metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridometh­yl(2-methyl­quinolin-8-olato-κ2N,O)phenyl­tin(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 July 2010; accepted 13 July 2010; online 17 July 2010)

The asymmetric unit of the title complex, [Sn(CH3)(C6H5)(C10H8NO)Cl], consists of two independent mol­ecules, both of which have the N,O-chelated SnIV atom in a cis-C2SnNOCl trigonal-bipyramidal geometry [C—Sn—C = 124.82 (8) and 137.69 (8)°]. The Cl atom of the mol­ecule with the smaller C—Sn—C angle inter­acts weakly with the SnIV atom of the mol­ecule with the wider C—Sn—C angle at an Sn⋯Cl distance of 3.595 (1) Å. Weak inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonding is present in the crystal structure.

Related literature

For a related structure, see: Vafaee et al. (2010[Vafaee, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m964.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)(C6H5)(C10H8NO)Cl]

  • Mr = 404.45

  • Triclinic, [P \overline 1]

  • a = 8.9728 (4) Å

  • b = 13.1046 (6) Å

  • c = 14.0405 (6) Å

  • α = 106.621 (1)°

  • β = 92.764 (1)°

  • γ = 95.256 (1)°

  • V = 1570.52 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 100 K

  • 0.35 × 0.35 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.572, Tmax = 0.841

  • 15157 measured reflections

  • 7186 independent reflections

  • 6630 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.057

  • S = 1.09

  • 7186 reflections

  • 383 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl1i 0.95 2.83 3.6898 (19) 152
C22—H22⋯Cl2i 0.95 2.76 3.705 (2) 177
C10—H10⋯O1ii 0.95 2.59 3.454 (2) 152
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The anion of 8-hydroxyquinoline is known to chelate to tin in organotin(IV) quinolinolates; however, for the chloroorganotin quinolinates, the chlorine atom participates in weak intermolecular bridging. Chloridomethylphenyl(quinolin-8-olato)tin exists as a dinuclear molecule owing to bridging by the anion (Vafaee et al., 2010). The methyl-substituted quinolin-8-olato derivative (Scheme I) consists of two independent molecules, and both have the N,O-chelated tin(IV) atom in a cis-C2SnNOCl trigonal bipyramidal geometry. The C18–Sn2–C19 and C1–Sn1–C2 bond angles are 124.82 (8) and 137.69 (8)°, respectively. The chlorine atom (Cl2) of the molecule with the smaller C–Sn–C angle interacts weakly with the tin atom (Sn1) of the molecule with the wider C–Sn–C angle at a distance of 3.595 (1) Å (Fig. 1). Weak intermolecular C—H···O and C—H···Cl hydrogen bonding is present in the crystal structure (Table 1).

Related literature top

For a related structure, see: Vafaee et al. (2010).

Experimental top

Methylphenyltin dichloride (0.35 g, 1 mmol) and 2-methyl-8-hydroxyquinoline (0.16 g, 1 mmol) were dissolved in methanol (10 ml) to give a faint yellow solution. The solution was set aside for the growth of crystals over a few days. Slow evaporation of methanol furnished crystals.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.95–0.98 Å) and included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

Structure description top

The anion of 8-hydroxyquinoline is known to chelate to tin in organotin(IV) quinolinolates; however, for the chloroorganotin quinolinates, the chlorine atom participates in weak intermolecular bridging. Chloridomethylphenyl(quinolin-8-olato)tin exists as a dinuclear molecule owing to bridging by the anion (Vafaee et al., 2010). The methyl-substituted quinolin-8-olato derivative (Scheme I) consists of two independent molecules, and both have the N,O-chelated tin(IV) atom in a cis-C2SnNOCl trigonal bipyramidal geometry. The C18–Sn2–C19 and C1–Sn1–C2 bond angles are 124.82 (8) and 137.69 (8)°, respectively. The chlorine atom (Cl2) of the molecule with the smaller C–Sn–C angle interacts weakly with the tin atom (Sn1) of the molecule with the wider C–Sn–C angle at a distance of 3.595 (1) Å (Fig. 1). Weak intermolecular C—H···O and C—H···Cl hydrogen bonding is present in the crystal structure (Table 1).

For a related structure, see: Vafaee et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the two independent molecules of SnCl(CH3)(C6H5)(C10H8NO) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The Cl2 atom is 3.595 (1) Å from Sn1, and it opens the C–Sn–C angle to 137.69 (8) °.
Chloridomethyl(2-methylquinolin-8-olato-κ2N,O)phenyltin(IV) top
Crystal data top
[Sn(CH3)(C6H5)(C10H8NO)Cl]Z = 4
Mr = 404.45F(000) = 800
Triclinic, P1Dx = 1.711 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9728 (4) ÅCell parameters from 9971 reflections
b = 13.1046 (6) Åθ = 2.6–28.3°
c = 14.0405 (6) ŵ = 1.79 mm1
α = 106.621 (1)°T = 100 K
β = 92.764 (1)°Block, yellow
γ = 95.256 (1)°0.35 × 0.35 × 0.10 mm
V = 1570.52 (12) Å3
Data collection top
Bruker SMART APEX
diffractometer
7186 independent reflections
Radiation source: fine-focus sealed tube6630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.572, Tmax = 0.841k = 1717
15157 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0305P)2 + 0.4536P]
where P = (Fo2 + 2Fc2)/3
7186 reflections(Δ/σ)max = 0.001
383 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Sn(CH3)(C6H5)(C10H8NO)Cl]γ = 95.256 (1)°
Mr = 404.45V = 1570.52 (12) Å3
Triclinic, P1Z = 4
a = 8.9728 (4) ÅMo Kα radiation
b = 13.1046 (6) ŵ = 1.79 mm1
c = 14.0405 (6) ÅT = 100 K
α = 106.621 (1)°0.35 × 0.35 × 0.10 mm
β = 92.764 (1)°
Data collection top
Bruker SMART APEX
diffractometer
7186 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6630 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.841Rint = 0.019
15157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.09Δρmax = 0.51 e Å3
7186 reflectionsΔρmin = 0.67 e Å3
383 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.861340 (14)0.615377 (9)0.290747 (9)0.01263 (4)
Sn20.799527 (14)0.832410 (9)0.702160 (9)0.01230 (4)
Cl11.10698 (5)0.72185 (4)0.30174 (4)0.02216 (11)
Cl20.84380 (6)0.68692 (4)0.55666 (4)0.01948 (10)
O10.88484 (15)0.56320 (11)0.14165 (10)0.0167 (3)
O20.92261 (15)0.75531 (11)0.77964 (10)0.0158 (3)
N10.63791 (18)0.49944 (12)0.22228 (12)0.0135 (3)
N20.78441 (18)0.92597 (12)0.87127 (12)0.0143 (3)
C10.9407 (3)0.50330 (17)0.35798 (16)0.0225 (4)
H1A0.85900.47440.38990.034*
H1B1.02320.53880.40820.034*
H1C0.97680.44470.30700.034*
C20.7376 (2)0.75143 (15)0.33138 (14)0.0136 (4)
C30.5837 (2)0.74372 (15)0.30636 (14)0.0154 (4)
H30.53170.67620.27040.018*
C40.5052 (2)0.83317 (16)0.33318 (15)0.0186 (4)
H40.40040.82640.31570.022*
C50.5804 (2)0.93240 (16)0.38556 (16)0.0200 (4)
H50.52740.99380.40340.024*
C60.7327 (2)0.94134 (16)0.41155 (16)0.0205 (4)
H60.78421.00890.44800.025*
C70.8110 (2)0.85155 (15)0.38452 (15)0.0181 (4)
H70.91570.85860.40250.022*
C80.6448 (2)0.46140 (14)0.12108 (14)0.0128 (4)
C90.7758 (2)0.49533 (14)0.08082 (14)0.0131 (4)
C100.7884 (2)0.45633 (15)0.02044 (14)0.0150 (4)
H100.87560.47810.04850.018*
C110.6728 (2)0.38445 (15)0.08252 (15)0.0168 (4)
H110.68500.35690.15170.020*
C120.5437 (2)0.35347 (15)0.04558 (15)0.0164 (4)
H120.46610.30640.08900.020*
C130.5265 (2)0.39227 (14)0.05808 (14)0.0141 (4)
C140.3962 (2)0.36966 (15)0.10369 (15)0.0167 (4)
H140.31180.32650.06410.020*
C150.3902 (2)0.40939 (15)0.20431 (15)0.0172 (4)
H150.30160.39440.23450.021*
C160.5159 (2)0.47280 (14)0.26363 (14)0.0154 (4)
C170.5142 (3)0.50856 (17)0.37524 (15)0.0223 (4)
H17A0.59130.56920.40340.033*
H17B0.53480.44930.40170.033*
H17C0.41540.53050.39340.033*
C180.9310 (3)0.95753 (17)0.66836 (16)0.0246 (5)
H18A0.89881.02650.70490.037*
H18B0.91840.94840.59660.037*
H18C1.03690.95580.68790.037*
C190.5611 (2)0.80153 (14)0.67682 (15)0.0143 (4)
C200.5010 (2)0.78133 (15)0.57891 (15)0.0184 (4)
H200.56600.78250.52770.022*
C210.3465 (2)0.75946 (16)0.55562 (17)0.0225 (4)
H210.30640.74770.48900.027*
C220.2512 (2)0.75486 (16)0.62948 (18)0.0237 (5)
H220.14590.73880.61350.028*
C230.3109 (2)0.77407 (16)0.72750 (17)0.0225 (4)
H230.24610.77030.77820.027*
C240.4646 (2)0.79866 (15)0.75122 (15)0.0172 (4)
H240.50420.81360.81840.021*
C250.8496 (2)0.87232 (14)0.92987 (14)0.0135 (4)
C260.9237 (2)0.78282 (14)0.87912 (14)0.0135 (4)
C270.9918 (2)0.72626 (15)0.93489 (15)0.0165 (4)
H271.04500.66810.90290.020*
C280.9827 (2)0.75434 (16)1.03909 (16)0.0191 (4)
H281.02890.71361.07600.023*
C290.9091 (2)0.83888 (16)1.08871 (15)0.0195 (4)
H290.90290.85551.15870.023*
C300.8425 (2)0.90100 (15)1.03417 (15)0.0169 (4)
C310.7673 (3)0.99163 (17)1.07720 (16)0.0224 (4)
H310.75851.01441.14710.027*
C320.7074 (3)1.04612 (16)1.01742 (16)0.0238 (5)
H320.65911.10791.04650.029*
C330.7165 (2)1.01183 (15)0.91330 (16)0.0183 (4)
C340.6501 (3)1.07147 (16)0.84782 (16)0.0236 (5)
H34A0.61221.02080.78340.035*
H34B0.72741.12430.83740.035*
H34C0.56731.10830.87990.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01233 (7)0.01319 (7)0.01122 (7)0.00009 (5)0.00001 (5)0.00230 (5)
Sn20.01178 (7)0.01214 (7)0.01252 (7)0.00020 (5)0.00045 (5)0.00358 (5)
Cl10.0134 (2)0.0269 (2)0.0216 (2)0.00386 (18)0.00076 (19)0.0016 (2)
Cl20.0179 (2)0.0228 (2)0.0148 (2)0.00503 (18)0.00028 (18)0.00032 (18)
O10.0135 (7)0.0210 (7)0.0127 (7)0.0030 (5)0.0001 (5)0.0020 (5)
O20.0170 (7)0.0169 (6)0.0134 (7)0.0048 (5)0.0000 (5)0.0039 (5)
N10.0143 (8)0.0120 (7)0.0134 (8)0.0001 (6)0.0004 (6)0.0029 (6)
N20.0139 (8)0.0129 (7)0.0150 (8)0.0003 (6)0.0014 (6)0.0033 (6)
C10.0281 (12)0.0199 (10)0.0209 (10)0.0087 (8)0.0003 (9)0.0066 (8)
C20.0159 (9)0.0151 (8)0.0106 (8)0.0011 (7)0.0016 (7)0.0053 (7)
C30.0177 (10)0.0154 (9)0.0129 (9)0.0011 (7)0.0019 (7)0.0053 (7)
C40.0166 (10)0.0205 (9)0.0211 (10)0.0027 (8)0.0005 (8)0.0099 (8)
C50.0250 (11)0.0164 (9)0.0210 (10)0.0049 (8)0.0034 (8)0.0080 (8)
C60.0232 (11)0.0142 (9)0.0219 (10)0.0026 (8)0.0009 (8)0.0031 (8)
C70.0170 (10)0.0168 (9)0.0187 (10)0.0025 (7)0.0010 (8)0.0038 (8)
C80.0138 (9)0.0107 (8)0.0139 (9)0.0029 (7)0.0002 (7)0.0031 (7)
C90.0140 (9)0.0127 (8)0.0120 (9)0.0022 (7)0.0007 (7)0.0028 (7)
C100.0125 (9)0.0189 (9)0.0146 (9)0.0037 (7)0.0017 (7)0.0057 (7)
C110.0205 (10)0.0160 (9)0.0125 (9)0.0053 (7)0.0008 (7)0.0013 (7)
C120.0175 (10)0.0134 (8)0.0160 (9)0.0006 (7)0.0038 (8)0.0018 (7)
C130.0151 (9)0.0105 (8)0.0161 (9)0.0026 (7)0.0008 (7)0.0030 (7)
C140.0149 (9)0.0126 (8)0.0215 (10)0.0025 (7)0.0040 (8)0.0055 (7)
C150.0164 (10)0.0155 (9)0.0210 (10)0.0015 (7)0.0025 (8)0.0086 (8)
C160.0177 (10)0.0117 (8)0.0166 (9)0.0005 (7)0.0031 (8)0.0041 (7)
C170.0251 (11)0.0218 (10)0.0180 (10)0.0035 (8)0.0054 (8)0.0040 (8)
C180.0296 (12)0.0213 (10)0.0218 (11)0.0083 (9)0.0000 (9)0.0084 (8)
C190.0130 (9)0.0103 (8)0.0183 (9)0.0005 (7)0.0015 (7)0.0026 (7)
C200.0198 (10)0.0158 (9)0.0195 (10)0.0021 (7)0.0016 (8)0.0055 (8)
C210.0195 (11)0.0199 (10)0.0255 (11)0.0028 (8)0.0081 (9)0.0041 (8)
C220.0123 (10)0.0190 (9)0.0360 (12)0.0021 (8)0.0020 (9)0.0023 (9)
C230.0174 (10)0.0168 (9)0.0314 (12)0.0027 (8)0.0072 (9)0.0029 (8)
C240.0179 (10)0.0138 (8)0.0186 (10)0.0022 (7)0.0014 (8)0.0023 (7)
C250.0130 (9)0.0119 (8)0.0145 (9)0.0027 (7)0.0030 (7)0.0041 (7)
C260.0100 (9)0.0134 (8)0.0166 (9)0.0023 (7)0.0001 (7)0.0050 (7)
C270.0154 (10)0.0158 (9)0.0189 (10)0.0013 (7)0.0004 (8)0.0063 (7)
C280.0192 (10)0.0190 (9)0.0203 (10)0.0002 (8)0.0037 (8)0.0094 (8)
C290.0237 (11)0.0209 (9)0.0127 (9)0.0016 (8)0.0025 (8)0.0046 (7)
C300.0187 (10)0.0151 (9)0.0148 (9)0.0010 (7)0.0014 (8)0.0021 (7)
C310.0275 (12)0.0201 (10)0.0157 (10)0.0037 (8)0.0014 (8)0.0009 (8)
C320.0280 (12)0.0176 (9)0.0212 (11)0.0072 (8)0.0013 (9)0.0024 (8)
C330.0180 (10)0.0122 (8)0.0224 (10)0.0014 (7)0.0038 (8)0.0026 (7)
C340.0309 (12)0.0163 (9)0.0235 (11)0.0086 (8)0.0032 (9)0.0048 (8)
Geometric parameters (Å, º) top
Sn1—C12.116 (2)C14—C151.364 (3)
Sn1—C22.140 (2)C14—H140.9500
Sn1—N12.382 (2)C15—C161.414 (3)
Sn1—O12.036 (1)C15—H150.9500
Sn1—Cl12.4717 (5)C16—C171.503 (3)
Sn2—C182.110 (2)C17—H17A0.9800
Sn2—C192.134 (2)C17—H17B0.9800
Sn2—N22.357 (2)C17—H17C0.9800
Sn2—O22.035 (1)C18—H18A0.9800
Sn2—Cl22.4403 (5)C18—H18B0.9800
O1—C91.343 (2)C18—H18C0.9800
O2—C261.338 (2)C19—C201.394 (3)
N1—C161.328 (3)C19—C241.395 (3)
N1—C81.371 (2)C20—C211.393 (3)
N2—C331.329 (2)C20—H200.9500
N2—C251.369 (2)C21—C221.387 (3)
C1—H1A0.9800C21—H210.9500
C1—H1B0.9800C22—C231.397 (3)
C1—H1C0.9800C22—H220.9500
C2—C71.395 (3)C23—C241.389 (3)
C2—C31.395 (3)C23—H230.9500
C3—C41.392 (3)C24—H240.9500
C3—H30.9500C25—C301.410 (3)
C4—C51.390 (3)C25—C261.427 (3)
C4—H40.9500C26—C271.380 (3)
C5—C61.383 (3)C27—C281.411 (3)
C5—H50.9500C27—H270.9500
C6—C71.394 (3)C28—C291.374 (3)
C6—H60.9500C28—H280.9500
C7—H70.9500C29—C301.417 (3)
C8—C91.419 (3)C29—H290.9500
C8—C131.416 (3)C30—C311.416 (3)
C9—C101.380 (3)C31—C321.368 (3)
C10—C111.409 (3)C31—H310.9500
C10—H100.9500C32—C331.410 (3)
C11—C121.367 (3)C32—H320.9500
C11—H110.9500C33—C341.501 (3)
C12—C131.419 (3)C34—H34A0.9800
C12—H120.9500C34—H34B0.9800
C13—C141.409 (3)C34—H34C0.9800
O1—Sn1—C1108.71 (7)C15—C14—H14119.8
O1—Sn1—C2112.83 (6)C13—C14—H14119.8
C1—Sn1—C2137.69 (8)C14—C15—C16120.02 (18)
O1—Sn1—N175.16 (5)C14—C15—H15120.0
C1—Sn1—N191.64 (7)C16—C15—H15120.0
C2—Sn1—N191.31 (6)N1—C16—C15120.90 (18)
O1—Sn1—Cl185.61 (4)N1—C16—C17119.13 (18)
C1—Sn1—Cl195.99 (7)C15—C16—C17119.96 (18)
C2—Sn1—Cl194.87 (5)C16—C17—H17A109.5
N1—Sn1—Cl1160.71 (4)C16—C17—H17B109.5
O2—Sn2—C18112.03 (8)H17A—C17—H17B109.5
O2—Sn2—C19122.67 (7)C16—C17—H17C109.5
C18—Sn2—C19124.82 (8)H17A—C17—H17C109.5
O2—Sn2—N274.98 (5)H17B—C17—H17C109.5
C18—Sn2—N295.47 (7)Sn2—C18—H18A109.5
C19—Sn2—N291.97 (7)Sn2—C18—H18B109.5
O2—Sn2—Cl284.65 (4)H18A—C18—H18B109.5
C18—Sn2—Cl298.01 (6)Sn2—C18—H18C109.5
C19—Sn2—Cl293.80 (5)H18A—C18—H18C109.5
N2—Sn2—Cl2158.67 (4)H18B—C18—H18C109.5
C9—O1—Sn1119.74 (12)C20—C19—C24119.20 (18)
C26—O2—Sn2119.64 (11)C20—C19—Sn2116.76 (15)
C16—N1—C8119.70 (17)C24—C19—Sn2124.03 (14)
C16—N1—Sn1131.88 (13)C21—C20—C19120.5 (2)
C8—N1—Sn1108.34 (12)C21—C20—H20119.7
C33—N2—C25119.66 (17)C19—C20—H20119.7
C33—N2—Sn2130.84 (14)C22—C21—C20120.1 (2)
C25—N2—Sn2109.28 (12)C22—C21—H21119.9
Sn1—C1—H1A109.5C20—C21—H21119.9
Sn1—C1—H1B109.5C21—C22—C23119.53 (19)
H1A—C1—H1B109.5C21—C22—H22120.2
Sn1—C1—H1C109.5C23—C22—H22120.2
H1A—C1—H1C109.5C24—C23—C22120.4 (2)
H1B—C1—H1C109.5C24—C23—H23119.8
C7—C2—C3118.14 (17)C22—C23—H23119.8
C7—C2—Sn1119.86 (14)C23—C24—C19120.24 (19)
C3—C2—Sn1122.00 (13)C23—C24—H24119.9
C4—C3—C2121.18 (18)C19—C24—H24119.9
C4—C3—H3119.4N2—C25—C30122.83 (17)
C2—C3—H3119.4N2—C25—C26116.11 (17)
C5—C4—C3119.90 (19)C30—C25—C26121.05 (17)
C5—C4—H4120.1O2—C26—C27122.30 (17)
C3—C4—H4120.1O2—C26—C25119.32 (17)
C6—C5—C4119.67 (19)C27—C26—C25118.38 (17)
C6—C5—H5120.2C26—C27—C28120.38 (18)
C4—C5—H5120.2C26—C27—H27119.8
C5—C6—C7120.25 (19)C28—C27—H27119.8
C5—C6—H6119.9C29—C28—C27121.87 (18)
C7—C6—H6119.9C29—C28—H28119.1
C2—C7—C6120.86 (19)C27—C28—H28119.1
C2—C7—H7119.6C28—C29—C30119.20 (18)
C6—C7—H7119.6C28—C29—H29120.4
N1—C8—C9117.15 (17)C30—C29—H29120.4
N1—C8—C13122.24 (17)C25—C30—C29119.07 (18)
C9—C8—C13120.61 (17)C25—C30—C31116.50 (18)
O1—C9—C10121.69 (17)C29—C30—C31124.43 (19)
O1—C9—C8119.60 (17)C32—C31—C30119.56 (19)
C10—C9—C8118.71 (17)C32—C31—H31120.2
C9—C10—C11120.56 (18)C30—C31—H31120.2
C9—C10—H10119.7C31—C32—C33120.92 (19)
C11—C10—H10119.7C31—C32—H32119.5
C12—C11—C10121.57 (18)C33—C32—H32119.5
C12—C11—H11119.2N2—C33—C32120.46 (19)
C10—C11—H11119.2N2—C33—C34118.72 (18)
C11—C12—C13119.45 (18)C32—C33—C34120.82 (18)
C11—C12—H12120.3C33—C34—H34A109.5
C13—C12—H12120.3C33—C34—H34B109.5
C14—C13—C8116.55 (18)H34A—C34—H34B109.5
C14—C13—C12124.39 (18)C33—C34—H34C109.5
C8—C13—C12119.03 (18)H34A—C34—H34C109.5
C15—C14—C13120.41 (18)H34B—C34—H34C109.5
C1—Sn1—O1—C986.63 (15)C9—C8—C13—C122.8 (3)
C2—Sn1—O1—C985.08 (14)C11—C12—C13—C14177.05 (18)
N1—Sn1—O1—C90.01 (13)C11—C12—C13—C80.7 (3)
Cl1—Sn1—O1—C9178.52 (13)C8—C13—C14—C153.0 (3)
C18—Sn2—O2—C2696.62 (15)C12—C13—C14—C15179.17 (18)
C19—Sn2—O2—C2675.80 (15)C13—C14—C15—C160.6 (3)
N2—Sn2—O2—C266.74 (13)C8—N1—C16—C152.7 (3)
Cl2—Sn2—O2—C26166.89 (13)Sn1—N1—C16—C15173.62 (13)
O1—Sn1—N1—C16177.13 (18)C8—N1—C16—C17175.68 (17)
C1—Sn1—N1—C1673.95 (18)Sn1—N1—C16—C178.0 (3)
C2—Sn1—N1—C1663.84 (17)C14—C15—C16—N13.7 (3)
Cl1—Sn1—N1—C16172.62 (12)C14—C15—C16—C17174.72 (18)
O1—Sn1—N1—C80.49 (11)O2—Sn2—C19—C20129.96 (13)
C1—Sn1—N1—C8109.41 (13)C18—Sn2—C19—C2058.60 (17)
C2—Sn1—N1—C8112.81 (12)N2—Sn2—C19—C20156.66 (14)
Cl1—Sn1—N1—C84.0 (2)Cl2—Sn2—C19—C2043.89 (14)
O2—Sn2—N2—C33178.56 (19)O2—Sn2—C19—C2448.84 (17)
C18—Sn2—N2—C3367.19 (19)C18—Sn2—C19—C24122.60 (16)
C19—Sn2—N2—C3358.07 (18)N2—Sn2—C19—C2424.54 (16)
Cl2—Sn2—N2—C33163.77 (13)Cl2—Sn2—C19—C24134.91 (15)
O2—Sn2—N2—C256.99 (12)C24—C19—C20—C210.6 (3)
C18—Sn2—N2—C25118.37 (14)Sn2—C19—C20—C21179.43 (14)
C19—Sn2—N2—C25116.37 (13)C19—C20—C21—C221.7 (3)
Cl2—Sn2—N2—C2510.7 (2)C20—C21—C22—C231.1 (3)
O1—Sn1—C2—C7109.70 (15)C21—C22—C23—C240.6 (3)
C1—Sn1—C2—C782.00 (19)C22—C23—C24—C191.7 (3)
N1—Sn1—C2—C7175.87 (15)C20—C19—C24—C231.1 (3)
Cl1—Sn1—C2—C722.43 (15)Sn2—C19—C24—C23177.64 (14)
O1—Sn1—C2—C370.31 (16)C33—N2—C25—C303.0 (3)
C1—Sn1—C2—C397.99 (18)Sn2—N2—C25—C30172.16 (15)
N1—Sn1—C2—C34.12 (16)C33—N2—C25—C26178.34 (17)
Cl1—Sn1—C2—C3157.58 (15)Sn2—N2—C25—C266.5 (2)
C7—C2—C3—C40.2 (3)Sn2—O2—C26—C27173.01 (14)
Sn1—C2—C3—C4179.81 (15)Sn2—O2—C26—C255.7 (2)
C2—C3—C4—C50.2 (3)N2—C25—C26—O21.5 (3)
C3—C4—C5—C60.6 (3)C30—C25—C26—O2177.18 (17)
C4—C5—C6—C70.6 (3)N2—C25—C26—C27179.74 (17)
C3—C2—C7—C60.2 (3)C30—C25—C26—C271.6 (3)
Sn1—C2—C7—C6179.83 (15)O2—C26—C27—C28176.31 (18)
C5—C6—C7—C20.2 (3)C25—C26—C27—C282.4 (3)
C16—N1—C8—C9178.02 (17)C26—C27—C28—C291.1 (3)
Sn1—N1—C8—C90.90 (19)C27—C28—C29—C301.1 (3)
C16—N1—C8—C131.2 (3)N2—C25—C30—C29178.00 (18)
Sn1—N1—C8—C13178.32 (14)C26—C25—C30—C290.6 (3)
Sn1—O1—C9—C10178.73 (13)N2—C25—C30—C311.9 (3)
Sn1—O1—C9—C80.5 (2)C26—C25—C30—C31179.53 (18)
N1—C8—C9—O11.0 (3)C28—C29—C30—C251.9 (3)
C13—C8—C9—O1178.21 (16)C28—C29—C30—C31178.2 (2)
N1—C8—C9—C10178.27 (16)C25—C30—C31—C320.4 (3)
C13—C8—C9—C102.5 (3)C29—C30—C31—C32179.8 (2)
O1—C9—C10—C11179.46 (17)C30—C31—C32—C331.5 (3)
C8—C9—C10—C110.2 (3)C25—N2—C33—C321.8 (3)
C9—C10—C11—C121.9 (3)Sn2—N2—C33—C32172.16 (15)
C10—C11—C12—C131.6 (3)C25—N2—C33—C34178.06 (18)
N1—C8—C13—C144.0 (3)Sn2—N2—C33—C348.0 (3)
C9—C8—C13—C14175.16 (16)C31—C32—C33—N20.4 (3)
N1—C8—C13—C12178.03 (16)C31—C32—C33—C34179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.952.833.6898 (19)152
C22—H22···Cl2i0.952.763.705 (2)177
C10—H10···O1ii0.952.593.454 (2)152
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)(C6H5)(C10H8NO)Cl]
Mr404.45
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.9728 (4), 13.1046 (6), 14.0405 (6)
α, β, γ (°)106.621 (1), 92.764 (1), 95.256 (1)
V3)1570.52 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.35 × 0.35 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.572, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
15157, 7186, 6630
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.057, 1.09
No. of reflections7186
No. of parameters383
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.67

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.952.833.6898 (19)152
C22—H22···Cl2i0.952.763.705 (2)177
C10—H10···O1ii0.952.593.454 (2)152
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z.
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVafaee, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m964.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds