metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­phenyl­tin(IV)]-μ-2-(cyclo­hexyl­amino­carbon­yl)benzoato-κ2O1:O2]

aDepartment of Chemistry, Allama Iqbal Open University, H/8 Islamabad, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 July 2010; accepted 7 July 2010; online 14 July 2010)

In the title polymeric complex, [Sn(C6H5)3(C14H16NO3)]n, adjacent triphenyl­tin cations are bridged by the N-cyclo­hexyl­phthalamate anion through the carboxyl­ate and carbonyl O atoms, forming a helical chain running along the b axis. The amide N atom is a hydrogen-bond donor to the uncoordinated carboxyl­ate O atom. The geometry at the five-coordinate Sn atom is trans-C3SnO2 trigonal-bipyramidal.

Related literature

For a review on organotin carboxyl­ates, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.], 1994[Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.]). Triphenyl­tin aryl­carboxyl­ates generally exist as monomeric mol­ecules; see: Ng et al. (1986[Ng, S. W., Chen, W. & Kumar Das, V. G. (1986). J. Organomet. Chem. 345, 59-64.]). For the synthesis of N-cyclo­hexyl­phthalamic acid, see: Dolzhenko et al. (2003[Dolzhenko, A. V., Syropyatov, B. Ya., Koz'minykh, V. O., Kolotova, N. V., Zakhmatov, A. V. & Borodin, A. Yu. (2003). Pharm. Chem. J. 37, 407-408.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C14H16NO3)]

  • Mr = 596.27

  • Monoclinic, P 21 /n

  • a = 9.8574 (5) Å

  • b = 16.0734 (8) Å

  • c = 17.1669 (8) Å

  • β = 99.447 (1)°

  • V = 2683.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.694, Tmax = 0.827

  • 25326 measured reflections

  • 6165 independent reflections

  • 5710 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.049

  • S = 1.02

  • 6165 reflections

  • 338 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C1 2.130 (1)
Sn1—C7 2.129 (2)
Sn1—C13 2.119 (1)
Sn1—O1 2.149 (1)
Sn1—O3i 2.392 (1)
O1—Sn1—O3i 174.06 (4)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 (1) 1.85 (1) 2.666 (2) 158 (2)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Triphenyltin aryl-carboxylates commonly exist as four-coordinate tetrahedral compounds unlike the alkyl-carboxylates, which adopt carboxylate-bridged polymeric chains structures (Ng et al., 1986). Occasionally, the aryl-carboxylate anion bears a potential donor unit such as, in the present case, an amido group; such a donor group can interact with adjacent molecules to generate polymeric chain motifs (Tiekink, 1991; 1994). In the present N-cyclohexylphthalimic acid derivative (Scheme I), the amido oxygen atom engages in bonding to generate a chain motif (Fig. 1). The tin atom is displaced out of the C3Sn girdle in the direction of the covalently-bonded oxygen atom by 0.200 (1) Å; the Sn–Ocovalent bond is significantly shorter than the Sn–Odative bond.

Related literature top

For a review on organotin carboxylates, see: Tiekink (1991, 1994). Triphenyltin arylcarboxylates generally exist as monomeric molecules; see: Ng et al. (1986). For the synthesis of N-cyclohexylphthalamic acid, see: Dolzhenko et al. (2003).

Experimental top

N-Cyclohexylphthalamic acid was synthesized from the reaction of phthalic anhydride and cyclohexylamine in ethyl acetate by using a reported procedure (Dolzhenko et al., 2003).

Triphenyltin hydroxide (1 mmol, 0.37 g) and N-cyclohexylphthalamic acid (1 mmol, 0.25 g) were heated in toluene (50 ml) for 6 h in a Dean-Stark water-separator. The solvent was then removed and the solid material recrystallized from a chloroform and n-hexane (3:1) mixture to furnish crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amido H-atom was located in a difference Fourier map, and was refined with N–H 0.86±0.01 Å; its temperature factor was freely refined.

Structure description top

Triphenyltin aryl-carboxylates commonly exist as four-coordinate tetrahedral compounds unlike the alkyl-carboxylates, which adopt carboxylate-bridged polymeric chains structures (Ng et al., 1986). Occasionally, the aryl-carboxylate anion bears a potential donor unit such as, in the present case, an amido group; such a donor group can interact with adjacent molecules to generate polymeric chain motifs (Tiekink, 1991; 1994). In the present N-cyclohexylphthalimic acid derivative (Scheme I), the amido oxygen atom engages in bonding to generate a chain motif (Fig. 1). The tin atom is displaced out of the C3Sn girdle in the direction of the covalently-bonded oxygen atom by 0.200 (1) Å; the Sn–Ocovalent bond is significantly shorter than the Sn–Odative bond.

For a review on organotin carboxylates, see: Tiekink (1991, 1994). Triphenyltin arylcarboxylates generally exist as monomeric molecules; see: Ng et al. (1986). For the synthesis of N-cyclohexylphthalamic acid, see: Dolzhenko et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of polymeric Sn(C6H5)3(C14H16NO3) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
catena-Poly[[triphenyltin(IV)]-µ-2- (cyclohexylaminocarbonyl)benzoato-κ2O1:O2] top
Crystal data top
[Sn(C6H5)3(C14H16NO3)]F(000) = 1216
Mr = 596.27Dx = 1.476 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9925 reflections
a = 9.8574 (5) Åθ = 2.4–28.3°
b = 16.0734 (8) ŵ = 0.99 mm1
c = 17.1669 (8) ÅT = 100 K
β = 99.447 (1)°Block, colorless
V = 2683.1 (2) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
6165 independent reflections
Radiation source: fine-focus sealed tube5710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.694, Tmax = 0.827k = 2020
25326 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0227P)2 + 1.7091P]
where P = (Fo2 + 2Fc2)/3
6165 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = 0.50 e Å3
Crystal data top
[Sn(C6H5)3(C14H16NO3)]V = 2683.1 (2) Å3
Mr = 596.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8574 (5) ŵ = 0.99 mm1
b = 16.0734 (8) ÅT = 100 K
c = 17.1669 (8) Å0.40 × 0.30 × 0.20 mm
β = 99.447 (1)°
Data collection top
Bruker SMART APEX
diffractometer
6165 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5710 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.827Rint = 0.023
25326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0191 restraint
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.35 e Å3
6165 reflectionsΔρmin = 0.50 e Å3
338 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.914994 (9)0.372319 (5)0.750433 (5)0.01199 (4)
O10.88805 (10)0.26134 (6)0.67977 (6)0.0167 (2)
O20.66233 (11)0.26088 (6)0.67972 (6)0.0181 (2)
O30.53077 (10)0.00855 (6)0.66684 (6)0.0160 (2)
N10.51088 (14)0.12682 (7)0.69698 (8)0.0177 (3)
H10.5391 (19)0.1765 (7)0.6891 (11)0.022 (5)*
C10.78221 (14)0.45043 (8)0.67164 (8)0.0150 (3)
C20.78027 (18)0.44190 (10)0.59071 (9)0.0242 (3)
H20.83150.39850.57170.029*
C30.70416 (19)0.49620 (11)0.53752 (10)0.0293 (4)
H30.70340.48950.48250.035*
C40.62957 (17)0.55996 (10)0.56442 (10)0.0257 (3)
H40.57880.59750.52800.031*
C50.62943 (15)0.56869 (9)0.64469 (10)0.0209 (3)
H50.57810.61220.66350.025*
C60.70430 (14)0.51388 (9)0.69779 (9)0.0170 (3)
H60.70240.51970.75270.020*
C71.12405 (15)0.37813 (8)0.73368 (9)0.0143 (3)
C81.22988 (15)0.39979 (9)0.79465 (9)0.0175 (3)
H81.20960.40930.84610.021*
C91.36463 (16)0.40761 (10)0.78118 (10)0.0230 (3)
H91.43560.42160.82360.028*
C101.39583 (16)0.39509 (9)0.70631 (10)0.0232 (3)
H101.48800.40020.69730.028*
C111.29187 (18)0.37515 (9)0.64477 (10)0.0230 (3)
H111.31240.36770.59310.028*
C121.15697 (16)0.36592 (9)0.65838 (9)0.0188 (3)
H121.08660.35120.61590.023*
C130.85936 (15)0.32474 (8)0.85593 (8)0.0147 (3)
C140.72102 (16)0.32227 (9)0.86407 (9)0.0180 (3)
H140.65230.33380.81980.022*
C150.68262 (17)0.30300 (10)0.93644 (9)0.0226 (3)
H150.58800.30180.94130.027*
C160.78136 (19)0.28563 (10)1.00104 (9)0.0245 (3)
H160.75490.27371.05060.029*
C170.91974 (18)0.28560 (10)0.99353 (9)0.0244 (3)
H170.98780.27181.03750.029*
C180.95815 (16)0.30584 (9)0.92144 (9)0.0198 (3)
H181.05280.30680.91680.024*
C190.76680 (15)0.22960 (8)0.66099 (8)0.0144 (3)
C200.76215 (15)0.15244 (9)0.60958 (8)0.0140 (3)
C210.86142 (16)0.15062 (10)0.55998 (9)0.0195 (3)
H210.92680.19440.56330.023*
C220.86751 (17)0.08691 (10)0.50612 (9)0.0224 (3)
H220.93540.08770.47270.027*
C230.77383 (17)0.02216 (9)0.50143 (9)0.0200 (3)
H230.77570.02120.46400.024*
C240.67742 (15)0.02117 (9)0.55164 (8)0.0161 (3)
H240.61520.02430.54900.019*
C250.66847 (14)0.08489 (8)0.60619 (8)0.0132 (3)
C260.56431 (14)0.06626 (8)0.66012 (8)0.0134 (3)
C270.41889 (15)0.11215 (9)0.75476 (9)0.0181 (3)
H270.40340.05090.75850.022*
C280.48651 (19)0.14361 (12)0.83514 (10)0.0293 (4)
H28A0.50670.20370.83170.035*
H28B0.57460.11400.85160.035*
C290.3924 (2)0.12963 (12)0.89671 (11)0.0342 (4)
H29A0.37910.06920.90360.041*
H29B0.43650.15280.94810.041*
C300.2540 (2)0.17094 (11)0.87143 (12)0.0337 (4)
H30A0.19310.15780.91030.040*
H30B0.26640.23200.87080.040*
C310.18684 (19)0.14199 (13)0.79050 (13)0.0357 (4)
H31A0.10050.17340.77420.043*
H31B0.16300.08230.79300.043*
C320.28089 (18)0.15421 (12)0.72883 (11)0.0298 (4)
H32B0.23640.13050.67770.036*
H32C0.29520.21440.72120.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01138 (5)0.01205 (5)0.01288 (5)0.00013 (3)0.00303 (4)0.00005 (3)
O10.0158 (5)0.0156 (5)0.0186 (5)0.0014 (4)0.0025 (4)0.0032 (4)
O20.0180 (5)0.0149 (5)0.0229 (5)0.0007 (4)0.0081 (4)0.0011 (4)
O30.0181 (5)0.0133 (4)0.0169 (5)0.0009 (4)0.0042 (4)0.0016 (4)
N10.0202 (6)0.0132 (6)0.0222 (6)0.0013 (5)0.0109 (5)0.0013 (5)
C10.0143 (7)0.0140 (6)0.0167 (7)0.0009 (5)0.0019 (5)0.0015 (5)
C20.0300 (9)0.0236 (8)0.0195 (8)0.0096 (6)0.0057 (6)0.0005 (6)
C30.0373 (10)0.0334 (9)0.0171 (7)0.0116 (7)0.0040 (7)0.0050 (7)
C40.0249 (8)0.0257 (8)0.0262 (8)0.0068 (6)0.0035 (6)0.0092 (6)
C50.0152 (7)0.0186 (7)0.0296 (8)0.0033 (5)0.0056 (6)0.0011 (6)
C60.0129 (6)0.0201 (7)0.0185 (7)0.0011 (5)0.0038 (5)0.0020 (5)
C70.0144 (6)0.0116 (6)0.0175 (7)0.0009 (5)0.0042 (5)0.0000 (5)
C80.0175 (7)0.0176 (7)0.0178 (7)0.0014 (5)0.0043 (6)0.0015 (5)
C90.0158 (7)0.0223 (7)0.0300 (8)0.0001 (6)0.0012 (6)0.0013 (6)
C100.0166 (7)0.0176 (7)0.0379 (9)0.0013 (6)0.0124 (7)0.0003 (6)
C110.0278 (8)0.0197 (7)0.0253 (8)0.0019 (6)0.0158 (7)0.0014 (6)
C120.0203 (7)0.0189 (7)0.0180 (7)0.0022 (5)0.0056 (6)0.0029 (5)
C130.0188 (7)0.0112 (6)0.0147 (6)0.0001 (5)0.0045 (5)0.0009 (5)
C140.0189 (7)0.0193 (7)0.0162 (7)0.0014 (5)0.0041 (5)0.0000 (5)
C150.0255 (8)0.0217 (7)0.0235 (8)0.0008 (6)0.0126 (6)0.0014 (6)
C160.0410 (10)0.0182 (7)0.0157 (7)0.0039 (6)0.0089 (7)0.0003 (6)
C170.0353 (9)0.0184 (7)0.0168 (7)0.0028 (6)0.0040 (6)0.0025 (6)
C180.0200 (7)0.0161 (7)0.0222 (7)0.0018 (5)0.0005 (6)0.0007 (6)
C190.0185 (7)0.0131 (6)0.0122 (6)0.0005 (5)0.0039 (5)0.0022 (5)
C200.0155 (7)0.0136 (6)0.0130 (6)0.0003 (5)0.0023 (5)0.0006 (5)
C210.0217 (8)0.0189 (7)0.0195 (7)0.0046 (6)0.0078 (6)0.0020 (6)
C220.0274 (8)0.0230 (7)0.0200 (7)0.0026 (6)0.0133 (6)0.0022 (6)
C230.0290 (8)0.0168 (7)0.0156 (7)0.0002 (6)0.0074 (6)0.0027 (5)
C240.0194 (7)0.0143 (6)0.0142 (6)0.0014 (5)0.0018 (5)0.0006 (5)
C250.0132 (6)0.0142 (6)0.0120 (6)0.0010 (5)0.0019 (5)0.0017 (5)
C260.0125 (6)0.0151 (6)0.0121 (6)0.0002 (5)0.0005 (5)0.0020 (5)
C270.0206 (7)0.0134 (6)0.0234 (8)0.0004 (5)0.0126 (6)0.0019 (5)
C280.0249 (9)0.0423 (10)0.0231 (8)0.0018 (7)0.0113 (7)0.0007 (7)
C290.0366 (10)0.0444 (11)0.0260 (9)0.0012 (8)0.0181 (8)0.0011 (7)
C300.0437 (11)0.0218 (8)0.0447 (11)0.0067 (7)0.0340 (9)0.0064 (7)
C310.0211 (9)0.0427 (10)0.0480 (12)0.0074 (7)0.0194 (8)0.0164 (9)
C320.0207 (8)0.0401 (9)0.0310 (9)0.0039 (7)0.0118 (7)0.0107 (8)
Geometric parameters (Å, º) top
Sn1—C12.130 (1)C14—H140.9500
Sn1—C72.129 (2)C15—C161.379 (2)
Sn1—C132.119 (1)C15—H150.9500
Sn1—O12.149 (1)C16—C171.391 (3)
Sn1—O3i2.392 (1)C16—H160.9500
O1—C191.2908 (17)C17—C181.391 (2)
O2—C191.2350 (18)C17—H170.9500
O3—C261.2574 (17)C18—H180.9500
O3—Sn1ii2.3917 (10)C19—C201.5186 (19)
N1—C261.3171 (18)C20—C211.399 (2)
N1—C271.4687 (18)C20—C251.4204 (19)
N1—H10.864 (9)C21—C221.388 (2)
C1—C61.395 (2)C21—H210.9500
C1—C21.393 (2)C22—C231.385 (2)
C2—C31.391 (2)C22—H220.9500
C2—H20.9500C23—C241.384 (2)
C3—C41.384 (2)C23—H230.9500
C3—H30.9500C24—C251.4004 (19)
C4—C51.385 (2)C24—H240.9500
C4—H40.9500C25—C261.5208 (19)
C5—C61.390 (2)C27—C321.519 (2)
C5—H50.9500C27—C281.517 (2)
C6—H60.9500C27—H271.0000
C7—C81.395 (2)C28—C291.533 (2)
C7—C121.397 (2)C28—H28A0.9900
C8—C91.391 (2)C28—H28B0.9900
C8—H80.9500C29—C301.515 (3)
C9—C101.385 (2)C29—H29A0.9900
C9—H90.9500C29—H29B0.9900
C10—C111.383 (2)C30—C311.511 (3)
C10—H100.9500C30—H30A0.9900
C11—C121.395 (2)C30—H30B0.9900
C11—H110.9500C31—C321.530 (2)
C12—H120.9500C31—H31A0.9900
C13—C141.394 (2)C31—H31B0.9900
C13—C181.395 (2)C32—H32B0.9900
C14—C151.392 (2)C32—H32C0.9900
C13—Sn1—C7121.55 (6)C16—C17—H17120.1
C13—Sn1—C1122.49 (5)C17—C18—C13120.82 (15)
C7—Sn1—C1113.32 (5)C17—C18—H18119.6
C13—Sn1—O199.06 (5)C13—C18—H18119.6
C7—Sn1—O189.59 (5)O2—C19—O1123.47 (13)
C1—Sn1—O197.16 (5)O2—C19—C20122.47 (13)
C13—Sn1—O3i81.11 (4)O1—C19—C20113.98 (12)
C7—Sn1—O3i85.30 (4)C21—C20—C25118.31 (13)
C1—Sn1—O3i87.67 (4)C21—C20—C19114.42 (12)
O1—Sn1—O3i174.06 (4)C25—C20—C19127.27 (12)
C19—O1—Sn1119.52 (9)C22—C21—C20122.14 (14)
C26—O3—Sn1ii141.59 (9)C22—C21—H21118.9
C26—N1—C27123.08 (12)C20—C21—H21118.9
C26—N1—H1116.4 (13)C21—C22—C23119.47 (14)
C27—N1—H1120.3 (13)C21—C22—H22120.3
C6—C1—C2118.35 (13)C23—C22—H22120.3
C6—C1—Sn1122.69 (11)C24—C23—C22119.46 (13)
C2—C1—Sn1118.80 (11)C24—C23—H23120.3
C3—C2—C1120.72 (14)C22—C23—H23120.3
C3—C2—H2119.6C23—C24—C25122.23 (13)
C1—C2—H2119.6C23—C24—H24118.9
C4—C3—C2120.30 (15)C25—C24—H24118.9
C4—C3—H3119.8C24—C25—C20118.33 (13)
C2—C3—H3119.8C24—C25—C26112.71 (12)
C3—C4—C5119.62 (15)C20—C25—C26128.68 (12)
C3—C4—H4120.2O3—C26—N1122.06 (13)
C5—C4—H4120.2O3—C26—C25117.27 (12)
C4—C5—C6120.08 (14)N1—C26—C25120.67 (12)
C4—C5—H5120.0N1—C27—C32110.68 (12)
C6—C5—H5120.0N1—C27—C28109.45 (13)
C1—C6—C5120.91 (14)C32—C27—C28110.90 (14)
C1—C6—H6119.5N1—C27—H27108.6
C5—C6—H6119.5C32—C27—H27108.6
C8—C7—C12118.07 (14)C28—C27—H27108.6
C8—C7—Sn1122.05 (11)C27—C28—C29110.67 (15)
C12—C7—Sn1119.72 (11)C27—C28—H28A109.5
C9—C8—C7120.98 (14)C29—C28—H28A109.5
C9—C8—H8119.5C27—C28—H28B109.5
C7—C8—H8119.5C29—C28—H28B109.5
C10—C9—C8120.32 (15)H28A—C28—H28B108.1
C10—C9—H9119.8C30—C29—C28110.89 (15)
C8—C9—H9119.8C30—C29—H29A109.5
C9—C10—C11119.54 (14)C28—C29—H29A109.5
C9—C10—H10120.2C30—C29—H29B109.5
C11—C10—H10120.2C28—C29—H29B109.5
C10—C11—C12120.25 (15)H29A—C29—H29B108.0
C10—C11—H11119.9C31—C30—C29111.49 (15)
C12—C11—H11119.9C31—C30—H30A109.3
C11—C12—C7120.82 (15)C29—C30—H30A109.3
C11—C12—H12119.6C31—C30—H30B109.3
C7—C12—H12119.6C29—C30—H30B109.3
C14—C13—C18118.56 (13)H30A—C30—H30B108.0
C14—C13—Sn1119.37 (10)C30—C31—C32111.89 (16)
C18—C13—Sn1121.55 (11)C30—C31—H31A109.2
C15—C14—C13120.64 (14)C32—C31—H31A109.2
C15—C14—H14119.7C30—C31—H31B109.2
C13—C14—H14119.7C32—C31—H31B109.2
C16—C15—C14120.24 (15)H31A—C31—H31B107.9
C16—C15—H15119.9C27—C32—C31110.81 (14)
C14—C15—H15119.9C27—C32—H32B109.5
C15—C16—C17119.93 (14)C31—C32—H32B109.5
C15—C16—H16120.0C27—C32—H32C109.5
C17—C16—H16120.0C31—C32—H32C109.5
C18—C17—C16119.78 (15)H32B—C32—H32C108.1
C18—C17—H17120.1
C13—Sn1—O1—C1964.82 (11)C18—C13—C14—C151.3 (2)
C7—Sn1—O1—C19173.26 (10)Sn1—C13—C14—C15170.53 (11)
C1—Sn1—O1—C1959.80 (10)C13—C14—C15—C160.4 (2)
C13—Sn1—C1—C641.13 (14)C14—C15—C16—C171.4 (2)
C7—Sn1—C1—C6120.66 (12)C15—C16—C17—C182.1 (2)
O1—Sn1—C1—C6146.69 (11)C16—C17—C18—C131.2 (2)
O3i—Sn1—C1—C636.79 (12)C14—C13—C18—C170.5 (2)
C13—Sn1—C1—C2143.59 (12)Sn1—C13—C18—C17171.13 (11)
C7—Sn1—C1—C254.62 (13)Sn1—O1—C19—O22.02 (18)
O1—Sn1—C1—C238.03 (13)Sn1—O1—C19—C20178.78 (8)
O3i—Sn1—C1—C2138.49 (12)O2—C19—C20—C21146.62 (14)
C6—C1—C2—C31.0 (2)O1—C19—C20—C2130.18 (18)
Sn1—C1—C2—C3174.49 (14)O2—C19—C20—C2532.3 (2)
C1—C2—C3—C40.3 (3)O1—C19—C20—C25150.90 (14)
C2—C3—C4—C51.0 (3)C25—C20—C21—C222.4 (2)
C3—C4—C5—C60.3 (3)C19—C20—C21—C22176.59 (14)
C2—C1—C6—C51.7 (2)C20—C21—C22—C230.8 (2)
Sn1—C1—C6—C5173.61 (11)C21—C22—C23—C241.3 (2)
C4—C5—C6—C11.1 (2)C22—C23—C24—C251.7 (2)
C13—Sn1—C7—C838.88 (13)C23—C24—C25—C200.1 (2)
C1—Sn1—C7—C8123.10 (11)C23—C24—C25—C26174.48 (13)
O1—Sn1—C7—C8139.28 (11)C21—C20—C25—C242.0 (2)
O3i—Sn1—C7—C837.67 (11)C19—C20—C25—C24176.91 (13)
C13—Sn1—C7—C12145.85 (10)C21—C20—C25—C26171.43 (14)
C1—Sn1—C7—C1252.17 (12)C19—C20—C25—C269.7 (2)
O1—Sn1—C7—C1245.45 (11)Sn1ii—O3—C26—N185.49 (19)
O3i—Sn1—C7—C12137.60 (11)Sn1ii—O3—C26—C2595.48 (16)
C12—C7—C8—C91.1 (2)C27—N1—C26—O36.3 (2)
Sn1—C7—C8—C9176.43 (11)C27—N1—C26—C25174.74 (13)
C7—C8—C9—C100.9 (2)C24—C25—C26—O320.40 (18)
C8—C9—C10—C110.3 (2)C20—C25—C26—O3153.31 (14)
C9—C10—C11—C121.4 (2)C24—C25—C26—N1158.65 (13)
C10—C11—C12—C71.2 (2)C20—C25—C26—N127.6 (2)
C8—C7—C12—C110.0 (2)C26—N1—C27—C32121.11 (16)
Sn1—C7—C12—C11175.48 (11)C26—N1—C27—C28116.37 (16)
C7—Sn1—C13—C14179.98 (10)N1—C27—C28—C29179.65 (14)
C1—Sn1—C13—C1419.66 (13)C32—C27—C28—C2957.26 (19)
O1—Sn1—C13—C1484.89 (11)C27—C28—C29—C3056.6 (2)
O3i—Sn1—C13—C14101.13 (11)C28—C29—C30—C3155.2 (2)
C7—Sn1—C13—C188.41 (14)C29—C30—C31—C3254.5 (2)
C1—Sn1—C13—C18151.91 (11)N1—C27—C32—C31177.73 (15)
O1—Sn1—C13—C18103.54 (11)C28—C27—C32—C3156.1 (2)
O3i—Sn1—C13—C1870.44 (11)C30—C31—C32—C2754.7 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.86 (1)1.85 (1)2.666 (2)158 (2)

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C14H16NO3)]
Mr596.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.8574 (5), 16.0734 (8), 17.1669 (8)
β (°) 99.447 (1)
V3)2683.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.694, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
25326, 6165, 5710
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 1.02
No. of reflections6165
No. of parameters338
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.50

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Sn1—C12.130 (1)Sn1—O12.149 (1)
Sn1—C72.129 (2)Sn1—O3i2.392 (1)
Sn1—C132.119 (1)
O1—Sn1—O3i174.06 (4)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.86 (1)1.85 (1)2.666 (2)158 (2)
 

Acknowledgements

We thank Allama Iqbal Open University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolzhenko, A. V., Syropyatov, B. Ya., Koz'minykh, V. O., Kolotova, N. V., Zakhmatov, A. V. & Borodin, A. Yu. (2003). Pharm. Chem. J. 37, 407–408.  CrossRef CAS Google Scholar
First citationNg, S. W., Chen, W. & Kumar Das, V. G. (1986). J. Organomet. Chem. 345, 59–64.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationTiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71–116.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds