organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9,9′-(Bi­phenyl-2,2′-di­yl)difluoren-9-ol 4-methyl­pyridine solvate

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev Str. 83, Tashkent, 100125 Uzbekistan, bNational University of Uzbekistan, Faculty of Chemistry, Vuzgorodok, 174, Tashkent, 100174 Uzbekistan, and cInstitute für Organische Chemie,TU, Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: ashurovjamshid@ymail.com

(Received 17 May 2010; accepted 13 July 2010; online 21 July 2010)

The title compound, C38H26O2·C6H7N, crystallized as a host–guest complex from a solvent mixture of 4-methyl­pyridine and acetone. The dihedral angle between the rings in the biphenyl unit is 87.06 (3)°. The methyl­pyridine guest mol­ecules are linked to the host mol­ecules via O—H⋯ N hydrogen bonds, forming discrete pairs. The other OH group of the host forms an intra­molecular O—H⋯O hydrogen bond.

Related literature

For the synthesis of the host compound, see: Weber et al. (1993[Weber, E., Skobridis, K., Wierig, A., Stathi, S., Nassimbeni, L. R. & Niven, M. L. (1993). Angew. Chem. Int. Ed. Engl. 32, 606-608.]). For related structures, see: Barbour et al. (1993[Barbour, L. J., Bourne, S. A., Caira, M. R., Nassimbeni, L. R., Weber, E., Skobridis, E. K. & Wierig, A. (1993). Supramol. Chem. 1, 331-336.]); Ibragimov et al. (2001[Ibragimov, B. T., Beketov, K. M., Weber, E., Seidel, J., Sumarna, O., Makhkamov, K. K. & Kohnke, K. (2001). J. Phys. Org. Chem. 14, 697-703.]); Izotova et al. (2008[Izotova, L., Ashurov, J., Ibragimov, B. & Weber, E. (2008). Acta Cryst. E64, o1627.]); Sardone (1996[Sardone, N. (1996). Private communication (refcode NABNIN). CCDC, Union Road, Cambridge, England.]); Weber (1996[Weber, E. (1996). Shape and symmetry in the design of new hosts, in Comprehensive Supramolecular Chemistry, Vol. 6, Solid State Supramolecular Chemistry: Crystal Engineering, edited by D. D. MacNicol, E. Toda & R. Bishop. pp. 535-592. Oxford: Pergamon.]).

[Scheme 1]

Experimental

Crystal data
  • C38H26O2·C6H7N

  • Mr = 607.71

  • Monoclinic, P 21 /c

  • a = 15.801 (3) Å

  • b = 15.602 (3) Å

  • c = 14.136 (3) Å

  • β = 110.19 (3)°

  • V = 3270.8 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 293 K

  • 0.58 × 0.56 × 0.4 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction. (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.749, Tmax = 0.792

  • 46372 measured reflections

  • 6787 independent reflections

  • 5450 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.122

  • S = 1.06

  • 6787 reflections

  • 546 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.93 (2) 1.90 (2) 2.7943 (15) 161.7 (18)
O1—H1⋯N1 0.91 (2) 1.79 (2) 2.6913 (16) 168.7 (18)

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction. (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,2'-Bis(9-hydroxy-9-fluorenyl) biphenyl is a versatile host compound with the capacity to form inclusion compounds (host–guest complexes) with a variety of guest molecules (about 35 guests reported in the literature, Weber (1996)). In this study we report on the structure of the inclusion compound formed by the host compound with 4-metylpyridine. The host molecule possesses three degrees of freedom for changing its conformation - rotation around the central aryl-aryl single bond and two rotations around the aryl fluorenyl covalent bonds. However, due to the stabilizing effect of the intramolecular hydrogen bond between two hydroxyl groups of the molecule (O2—H···O1, Table 1) the host molecules exhibit a considerable conformational rigidity and are held in a rigid spiral conformation (Fig.1.). In the title compound the hydrogen atom of the second hydroxyl group O1—H points outwards to make a hydrogen bond towards the methylpyridine guest molecule - a structural feature observed in all previously studied structures of the host molecule with polar guests such as acetonitrile, cyclohexanone, n-propylamine (Barbour et al., 1993), acetone (Sardone, 1996; Ibragimov et al., 2001), or ethylacetate (Izotova et al.,2008). In the crystals of the title compound the host and guest molecules are connected through intermolecular hydrogen bonds [N···H=1.77 (2) (Å)] which assemble them into 0-dimensional host-guest assemblies. The packing of the assemblies is based on van der Waals interactions (Fig. 2).].

The dihedral angle between the planes of the phenyl rings of the host compound is 87.06 (3)°. The fluorenyl fragments of the host molecule are planar within 0.0382 Å (C1—C13) and 0.0165 Å (C26—C38), respectively. The largest deviations are 0.0695 Å for C13 and 0.0307 Å for C36. The dihedral angle between the planes is 73.73 (4)°.

Related literature top

For the synthesis of the host compound, see: Weber et al. (1993). For related structures, see: Barbour et al. (1993); Ibragimov et al. (2001); Izotova et al. (2008); Sardone (1996); Weber (1996).

Experimental top

2,2'-Bis(9-hydroxy-9-fluorenyl) biphenyl (host) was synthesized according to the procedure described by Weber et al. (1993). The air stable 4-methylpyridine solvated crystals were obtained by slow evaporation of the host compound from a mixture of acetone and 4-methylpyridine (1:1). The formation of acetone solvated crystals is not observed.

Refinement top

H atoms atoms of the methyl group of 4-methyl pyridine were positioned geometrically, with C—H = 0.96 Å and constrained to ride on their parent atom, with Uiso(H) = 1.5Ueq(C). The remaining H atoms were located in difference syntheses and refined isotropically [O—H = 0.91 (2) and 0.93 (2) Å].

Structure description top

2,2'-Bis(9-hydroxy-9-fluorenyl) biphenyl is a versatile host compound with the capacity to form inclusion compounds (host–guest complexes) with a variety of guest molecules (about 35 guests reported in the literature, Weber (1996)). In this study we report on the structure of the inclusion compound formed by the host compound with 4-metylpyridine. The host molecule possesses three degrees of freedom for changing its conformation - rotation around the central aryl-aryl single bond and two rotations around the aryl fluorenyl covalent bonds. However, due to the stabilizing effect of the intramolecular hydrogen bond between two hydroxyl groups of the molecule (O2—H···O1, Table 1) the host molecules exhibit a considerable conformational rigidity and are held in a rigid spiral conformation (Fig.1.). In the title compound the hydrogen atom of the second hydroxyl group O1—H points outwards to make a hydrogen bond towards the methylpyridine guest molecule - a structural feature observed in all previously studied structures of the host molecule with polar guests such as acetonitrile, cyclohexanone, n-propylamine (Barbour et al., 1993), acetone (Sardone, 1996; Ibragimov et al., 2001), or ethylacetate (Izotova et al.,2008). In the crystals of the title compound the host and guest molecules are connected through intermolecular hydrogen bonds [N···H=1.77 (2) (Å)] which assemble them into 0-dimensional host-guest assemblies. The packing of the assemblies is based on van der Waals interactions (Fig. 2).].

The dihedral angle between the planes of the phenyl rings of the host compound is 87.06 (3)°. The fluorenyl fragments of the host molecule are planar within 0.0382 Å (C1—C13) and 0.0165 Å (C26—C38), respectively. The largest deviations are 0.0695 Å for C13 and 0.0307 Å for C36. The dihedral angle between the planes is 73.73 (4)°.

For the synthesis of the host compound, see: Weber et al. (1993). For related structures, see: Barbour et al. (1993); Ibragimov et al. (2001); Izotova et al. (2008); Sardone (1996); Weber (1996).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title compound. Hydrogen bonds are indicated as dashed lines.
[Figure 2] Fig. 2. View of the molecular packing along the c axis. Hydrogen atoms omitted for clarity.
9,9'-(Biphenyl-2,2'-diyl)difluoren-9-ol 4-methylpyridine solvate top
Crystal data top
C38H26O2·C6H7NF(000) = 1280
Mr = 607.71Dx = 1.234 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 19833 reflections
a = 15.801 (3) Åθ = 4.1–75.8°
b = 15.602 (3) ŵ = 0.58 mm1
c = 14.136 (3) ÅT = 293 K
β = 110.19 (3)°Block, colourless
V = 3270.8 (11) Å30.58 × 0.56 × 0.4 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
6787 independent reflections
Radiation source: fine-focus sealed tube5450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.2576 pixels mm-1θmax = 75.8°, θmin = 4.1°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1819
Tmin = 0.749, Tmax = 0.792l = 1717
46372 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0748P)2 + 0.1854P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.011
6787 reflectionsΔρmax = 0.21 e Å3
546 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (2)
Crystal data top
C38H26O2·C6H7NV = 3270.8 (11) Å3
Mr = 607.71Z = 4
Monoclinic, P21/cCu Kα radiation
a = 15.801 (3) ŵ = 0.58 mm1
b = 15.602 (3) ÅT = 293 K
c = 14.136 (3) Å0.58 × 0.56 × 0.4 mm
β = 110.19 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
6787 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
5450 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.792Rint = 0.035
46372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.21 e Å3
6787 reflectionsΔρmin = 0.18 e Å3
546 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28630 (10)0.22388 (8)0.23144 (12)0.0762 (4)
C390.30568 (13)0.07376 (12)0.24668 (15)0.0794 (5)
C400.33566 (13)0.15436 (12)0.23830 (18)0.0865 (5)
C410.20339 (12)0.21306 (10)0.23211 (14)0.0705 (4)
C420.16876 (11)0.13410 (10)0.24206 (12)0.0666 (4)
C430.22017 (12)0.06195 (9)0.24911 (10)0.0632 (4)
C440.18342 (18)0.02567 (12)0.25497 (16)0.1027 (7)
H44C0.13050.02080.27330.154*
H44A0.22810.05900.30480.154*
H44B0.16810.05330.19060.154*
H390.3454 (15)0.0278 (14)0.2504 (16)0.102 (7)*
H400.3967 (17)0.1637 (15)0.2386 (18)0.111 (7)*
H410.1658 (13)0.2628 (13)0.2245 (14)0.086 (6)*
H420.1102 (14)0.1315 (12)0.2448 (15)0.088 (6)*
O10.33690 (6)0.38807 (6)0.22672 (7)0.0492 (2)
O20.29222 (6)0.55099 (7)0.27689 (7)0.0571 (2)
C10.42742 (8)0.33134 (7)0.12905 (10)0.0470 (3)
C20.37556 (10)0.29484 (9)0.03880 (11)0.0586 (3)
C30.41119 (13)0.22588 (10)0.00192 (13)0.0696 (4)
C40.49610 (13)0.19436 (9)0.05510 (14)0.0723 (4)
C50.54802 (11)0.23036 (9)0.14612 (14)0.0656 (4)
C60.51351 (9)0.29984 (8)0.18251 (10)0.0520 (3)
C70.55424 (8)0.35289 (8)0.27283 (11)0.0529 (3)
C80.63650 (10)0.34711 (11)0.35155 (14)0.0703 (4)
C90.65709 (11)0.40714 (13)0.42803 (14)0.0775 (5)
C100.59787 (11)0.47218 (11)0.42739 (13)0.0705 (4)
C110.51546 (10)0.47859 (10)0.34950 (11)0.0586 (3)
C120.49418 (8)0.41807 (8)0.27288 (9)0.0478 (3)
C130.40518 (7)0.40751 (7)0.18496 (9)0.0433 (3)
C140.37663 (8)0.48741 (7)0.11860 (9)0.0436 (2)
C150.44456 (10)0.53162 (9)0.09671 (12)0.0574 (3)
C160.42725 (11)0.60509 (10)0.03888 (13)0.0680 (4)
C170.34103 (12)0.63647 (10)0.00125 (13)0.0677 (4)
C180.27204 (10)0.59256 (9)0.01963 (11)0.0572 (3)
C190.28788 (8)0.51801 (7)0.07821 (8)0.0443 (3)
C200.20356 (7)0.47327 (7)0.07992 (8)0.0424 (2)
C210.16213 (9)0.42064 (9)0.00338 (9)0.0527 (3)
C220.08037 (9)0.38101 (9)0.01885 (10)0.0581 (3)
C230.03635 (9)0.39469 (9)0.04847 (10)0.0551 (3)
C240.07593 (8)0.44634 (8)0.13146 (9)0.0486 (3)
C250.15942 (7)0.48553 (7)0.14956 (8)0.0422 (2)
C260.19745 (8)0.53939 (8)0.24648 (9)0.0486 (3)
C270.15271 (9)0.62719 (9)0.23645 (11)0.0596 (3)
C280.15284 (12)0.69314 (10)0.17149 (15)0.0752 (4)
C290.10562 (16)0.76798 (12)0.1749 (2)0.1026 (7)
C300.06147 (16)0.77686 (16)0.2424 (3)0.1200 (10)
C310.06224 (13)0.71165 (17)0.3087 (2)0.1020 (8)
C320.10751 (9)0.63569 (12)0.30554 (13)0.0720 (5)
C330.11990 (9)0.55660 (13)0.36463 (11)0.0717 (5)
C340.09016 (13)0.5321 (2)0.44281 (16)0.1002 (8)
C350.11436 (15)0.4533 (3)0.48663 (15)0.1152 (10)
C360.16715 (14)0.3978 (2)0.45519 (14)0.0985 (7)
C370.19693 (11)0.42109 (14)0.37662 (11)0.0729 (4)
C380.17243 (8)0.49993 (10)0.33219 (10)0.0577 (3)
H10.3237 (12)0.3311 (13)0.2227 (14)0.081 (5)*
H20.3139 (13)0.4960 (13)0.2749 (15)0.085 (6)*
H2A0.3128 (11)0.3175 (10)0.0000 (12)0.065 (4)*
H30.3744 (13)0.1986 (12)0.0629 (15)0.084 (5)*
H40.5219 (13)0.1475 (12)0.0259 (14)0.081 (5)*
H50.6077 (13)0.2082 (11)0.1823 (13)0.077 (5)*
H80.6729 (12)0.3022 (12)0.3498 (13)0.074 (5)*
H90.7146 (15)0.4039 (12)0.4813 (16)0.089 (6)*
H100.6156 (13)0.5164 (12)0.4842 (15)0.082 (5)*
H110.4705 (12)0.5253 (11)0.3478 (13)0.071 (5)*
H150.5066 (12)0.5097 (10)0.1242 (12)0.066 (4)*
H160.4775 (13)0.6340 (12)0.0264 (15)0.086 (5)*
H170.3270 (12)0.6881 (12)0.0403 (14)0.077 (5)*
H180.2106 (12)0.6142 (10)0.0075 (13)0.068 (4)*
H210.1946 (11)0.4155 (10)0.0559 (12)0.067 (4)*
H220.0537 (12)0.3458 (11)0.0780 (14)0.074 (5)*
H230.0239 (12)0.3697 (10)0.0375 (12)0.068 (4)*
H240.0443 (10)0.4565 (10)0.1799 (12)0.061 (4)*
H280.1918 (13)0.6868 (12)0.1288 (14)0.084 (5)*
H290.1079 (17)0.8148 (17)0.1337 (19)0.117 (8)*
H300.0265 (19)0.8288 (19)0.249 (2)0.145 (10)*
H310.0313 (17)0.7197 (16)0.3573 (19)0.117 (8)*
H340.0531 (17)0.5695 (15)0.4681 (19)0.119 (8)*
H350.0927 (16)0.4365 (16)0.5376 (19)0.116 (7)*
H360.1851 (18)0.3430 (17)0.488 (2)0.125 (9)*
H370.2321 (14)0.3819 (12)0.3531 (14)0.083 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0829 (9)0.0576 (7)0.1004 (10)0.0149 (6)0.0472 (8)0.0029 (6)
C390.0788 (11)0.0619 (9)0.0957 (12)0.0086 (8)0.0279 (9)0.0065 (8)
C400.0700 (11)0.0746 (11)0.1267 (16)0.0055 (8)0.0491 (11)0.0080 (10)
C410.0745 (10)0.0558 (8)0.0872 (11)0.0020 (7)0.0356 (8)0.0012 (7)
C420.0636 (9)0.0695 (9)0.0730 (9)0.0106 (7)0.0316 (7)0.0043 (7)
C430.0851 (10)0.0523 (7)0.0506 (7)0.0121 (7)0.0213 (7)0.0021 (5)
C440.152 (2)0.0651 (11)0.0863 (13)0.0351 (12)0.0351 (13)0.0005 (9)
O10.0466 (4)0.0488 (5)0.0612 (5)0.0032 (3)0.0300 (4)0.0030 (4)
O20.0365 (4)0.0776 (6)0.0583 (5)0.0087 (4)0.0179 (4)0.0200 (4)
C10.0486 (6)0.0417 (6)0.0587 (7)0.0047 (5)0.0287 (5)0.0013 (5)
C20.0632 (8)0.0534 (7)0.0641 (8)0.0096 (6)0.0283 (7)0.0083 (6)
C30.0897 (11)0.0555 (8)0.0748 (10)0.0151 (7)0.0426 (9)0.0158 (7)
C40.0960 (12)0.0450 (7)0.0989 (12)0.0021 (7)0.0631 (10)0.0074 (7)
C50.0674 (9)0.0492 (7)0.0948 (11)0.0072 (6)0.0467 (8)0.0058 (7)
C60.0520 (7)0.0442 (6)0.0689 (8)0.0002 (5)0.0327 (6)0.0043 (5)
C70.0443 (6)0.0528 (7)0.0646 (7)0.0018 (5)0.0226 (6)0.0067 (5)
C80.0490 (7)0.0720 (10)0.0857 (11)0.0070 (7)0.0179 (7)0.0146 (8)
C90.0529 (8)0.0949 (12)0.0711 (10)0.0132 (8)0.0038 (7)0.0076 (9)
C100.0604 (9)0.0814 (10)0.0632 (9)0.0163 (8)0.0131 (7)0.0065 (7)
C110.0545 (7)0.0617 (8)0.0609 (8)0.0108 (6)0.0215 (6)0.0089 (6)
C120.0422 (6)0.0496 (6)0.0543 (7)0.0048 (5)0.0201 (5)0.0019 (5)
C130.0397 (5)0.0442 (6)0.0509 (6)0.0047 (4)0.0221 (5)0.0029 (4)
C140.0439 (6)0.0438 (6)0.0491 (6)0.0048 (4)0.0238 (5)0.0037 (4)
C150.0505 (7)0.0581 (7)0.0732 (8)0.0066 (6)0.0336 (7)0.0025 (6)
C160.0701 (9)0.0628 (8)0.0861 (10)0.0128 (7)0.0463 (8)0.0092 (7)
C170.0797 (10)0.0557 (8)0.0779 (10)0.0004 (7)0.0401 (8)0.0165 (7)
C180.0587 (8)0.0564 (7)0.0606 (7)0.0034 (6)0.0259 (6)0.0079 (6)
C190.0470 (6)0.0468 (6)0.0443 (6)0.0040 (5)0.0224 (5)0.0027 (4)
C200.0390 (5)0.0466 (6)0.0417 (5)0.0002 (4)0.0140 (4)0.0006 (4)
C210.0520 (7)0.0630 (7)0.0434 (6)0.0029 (6)0.0168 (5)0.0053 (5)
C220.0552 (7)0.0622 (8)0.0497 (7)0.0098 (6)0.0088 (6)0.0111 (6)
C230.0429 (6)0.0607 (7)0.0562 (7)0.0123 (5)0.0100 (5)0.0006 (6)
C240.0400 (6)0.0573 (7)0.0493 (6)0.0049 (5)0.0164 (5)0.0005 (5)
C250.0375 (5)0.0457 (6)0.0433 (6)0.0014 (4)0.0140 (4)0.0015 (4)
C260.0366 (5)0.0616 (7)0.0503 (6)0.0067 (5)0.0182 (5)0.0129 (5)
C270.0420 (6)0.0619 (8)0.0728 (9)0.0088 (5)0.0174 (6)0.0258 (7)
C280.0680 (9)0.0530 (8)0.1008 (12)0.0131 (7)0.0244 (9)0.0193 (8)
C290.0922 (14)0.0532 (10)0.149 (2)0.0084 (9)0.0251 (14)0.0250 (12)
C300.0833 (14)0.0724 (14)0.198 (3)0.0004 (11)0.0401 (16)0.0593 (17)
C310.0645 (10)0.1012 (16)0.146 (2)0.0073 (10)0.0435 (12)0.0675 (15)
C320.0436 (7)0.0881 (11)0.0850 (10)0.0084 (7)0.0233 (7)0.0417 (9)
C330.0408 (6)0.1188 (14)0.0589 (8)0.0129 (7)0.0216 (6)0.0340 (8)
C340.0558 (9)0.189 (3)0.0647 (11)0.0137 (12)0.0324 (8)0.0342 (14)
C350.0709 (12)0.229 (3)0.0525 (10)0.0207 (16)0.0295 (9)0.0039 (15)
C360.0721 (11)0.162 (2)0.0577 (10)0.0131 (13)0.0174 (8)0.0232 (12)
C370.0598 (8)0.1069 (13)0.0501 (7)0.0048 (9)0.0163 (7)0.0044 (8)
C380.0412 (6)0.0888 (10)0.0435 (6)0.0095 (6)0.0152 (5)0.0142 (6)
Geometric parameters (Å, º) top
N1—C401.320 (2)C15—C161.379 (2)
N1—C411.324 (2)C15—H150.984 (17)
C39—C401.363 (3)C16—C171.371 (2)
C39—C431.376 (3)C16—H160.98 (2)
C39—H390.94 (2)C17—C181.386 (2)
C40—H400.97 (2)C17—H170.976 (18)
C41—C421.375 (2)C18—C191.3994 (18)
C41—H410.96 (2)C18—H180.973 (18)
C42—C431.372 (2)C19—C201.5117 (15)
C42—H420.94 (2)C20—C211.3991 (17)
C43—C441.499 (2)C20—C251.4022 (16)
C44—H44C0.9600C21—C221.3799 (19)
C44—H44A0.9600C21—H211.041 (17)
C44—H44B0.9600C22—C231.376 (2)
O1—C131.4298 (13)C22—H220.967 (18)
O1—H10.91 (2)C23—C241.3820 (18)
O2—C261.4197 (14)C23—H230.990 (17)
O2—H20.93 (2)C24—C251.3952 (16)
C1—C21.3790 (19)C24—H240.991 (16)
C1—C61.3976 (18)C25—C261.5414 (16)
C1—C131.5338 (16)C26—C271.5256 (19)
C2—C31.396 (2)C26—C381.5278 (18)
C2—H2A1.016 (16)C27—C281.380 (2)
C3—C41.382 (3)C27—C321.401 (2)
C3—H30.995 (19)C28—C291.395 (3)
C4—C51.384 (3)C28—H281.01 (2)
C4—H40.994 (19)C29—C301.370 (4)
C5—C61.3895 (19)C29—H290.94 (3)
C5—H50.969 (18)C30—C311.380 (4)
C6—C71.470 (2)C30—H301.00 (3)
C7—C121.3910 (18)C31—C321.393 (3)
C7—C81.392 (2)C31—H310.98 (3)
C8—C91.382 (3)C32—C331.465 (3)
C8—H80.912 (18)C33—C381.394 (2)
C9—C101.378 (3)C33—C341.395 (3)
C9—H90.96 (2)C34—C351.369 (4)
C10—C111.389 (2)C34—H340.98 (3)
C10—H101.022 (19)C35—C361.379 (4)
C11—C121.3879 (19)C35—H350.94 (3)
C11—H111.013 (17)C36—C371.396 (2)
C12—C131.5306 (18)C36—H360.97 (3)
C13—C141.5313 (16)C37—C381.375 (2)
C14—C151.3976 (16)C37—H370.96 (2)
C14—C191.4028 (17)
C40—N1—C41117.11 (14)C17—C16—C15119.61 (13)
C40—C39—C43119.96 (16)C17—C16—H16121.6 (11)
C40—C39—H39117.5 (13)C15—C16—H16118.8 (11)
C43—C39—H39122.6 (13)C16—C17—C18119.44 (13)
N1—C40—C39123.38 (17)C16—C17—H17121.1 (11)
N1—C40—H40115.8 (14)C18—C17—H17119.4 (11)
C39—C40—H40120.8 (14)C17—C18—C19122.03 (14)
N1—C41—C42123.00 (16)C17—C18—H18119.8 (10)
N1—C41—H41118.2 (12)C19—C18—H18118.2 (10)
C42—C41—H41118.8 (12)C18—C19—C14118.24 (11)
C43—C42—C41119.75 (15)C18—C19—C20114.50 (11)
C43—C42—H42121.9 (12)C14—C19—C20126.81 (10)
C41—C42—H42118.4 (12)C21—C20—C25117.99 (10)
C42—C43—C39116.77 (14)C21—C20—C19114.61 (10)
C42—C43—C44121.44 (17)C25—C20—C19127.09 (10)
C39—C43—C44121.75 (17)C22—C21—C20122.47 (12)
C43—C44—H44C109.5C22—C21—H21121.2 (9)
C43—C44—H44A109.5C20—C21—H21116.3 (9)
H44C—C44—H44A109.5C23—C22—C21119.35 (12)
C43—C44—H44B109.5C23—C22—H22120.9 (10)
H44C—C44—H44B109.5C21—C22—H22119.7 (11)
H44A—C44—H44B109.5C22—C23—C24119.28 (12)
C13—O1—H1111.7 (12)C22—C23—H23121.3 (10)
C26—O2—H2103.6 (12)C24—C23—H23119.4 (10)
C2—C1—C6120.77 (12)C23—C24—C25122.23 (12)
C2—C1—C13128.91 (12)C23—C24—H24119.5 (9)
C6—C1—C13110.32 (11)C25—C24—H24118.3 (9)
C1—C2—C3118.44 (15)C24—C25—C20118.66 (10)
C1—C2—H2A120.9 (9)C24—C25—C26117.11 (10)
C3—C2—H2A120.7 (9)C20—C25—C26124.23 (10)
C4—C3—C2120.79 (15)O2—C26—C27108.68 (10)
C4—C3—H3119.8 (11)O2—C26—C38110.24 (10)
C2—C3—H3119.4 (11)C27—C26—C38101.36 (11)
C3—C4—C5120.92 (14)O2—C26—C25112.68 (9)
C3—C4—H4119.7 (11)C27—C26—C25112.39 (10)
C5—C4—H4119.2 (11)C38—C26—C25110.92 (10)
C4—C5—C6118.58 (15)C28—C27—C32120.77 (15)
C4—C5—H5120.2 (11)C28—C27—C26128.64 (14)
C6—C5—H5121.2 (11)C32—C27—C26110.59 (14)
C5—C6—C1120.48 (14)C27—C28—C29118.5 (2)
C5—C6—C7130.59 (13)C27—C28—H28117.9 (11)
C1—C6—C7108.91 (11)C29—C28—H28123.3 (11)
C12—C7—C8119.73 (14)C30—C29—C28121.0 (3)
C12—C7—C6108.53 (11)C30—C29—H29119.3 (16)
C8—C7—C6131.74 (14)C28—C29—H29119.5 (17)
C9—C8—C7118.96 (16)C29—C30—C31120.7 (2)
C9—C8—H8124.2 (11)C29—C30—H30125.0 (18)
C7—C8—H8116.8 (11)C31—C30—H30114.2 (18)
C10—C9—C8121.20 (15)C30—C31—C32119.3 (2)
C10—C9—H9120.1 (12)C30—C31—H31119.5 (15)
C8—C9—H9118.7 (12)C32—C31—H31121.2 (15)
C9—C10—C11120.46 (15)C31—C32—C27119.6 (2)
C9—C10—H10119.4 (11)C31—C32—C33131.87 (19)
C11—C10—H10120.1 (11)C27—C32—C33108.53 (13)
C12—C11—C10118.56 (14)C38—C33—C34119.2 (2)
C12—C11—H11119.5 (10)C38—C33—C32108.91 (13)
C10—C11—H11122.0 (10)C34—C33—C32131.87 (19)
C11—C12—C7121.08 (12)C35—C34—C33119.1 (2)
C11—C12—C13127.88 (12)C35—C34—H34118.7 (15)
C7—C12—C13110.90 (11)C33—C34—H34122.2 (15)
O1—C13—C14108.72 (9)C34—C35—C36121.6 (2)
O1—C13—C12107.48 (9)C34—C35—H35118.8 (16)
C14—C13—C12113.81 (9)C36—C35—H35119.6 (16)
O1—C13—C1112.84 (9)C35—C36—C37120.0 (2)
C14—C13—C1112.74 (9)C35—C36—H36120.9 (17)
C12—C13—C1101.07 (9)C37—C36—H36119.1 (17)
C15—C14—C19118.57 (11)C38—C37—C36118.5 (2)
C15—C14—C13116.81 (11)C38—C37—H37121.2 (12)
C19—C14—C13124.62 (10)C36—C37—H37120.2 (12)
C16—C15—C14122.08 (14)C37—C38—C33121.53 (15)
C16—C15—H15119.4 (9)C37—C38—C26127.86 (13)
C14—C15—H15118.5 (10)C33—C38—C26110.60 (14)
C41—N1—C40—C390.5 (3)C15—C14—C19—C20170.49 (11)
C43—C39—C40—N10.5 (3)C13—C14—C19—C208.82 (18)
C40—N1—C41—C421.7 (3)C18—C19—C20—C2181.73 (14)
N1—C41—C42—C431.8 (3)C14—C19—C20—C2190.39 (15)
C41—C42—C43—C390.6 (2)C18—C19—C20—C2591.68 (15)
C41—C42—C43—C44176.98 (16)C14—C19—C20—C2596.20 (15)
C40—C39—C43—C420.4 (3)C25—C20—C21—C220.01 (19)
C40—C39—C43—C44178.04 (19)C19—C20—C21—C22174.06 (12)
C6—C1—C2—C30.20 (19)C20—C21—C22—C231.4 (2)
C13—C1—C2—C3179.11 (12)C21—C22—C23—C241.4 (2)
C1—C2—C3—C40.6 (2)C22—C23—C24—C250.1 (2)
C2—C3—C4—C50.1 (2)C23—C24—C25—C201.29 (18)
C3—C4—C5—C60.9 (2)C23—C24—C25—C26178.23 (12)
C4—C5—C6—C11.31 (19)C21—C20—C25—C241.31 (17)
C4—C5—C6—C7176.71 (13)C19—C20—C25—C24171.90 (11)
C2—C1—C6—C50.77 (18)C21—C20—C25—C26178.17 (11)
C13—C1—C6—C5179.79 (11)C19—C20—C25—C268.61 (18)
C2—C1—C6—C7177.64 (11)C24—C25—C26—O2159.13 (11)
C13—C1—C6—C71.79 (13)C20—C25—C26—O220.36 (17)
C5—C6—C7—C12176.47 (13)C24—C25—C26—C2777.67 (14)
C1—C6—C7—C121.72 (14)C20—C25—C26—C27102.84 (13)
C5—C6—C7—C84.2 (2)C24—C25—C26—C3835.00 (15)
C1—C6—C7—C8177.62 (15)C20—C25—C26—C38144.49 (11)
C12—C7—C8—C90.6 (2)O2—C26—C27—C2862.88 (17)
C6—C7—C8—C9179.85 (14)C38—C26—C27—C28179.01 (14)
C7—C8—C9—C100.1 (3)C25—C26—C27—C2862.53 (17)
C8—C9—C10—C110.3 (3)O2—C26—C27—C32116.98 (12)
C9—C10—C11—C120.2 (2)C38—C26—C27—C320.86 (13)
C10—C11—C12—C70.9 (2)C25—C26—C27—C32117.61 (12)
C10—C11—C12—C13174.32 (13)C32—C27—C28—C291.1 (2)
C8—C7—C12—C111.06 (19)C26—C27—C28—C29179.03 (14)
C6—C7—C12—C11179.51 (11)C27—C28—C29—C301.3 (3)
C8—C7—C12—C13174.87 (12)C28—C29—C30—C310.3 (3)
C6—C7—C12—C134.57 (13)C29—C30—C31—C320.9 (3)
C11—C12—C13—O162.44 (15)C30—C31—C32—C271.0 (3)
C7—C12—C13—O1113.13 (11)C30—C31—C32—C33179.83 (18)
C11—C12—C13—C1458.00 (16)C28—C27—C32—C310.0 (2)
C7—C12—C13—C14126.43 (11)C26—C27—C32—C31179.84 (13)
C11—C12—C13—C1179.12 (12)C28—C27—C32—C33179.35 (13)
C7—C12—C13—C15.31 (12)C26—C27—C32—C330.52 (15)
C2—C1—C13—O170.32 (16)C31—C32—C33—C38179.12 (16)
C6—C1—C13—O1110.30 (11)C27—C32—C33—C380.08 (16)
C2—C1—C13—C1453.32 (16)C31—C32—C33—C340.1 (3)
C6—C1—C13—C14126.06 (11)C27—C32—C33—C34179.33 (16)
C2—C1—C13—C12175.19 (12)C38—C33—C34—C350.9 (3)
C6—C1—C13—C124.19 (12)C32—C33—C34—C35178.31 (17)
O1—C13—C14—C15160.77 (11)C33—C34—C35—C360.2 (3)
C12—C13—C14—C1541.03 (15)C34—C35—C36—C370.3 (3)
C1—C13—C14—C1573.33 (14)C35—C36—C37—C380.0 (3)
O1—C13—C14—C1919.91 (15)C36—C37—C38—C330.7 (2)
C12—C13—C14—C19139.65 (11)C36—C37—C38—C26179.36 (14)
C1—C13—C14—C19105.99 (13)C34—C33—C38—C371.2 (2)
C19—C14—C15—C161.5 (2)C32—C33—C38—C37178.19 (13)
C13—C14—C15—C16179.09 (13)C34—C33—C38—C26179.98 (13)
C14—C15—C16—C170.0 (2)C32—C33—C38—C260.66 (15)
C15—C16—C17—C181.7 (3)O2—C26—C38—C3762.87 (17)
C16—C17—C18—C191.9 (2)C27—C26—C38—C37177.84 (14)
C17—C18—C19—C140.3 (2)C25—C26—C38—C3762.64 (17)
C17—C18—C19—C20173.15 (13)O2—C26—C38—C33115.88 (12)
C15—C14—C19—C181.37 (17)C27—C26—C38—C330.91 (13)
C13—C14—C19—C18179.32 (11)C25—C26—C38—C33118.61 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.93 (2)1.90 (2)2.7943 (15)161.7 (18)
O1—H1···N10.91 (2)1.79 (2)2.6913 (16)168.7 (18)

Experimental details

Crystal data
Chemical formulaC38H26O2·C6H7N
Mr607.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.801 (3), 15.602 (3), 14.136 (3)
β (°) 110.19 (3)
V3)3270.8 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.58 × 0.56 × 0.4
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.749, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
46372, 6787, 5450
Rint0.035
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.06
No. of reflections6787
No. of parameters546
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.93 (2)1.90 (2)2.7943 (15)161.7 (18)
O1—H1···N10.91 (2)1.79 (2)2.6913 (16)168.7 (18)
 

Acknowledgements

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. FA–F3–T-141).

References

First citationBarbour, L. J., Bourne, S. A., Caira, M. R., Nassimbeni, L. R., Weber, E., Skobridis, E. K. & Wierig, A. (1993). Supramol. Chem. 1, 331–336.  CAS Google Scholar
First citationIbragimov, B. T., Beketov, K. M., Weber, E., Seidel, J., Sumarna, O., Makhkamov, K. K. & Kohnke, K. (2001). J. Phys. Org. Chem. 14, 697–703.  Web of Science CSD CrossRef CAS Google Scholar
First citationIzotova, L., Ashurov, J., Ibragimov, B. & Weber, E. (2008). Acta Cryst. E64, o1627.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction. (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSardone, N. (1996). Private communication (refcode NABNIN). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWeber, E. (1996). Shape and symmetry in the design of new hosts, in Comprehensive Supramolecular Chemistry, Vol. 6, Solid State Supramolecular Chemistry: Crystal Engineering, edited by D. D. MacNicol, E. Toda & R. Bishop. pp. 535–592. Oxford: Pergamon.  Google Scholar
First citationWeber, E., Skobridis, K., Wierig, A., Stathi, S., Nassimbeni, L. R. & Niven, M. L. (1993). Angew. Chem. Int. Ed. Engl. 32, 606–608.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds