119.8O6—Na4—Na1iv129.35 (4)
C311—C316—H316119.8O3iv—Na4—Na1iv45.64 (3)
C31—C32—C33105.99 (16)O42—Na4—H42118.8
C31—C32—H32127.0O11v—Na4—H421130.1
C33—C32—H32127.0O12iv—Na4—H421136.4
N4—C33—C32111.11 (15)O41—Na4—H42181.7
N4—C33—C34120.47 (16)O6—Na4—H421105.1
C32—C33—C34128.42 (17)O3iv—Na4—H42173.9
C33—C34—H34A109.5Na1iv—Na4—H421119.4
C33—C34—H34B109.5O21vi—Na5—O496.07 (5)
H34A—C34—H34B109.5O21vi—Na5—O22ii86.80 (5)
C33—C34—H34C109.5O4—Na5—O22ii83.71 (4)
H34A—C34—H34C109.5O21vi—Na5—O51112.08 (5)
H34B—C34—H34C109.5O4—Na5—O5193.32 (4)
C33—C34—H34D109.5O22ii—Na5—O51161.11 (5)
H34A—C34—H34D141.1O21vi—Na5—O31178.58 (5)
H34B—C34—H34D56.3O4—Na5—O3183.09 (4)
H34C—C34—H34D56.3O22ii—Na5—O3191.97 (5)
C33—C34—H34E109.5O51—Na5—O3169.14 (4)
H34A—C34—H34E56.3O21vi—Na5—O588.01 (4)
H34B—C34—H34E141.1O4—Na5—O5162.77 (5)
H34C—C34—H34E56.3O22ii—Na5—O579.79 (4)
H34D—C34—H34E109.5O51—Na5—O5100.67 (4)
C33—C34—H34F109.5O31—Na5—O592.47 (4)
H34A—C34—H34F56.3O21vi—Na5—Na2vi45.38 (3)
H34B—C34—H34F56.3O4—Na5—Na2vi139.98 (4)
H34C—C34—H34F141.1O22ii—Na5—Na2vi83.76 (4)
H34D—C34—H34F109.5O51—Na5—Na2vi109.59 (4)
H34E—C34—H34F109.5O31—Na5—Na2vi135.19 (4)
C31—C35—H35A109.5O5—Na5—Na2vi42.81 (3)
C31—C35—H35B109.5O21vi—Na5—Na3134.47 (4)
H35A—C35—H35B109.5O4—Na5—Na347.57 (4)
C31—C35—H35C109.5O22ii—Na5—Na365.93 (3)
H35A—C35—H35C109.5O51—Na5—Na398.40 (4)
H35B—C35—H35C109.5O31—Na5—Na344.21 (3)
O6—C41—O5125.44 (15)O5—Na5—Na3119.51 (4)
O6—C41—C4118.26 (13)Na2vi—Na5—Na3148.72 (2)
O5—C41—C4116.30 (14)O21vi—Na5—Na2ii85.72 (4)
O8—C42—O7124.95 (15)O4—Na5—Na2ii123.06 (4)
O8—C42—C4115.47 (13)O22ii—Na5—Na2ii39.43 (3)
O7—C42—C4119.54 (13)O51—Na5—Na2ii138.34 (4)
C41—O5—Na2vi119.93 (10)O31—Na5—Na2ii93.78 (3)
C41—O5—Na2ii118.67 (10)O5—Na5—Na2ii40.38 (3)
Na2vi—O5—Na2ii90.52 (5)Na2vi—Na5—Na2ii56.27 (2)
C41—O5—Na5133.06 (10)Na3—Na5—Na2ii93.46 (2)
Na2vi—O5—Na589.22 (4)O21vi—Na5—H31B161.5
Na2ii—O5—Na594.76 (4)O4—Na5—H31B80.8
C41—O6—Na4159.80 (11)O22ii—Na5—H31B110.8
C42—O8—Na2134.19 (11)O51—Na5—H31B50.3
O3—Na1—O3i180.00 (8)O31—Na5—H31B19.5
O3—Na1—O12i90.88 (4)O5—Na5—H31B100.4
O3i—Na1—O12i89.12 (4)Na2vi—Na5—H31B139.0
O3—Na1—O1289.12 (4)Na3—Na5—H31B54.5
O3i—Na1—O1290.88 (4)Na2ii—Na5—H31B111.4
O12i—Na1—O12180.00 (5)Na4v—O11—Na182.24 (4)
O3—Na1—O11i88.82 (4)Na4v—O11—H111141.9
O3i—Na1—O11i91.18 (4)Na1—O11—H11194.7
O12i—Na1—O11i101.84 (4)Na4v—O11—H11B111.7
O12—Na1—O11i78.16 (4)Na1—O11—H11B84.6
O3—Na1—O1191.18 (4)H111—O11—H11B105.7
O3i—Na1—O1188.82 (4)Na1—O12—Na4vii81.56 (4)
O12i—Na1—O1178.16 (4)Na1—O12—H121110.1
O12—Na1—O11101.84 (4)Na4vii—O12—H121123.7
O11i—Na1—O11180.00 (7)Na1—O12—H122116.0
O3—Na1—Na4vii56.04 (3)Na4vii—O12—H122113.2
O3i—Na1—Na4vii123.96 (3)H121—O12—H122109.7
O12i—Na1—Na4vii130.22 (3)Na5iii—O21—Na292.39 (5)
O12—Na1—Na4vii49.78 (3)Na5iii—O21—H211106.7
O11i—Na1—Na4vii48.58 (3)Na2—O21—H21191.8
O11—Na1—Na4vii131.42 (3)Na5iii—O21—H212146.6
O3—Na1—Na4v123.96 (3)Na2—O21—H21295.0
O3i—Na1—Na4v56.04 (3)H211—O21—H212105.5
O12i—Na1—Na4v49.78 (3)Na2—O22—Na5ii99.04 (5)
O12—Na1—Na4v130.22 (3)Na2—O22—H221104.5
O11i—Na1—Na4v131.42 (3)Na5ii—O22—H221120.1
O11—Na1—Na4v48.58 (3)Na2—O22—H222119.2
Na4vii—Na1—Na4v180.00 (2)Na5ii—O22—H222107.5
O3—Na1—H11188.4H221—O22—H222107.1
O3i—Na1—H11191.6Na3—O31—Na590.24 (4)
O12i—Na1—H11196.9Na3—O31—H31A140.3
O12—Na1—H11183.1Na5—O31—H31A103.5
O11i—Na1—H111161.1Na3—O31—H31B113.4
O11—Na1—H11118.9Na5—O31—H31B78.3
Na4vii—Na1—H111115.8H31A—O31—H31B105.8
Na4v—Na1—H11164.2Na4—O41—Na4ii132.60 (9)
O3—Na1—H11B73.0Na4—O41—H41197.1
O3i—Na1—H11B107.0Na4ii—O41—H411108.3
O12i—Na1—H11B71.1Na4—O42—H42198.2
O12—Na1—H11B108.9Na4—O42—H422105.5
O11i—Na1—H11B160.1H421—O42—H422107.9
O11—Na1—H11B19.9Na5—O51—H511134.1
Na4vii—Na1—H11B121.6Na5—O51—H512107.4
Na4v—Na1—H11B58.4H511—O51—H512107.0
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2; (iii) x, y, z+1/2; (iv) x, y1, z; (v) x, y, z; (vi) x, y, z1/2; (vii) x, y+1, z; (viii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H111···O2ii0.861.972.7404 (16)149
O11—H11B···O40.851.882.7067 (16)165
O12—H121···O1ii0.841.902.7391 (17)174
O21—H211···O6ii0.851.922.7566 (17)167
O21—H212···O70.851.972.8007 (16)165
O22—H221···O310.852.102.8381 (17)145
O22—H222···O11ii0.852.312.9707 (16)135
O22—H222···O6iii0.852.453.0532 (18)128
O31—H31A···O80.851.872.7128 (16)169
O31—H31B···O510.842.092.8085 (17)142
O41—H411···O70.842.273.1061 (16)172
O42—H421···O1iv0.851.922.7582 (17)175
O42—H422···O70.852.032.8639 (17)168
O51—H511···N40.861.992.8424 (18)171
O51—H512···N20.851.942.7799 (18)169
Symmetry codes: (ii) x, y, z+1/2; (iii) x, y, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Na4(C15H14N2O4)2]·7.5H2O
Mr799.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)31.8211 (11), 14.4951 (4), 16.1113 (5)
β (°) 102.139 (3)
V3)7265.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.45 × 0.38 × 0.19
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
76380, 9034, 6490
Rint0.049
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.130, 1.02
No. of reflections9034
No. of parameters488
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.44

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Na1—O32.3113 (11)Na4—O62.6565 (14)
Na1—O112.4177 (11)Na4—O11iv2.3956 (14)
Na1—O122.4028 (13)Na4—O12iii2.4434 (15)
Na2—O5i2.3507 (13)Na4—O412.4634 (11)
Na2—O5ii2.3417 (13)Na4—O422.3423 (15)
Na2—O82.2818 (13)Na5—O42.3952 (13)
Na2—O212.4546 (13)Na5—O52.5592 (13)
Na2—O222.3253 (13)Na5—O21v2.3176 (13)
Na3—O22.4259 (14)Na5—O22i2.4275 (14)
Na3—O312.4430 (14)Na5—O312.5011 (14)
Na3—O42.5862 (13)Na5—O512.4478 (14)
Na4—O3iii2.6812 (15)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2; (iii) x, y1, z; (iv) x, y, z; (v) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H111···O2i0.861.972.7404 (16)148.6
O11—H11B···O40.851.882.7067 (16)164.5
O12—H121···O1i0.841.902.7391 (17)173.6
O21—H211···O6i0.851.922.7566 (17)166.9
O21—H212···O70.851.972.8007 (16)165.2
O22—H221···O310.852.102.8381 (17)144.5
O22—H222···O11i0.852.312.9707 (16)135.0
O22—H222···O6ii0.852.453.0532 (18)128.3
O31—H31A···O80.851.872.7128 (16)168.6
O31—H31B···O510.842.092.8085 (17)142.4
O41—H411···O70.842.273.1061 (16)171.5
O42—H421···O1iii0.851.922.7582 (17)175.1
O42—H422···O70.852.032.8639 (17)168.1
O51—H511···N40.861.992.8424 (18)170.9
O51—H512···N20.851.942.7799 (18)169.3
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2; (iii) x, y1, z.
 

Acknowledgements

This work was supported by grants from Project PGR-UMP-BH-2005, the Centre National de Recherche Scientif­ique, CNRS (France), the Centre National pour la Recherche Scientifique et Technique, CNRST (Morocco) and the CURI (Morocco).

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDayam, R., Al-Mawsawi, L. Q. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6155–6159.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, S., Kamath, S., Sanchez, T., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2007). Bioorg. Med. Chem. 15, 1212–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPommier, Y. & Neamati, N. (2006). Bioorg. Med. Chem. 14, 3785–3792.  Web of Science PubMed Google Scholar
First citationRamkumar, K., Tambov, K. V., Gundla, R., Manaev, A. V., Yarovenko, V., Traven, V. F. & Neamati, N. (2008). Bioorg. Med. Chem. 16, 8988–8998.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSechi, M., Carta, F., Sannia, L., Dallocchio, R., Dessì, A., Al-Safi, R. I. & Neamati, N. (2009). Antivir. Res. 81, 267–276.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, L.-F., Zhang, H.-S., Wang, Y.-H., Sanchez, T., Zheng, Y.-T., Neamati, N. & Long, Y.-Q. (2008). Bioorg. Med. Chem. Lett. 18, 4521–4524.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds