metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Adipato-bis­­[chlorido(2,2′:6′,2′′-terpyridine)­copper(II)] tetra­hydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: xiehongzhen@nbu.edu.cn

(Received 24 June 2010; accepted 8 July 2010; online 14 July 2010)

In the title compound, [Cu2(C6H8O4)Cl2(C15H11N3)2]·4H2O, the dinuclear copper complex is located on a crystallographic inversion centre. Each Cu atom is in a distorted square-pyramidal coordination environment, with one O atom of an adipate dianion and three N atoms from the 2,2′:6′,2′′-terpyridine ligand occupying the basal plane, and one chlorine in the apical site. In addition, there is weak Cu—O inter­action opposite of the chlorine with a distance of 2.768 (1) Å. The adipate ligand adopts a gauche–anti–gauche conformation. The inter­stitial water mol­ecules form hydrogen-bonded tertramers that are connected to the complexes via O—H⋯O and O—H⋯Cl hydrogen bonds, thus leading to the formation of tightly hydrogen-bonded layers extending perpendicular to the b-axis direction.

Related literature

For general background to the use of saturated aliphatic dicarboxyl­ate ligands as flexible spacer ligands, see: Forster & Cheetham (2002[Forster, P. M. & Cheetham, A. K. (2002). Angew. Chem. Int. Ed. 41, 457-459.]); Vaidhyanathan et al. (2002[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). Inorg. Chem. 41, 5226-5234.]); Zheng, Lin et al. (2008[Zheng, Y.-Q., Cheng, D.-Y., Lin, J.-L., Li, Z.-F. & Wang, X.-W. (2008). Eur. J. Inorg. Chem. pp. 4453-4461.]). For related structures, see: Zheng, Cheng et al. (2008[Zheng, Y.-Q., Cheng, D.-Y., Lin, J.-L., Li, Z.-F. & Wang, X.-W. (2008). Eur. J. Inorg. Chem. pp. 4453-4461.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C6H8O4)Cl2(C15H11N3)2]·4H2O

  • Mr = 880.70

  • Triclinic, [P \overline 1]

  • a = 8.2334 (16) Å

  • b = 9.5678 (19) Å

  • c = 11.548 (2) Å

  • α = 83.42 (3)°

  • β = 81.69 (3)°

  • γ = 84.38 (3)°

  • V = 891.2 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 298 K

  • 0.25 × 0.22 × 0.07 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.680, Tmax = 0.892

  • 8834 measured reflections

  • 4046 independent reflections

  • 3751 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.080

  • S = 1.25

  • 4046 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3C⋯O4i 0.87 1.94 2.767 (2) 160
O3—H3D⋯O1 0.77 2.08 2.829 (2) 163
O4—H4C⋯Cl 0.93 2.32 3.194 (2) 156
O4—H4D⋯O3ii 0.88 2.02 2.805 (2) 148
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Different from the more rigid dicarboxylate spacer ligands, saturated aliphatic dicarboxylate ligands are conformationally more flexible with a larger coordination versatility and as such they are viewed as important flexible spacer ligands (Forster & Cheetham, 2002; Vaidhyanathan et al., 2002; Zheng, Lin et al., 2008). Among these, the adipate dianion has often been used as a bridging ligand to construct dinuclear complexes (Zheng, Cheng et al., 2008). In our recent research, we have been interested in the polydentate N-donor 2,2':6',2''-terpyridine which we have used together with bridging dicarboxylate ligands to construct polynuclear complexes. We report herein the synthesis and crystal structure of a new complex, [Cu2(C15H11N3)2(C6H8O4)Cl2].4H2O.

In the centrosymmetric dinuclear copper complex, two [Cu2(C15H11N3)2(C6H8O4)Cl2] moieties are bridged by an adipate ligand with a Cu···Cu separation in the dimer of 9.715 (2) Å (Fig. 1). The adipate ligand adopts a gauche-anti-gauche conformation. Each Cu atom is in a distorted square pyramidal coordination environment, with one O atom of an adipate dianion and three N atoms from the 2,2':6',2''-terpyridine ligand occupying the basal plane, and one chlorine in the apical site. In addition, there is a weak Cu-O interaction opposite of the chlorine with a distance of 2.768 (1) Å.

The interstitial water molecules are interacting with the metal complexes via hydrogen bonding interactions (Table 1). There are three kinds of hydrogen bonds: From one of the lattice water molecule to the coordinated oxygen atom of the carboxylate group, from the other water molecule towards a chlorine atom of one of the ligands, and between the water molecules themselves, which are arranged as tetramers in planar squares. In this way each of the water tetramers ties together four different complexes via H bonds to each two chlorines and two carboxylate oxygen atoms. The complexes in turn are hydrogen bonded to four of the water tetramers, thus leading to the formation of hydrogen bonded layers that extend perpendicular to the b-direction of the unit cell. (Fig.2).

Related literature top

For general background to the use of saturated aliphatic dicarboxylate ligands as flexible spacer ligands, see: Forster & Cheetham (2002); Vaidhyanathan et al. (2002); Zheng, Lin et al. (2008). For related structures, see: Zheng, Cheng et al. (2008).

Experimental top

Dropwise addition of 1 M aqueous Na2CO3 (3.0 ml) to a stirred aqueous solution of CuCl2.6H2O (0.1215 g, 0.50 mmol) in H2O (5.0 ml) produced a blue CuCO3 precipitate, which was centrifuged and washed with water until no Cl- was detected in the supernatant. The resulting solid was added to a solution of adipic acid (0.0731, 0.50 mmol) and 2,2':6',2''-terpyridine (0.1166 g, 0.50 mmol) in 20 ml mixed solvent of H2O and CH3OH (v:v = 1:1). The mixture was stirred for half an hour and filtered, and the dark green filtrate (pH = 5.01) was left standing at room temperature. Green plate-like crystals were obtained several days later (Yield: ca. 23% based on Cu).

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions and refined using a riding moldel with C–H = 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C). H atoms of water were found in difference Fourier syntheses and fixed as initially found.

Structure description top

Different from the more rigid dicarboxylate spacer ligands, saturated aliphatic dicarboxylate ligands are conformationally more flexible with a larger coordination versatility and as such they are viewed as important flexible spacer ligands (Forster & Cheetham, 2002; Vaidhyanathan et al., 2002; Zheng, Lin et al., 2008). Among these, the adipate dianion has often been used as a bridging ligand to construct dinuclear complexes (Zheng, Cheng et al., 2008). In our recent research, we have been interested in the polydentate N-donor 2,2':6',2''-terpyridine which we have used together with bridging dicarboxylate ligands to construct polynuclear complexes. We report herein the synthesis and crystal structure of a new complex, [Cu2(C15H11N3)2(C6H8O4)Cl2].4H2O.

In the centrosymmetric dinuclear copper complex, two [Cu2(C15H11N3)2(C6H8O4)Cl2] moieties are bridged by an adipate ligand with a Cu···Cu separation in the dimer of 9.715 (2) Å (Fig. 1). The adipate ligand adopts a gauche-anti-gauche conformation. Each Cu atom is in a distorted square pyramidal coordination environment, with one O atom of an adipate dianion and three N atoms from the 2,2':6',2''-terpyridine ligand occupying the basal plane, and one chlorine in the apical site. In addition, there is a weak Cu-O interaction opposite of the chlorine with a distance of 2.768 (1) Å.

The interstitial water molecules are interacting with the metal complexes via hydrogen bonding interactions (Table 1). There are three kinds of hydrogen bonds: From one of the lattice water molecule to the coordinated oxygen atom of the carboxylate group, from the other water molecule towards a chlorine atom of one of the ligands, and between the water molecules themselves, which are arranged as tetramers in planar squares. In this way each of the water tetramers ties together four different complexes via H bonds to each two chlorines and two carboxylate oxygen atoms. The complexes in turn are hydrogen bonded to four of the water tetramers, thus leading to the formation of hydrogen bonded layers that extend perpendicular to the b-direction of the unit cell. (Fig.2).

For general background to the use of saturated aliphatic dicarboxylate ligands as flexible spacer ligands, see: Forster & Cheetham (2002); Vaidhyanathan et al. (2002); Zheng, Lin et al. (2008). For related structures, see: Zheng, Cheng et al. (2008).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of complex molecule of the title compound. Displacement ellipsoids are drawn at the 45% probability level (i = -x + 1, -y + 1, -z + 1). H atoms and lattice water molecules are omitted for clarity.
[Figure 2] Fig. 2. The hydrogen bonded layer perpendicular to the b-direction in the title compound. H atoms were omitted for clarity and dashed lines symbolize hydrogen bonds.
µ-Adipato-bis[chlorido(2,2':6',2''-terpyridine)copper(II)] tetrahydrate top
Crystal data top
[Cu2(C6H8O4)Cl2(C15H11N3)2]·4H2OZ = 1
Mr = 880.70F(000) = 452
Triclinic, P1Dx = 1.641 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2334 (16) ÅCell parameters from 7883 reflections
b = 9.5678 (19) Åθ = 3.0–27.4°
c = 11.548 (2) ŵ = 1.41 mm1
α = 83.42 (3)°T = 298 K
β = 81.69 (3)°Plate, green
γ = 84.38 (3)°0.25 × 0.22 × 0.07 mm
V = 891.2 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4046 independent reflections
Radiation source: fine-focus sealed tube3751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.680, Tmax = 0.892l = 1414
8834 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.4176P]
where P = (Fo2 + 2Fc2)/3
4046 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu2(C6H8O4)Cl2(C15H11N3)2]·4H2Oγ = 84.38 (3)°
Mr = 880.70V = 891.2 (3) Å3
Triclinic, P1Z = 1
a = 8.2334 (16) ÅMo Kα radiation
b = 9.5678 (19) ŵ = 1.41 mm1
c = 11.548 (2) ÅT = 298 K
α = 83.42 (3)°0.25 × 0.22 × 0.07 mm
β = 81.69 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4046 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3751 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.892Rint = 0.016
8834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.25Δρmax = 0.48 e Å3
4046 reflectionsΔρmin = 0.51 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.13815 (3)0.79530 (2)0.258347 (18)0.00798 (8)
Cl0.00080 (5)0.61527 (4)0.17386 (4)0.01293 (10)
O10.31683 (16)0.65682 (13)0.29993 (11)0.0110 (3)
O20.41422 (18)0.84454 (14)0.35396 (12)0.0158 (3)
O30.40877 (18)0.42538 (14)0.16550 (12)0.0173 (3)
H3C0.50940.44580.14310.021*
H3D0.37840.47600.21320.021*
O40.30631 (19)0.54262 (18)0.05804 (13)0.0244 (3)
H4C0.20000.54780.07490.029*
H4D0.29940.56370.01830.029*
N10.00477 (19)0.78588 (16)0.41703 (13)0.0093 (3)
N20.01050 (18)0.97845 (15)0.24509 (13)0.0089 (3)
N30.24603 (19)0.88021 (16)0.10055 (13)0.0097 (3)
C10.0037 (2)0.67745 (19)0.50071 (16)0.0121 (3)
H1A0.07530.60200.49020.014*
C20.1158 (2)0.6730 (2)0.60277 (16)0.0139 (4)
H2A0.11200.59620.65980.017*
C30.2338 (2)0.7858 (2)0.61759 (16)0.0151 (4)
H3A0.31150.78510.68460.018*
C40.2350 (2)0.90009 (19)0.53138 (16)0.0131 (4)
H4A0.31230.97710.54040.016*
C50.1188 (2)0.89694 (18)0.43166 (16)0.0098 (3)
C60.1046 (2)1.01126 (19)0.33414 (16)0.0104 (3)
C70.1938 (2)1.14257 (19)0.33008 (16)0.0128 (4)
H7A0.27521.16550.39120.015*
C80.1577 (2)1.23842 (19)0.23184 (17)0.0138 (4)
H8A0.21571.32690.22720.017*
C90.0360 (2)1.20397 (19)0.14023 (16)0.0126 (4)
H9A0.01121.26830.07480.015*
C100.0474 (2)1.06991 (18)0.14981 (16)0.0100 (3)
C110.1807 (2)1.01092 (18)0.06390 (15)0.0093 (3)
C120.2341 (2)1.07967 (19)0.04513 (16)0.0122 (3)
H12A0.18761.16910.06870.015*
C130.3592 (2)1.0118 (2)0.11900 (16)0.0134 (4)
H13A0.39831.05570.19240.016*
C140.4240 (2)0.8782 (2)0.08133 (16)0.0137 (4)
H14A0.50650.83080.12960.016*
C150.3649 (2)0.81548 (19)0.02906 (16)0.0117 (3)
H15A0.40920.72580.05410.014*
C160.4287 (2)0.71750 (18)0.33897 (15)0.0095 (3)
C170.5825 (2)0.62512 (19)0.36324 (16)0.0121 (3)
H17A0.64980.67740.40250.015*
H17B0.64560.60310.28900.015*
C180.5460 (2)0.48718 (19)0.43937 (15)0.0117 (4)
H18A0.48040.43380.39970.014*
H18C0.64890.43110.44870.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.00828 (12)0.00753 (11)0.00710 (12)0.00144 (7)0.00039 (8)0.00098 (8)
Cl0.0137 (2)0.0122 (2)0.0137 (2)0.00219 (15)0.00496 (16)0.00018 (16)
O10.0104 (6)0.0105 (6)0.0121 (6)0.0011 (5)0.0030 (5)0.0010 (5)
O20.0188 (7)0.0106 (6)0.0179 (7)0.0001 (5)0.0016 (5)0.0031 (5)
O30.0191 (7)0.0159 (6)0.0161 (7)0.0004 (5)0.0020 (5)0.0052 (5)
O40.0184 (8)0.0409 (9)0.0157 (7)0.0097 (7)0.0021 (6)0.0040 (7)
N10.0105 (7)0.0089 (7)0.0086 (7)0.0010 (5)0.0017 (5)0.0008 (6)
N20.0092 (7)0.0083 (7)0.0092 (7)0.0006 (5)0.0026 (6)0.0001 (6)
N30.0098 (7)0.0105 (7)0.0090 (7)0.0011 (5)0.0020 (5)0.0001 (6)
C10.0117 (8)0.0115 (8)0.0133 (8)0.0008 (6)0.0034 (7)0.0004 (7)
C20.0171 (9)0.0145 (8)0.0108 (8)0.0047 (7)0.0037 (7)0.0015 (7)
C30.0174 (9)0.0176 (9)0.0100 (8)0.0050 (7)0.0025 (7)0.0024 (7)
C40.0139 (9)0.0123 (8)0.0129 (8)0.0017 (7)0.0008 (7)0.0028 (7)
C50.0109 (8)0.0086 (8)0.0106 (8)0.0011 (6)0.0027 (6)0.0019 (7)
C60.0099 (8)0.0116 (8)0.0105 (8)0.0010 (6)0.0026 (6)0.0031 (7)
C70.0117 (9)0.0128 (8)0.0142 (9)0.0018 (7)0.0026 (7)0.0045 (7)
C80.0147 (9)0.0093 (8)0.0177 (9)0.0020 (6)0.0055 (7)0.0016 (7)
C90.0152 (9)0.0102 (8)0.0130 (8)0.0022 (7)0.0048 (7)0.0017 (7)
C100.0102 (8)0.0104 (8)0.0100 (8)0.0017 (6)0.0035 (6)0.0003 (7)
C110.0093 (8)0.0089 (8)0.0102 (8)0.0020 (6)0.0038 (6)0.0011 (7)
C120.0133 (9)0.0125 (8)0.0116 (8)0.0034 (7)0.0035 (7)0.0002 (7)
C130.0140 (9)0.0177 (9)0.0092 (8)0.0068 (7)0.0013 (7)0.0003 (7)
C140.0117 (9)0.0182 (9)0.0114 (8)0.0030 (7)0.0013 (7)0.0049 (7)
C150.0121 (9)0.0109 (8)0.0117 (8)0.0004 (6)0.0021 (7)0.0002 (7)
C160.0120 (8)0.0100 (8)0.0053 (7)0.0016 (6)0.0016 (6)0.0018 (6)
C170.0100 (8)0.0144 (8)0.0116 (8)0.0003 (6)0.0020 (6)0.0002 (7)
C180.0119 (8)0.0122 (8)0.0109 (8)0.0036 (6)0.0044 (7)0.0012 (7)
Geometric parameters (Å, º) top
Cu—N21.9552 (16)C5—C61.478 (3)
Cu—O11.9562 (14)C6—C71.391 (2)
Cu—N32.0257 (17)C7—C81.391 (3)
Cu—N12.0274 (16)C7—H7A0.9300
Cu—Cl2.5067 (8)C8—C91.393 (3)
O1—C161.294 (2)C8—H8A0.9300
O2—C161.239 (2)C9—C101.395 (2)
O3—H3C0.8658C9—H9A0.9300
O3—H3D0.7734C10—C111.483 (2)
O4—H4C0.9308C11—C121.385 (3)
O4—H4D0.8764C12—C131.397 (3)
N1—C11.335 (2)C12—H12A0.9300
N1—C51.356 (2)C13—C141.383 (3)
N2—C61.337 (2)C13—H13A0.9300
N2—C101.343 (2)C14—C151.387 (3)
N3—C151.337 (2)C14—H14A0.9300
N3—C111.358 (2)C15—H15A0.9300
C1—C21.387 (3)C16—C171.513 (3)
C1—H1A0.9300C17—C181.530 (3)
C2—C31.389 (3)C17—H17A0.9700
C2—H2A0.9300C17—H17B0.9700
C3—C41.392 (3)C18—C18i1.527 (3)
C3—H3A0.9300C18—H18A0.9700
C4—C51.388 (3)C18—H18C0.9700
C4—H4A0.9300
N2—Cu—O1157.68 (6)C8—C7—H7A121.0
N2—Cu—N379.61 (7)C6—C7—H7A121.0
O1—Cu—N399.40 (6)C7—C8—C9121.01 (17)
N2—Cu—N179.49 (7)C7—C8—H8A119.5
O1—Cu—N198.23 (6)C9—C8—H8A119.5
N3—Cu—N1158.62 (6)C8—C9—C10117.87 (17)
N2—Cu—Cl110.17 (5)C8—C9—H9A121.1
O1—Cu—Cl92.15 (4)C10—C9—H9A121.1
N3—Cu—Cl94.79 (5)N2—C10—C9120.32 (17)
N1—Cu—Cl96.54 (5)N2—C10—C11112.50 (15)
C16—O1—Cu110.59 (11)C9—C10—C11127.18 (17)
H3C—O3—H3D102.7N3—C11—C12122.00 (16)
H4C—O4—H4D104.5N3—C11—C10113.92 (15)
C1—N1—C5119.25 (16)C12—C11—C10124.06 (16)
C1—N1—Cu125.82 (13)C11—C12—C13118.57 (17)
C5—N1—Cu114.70 (12)C11—C12—H12A120.7
C6—N2—C10122.21 (15)C13—C12—H12A120.7
C6—N2—Cu118.81 (12)C14—C13—C12119.01 (17)
C10—N2—Cu118.88 (12)C14—C13—H13A120.5
C15—N3—C11119.08 (16)C12—C13—H13A120.5
C15—N3—Cu125.77 (12)C13—C14—C15119.40 (17)
C11—N3—Cu114.98 (12)C13—C14—H14A120.3
N1—C1—C2122.57 (17)C15—C14—H14A120.3
N1—C1—H1A118.7N3—C15—C14121.92 (17)
C2—C1—H1A118.7N3—C15—H15A119.0
C1—C2—C3118.37 (18)C14—C15—H15A119.0
C1—C2—H2A120.8O2—C16—O1122.70 (17)
C3—C2—H2A120.8O2—C16—C17121.07 (17)
C2—C3—C4119.53 (18)O1—C16—C17116.22 (15)
C2—C3—H3A120.2C16—C17—C18113.19 (15)
C4—C3—H3A120.2C16—C17—H17A108.9
C5—C4—C3118.75 (17)C18—C17—H17A108.9
C5—C4—H4A120.6C16—C17—H17B108.9
C3—C4—H4A120.6C18—C17—H17B108.9
N1—C5—C4121.52 (17)H17A—C17—H17B107.8
N1—C5—C6113.96 (16)C18i—C18—C17112.17 (18)
C4—C5—C6124.51 (16)C18i—C18—H18A109.2
N2—C6—C7120.59 (17)C17—C18—H18A109.2
N2—C6—C5112.72 (15)C18i—C18—H18C109.2
C7—C6—C5126.68 (17)C17—C18—H18C109.2
C8—C7—C6117.98 (17)H18A—C18—H18C107.9
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O4ii0.871.942.767 (2)160
O3—H3D···O10.772.082.829 (2)163
O4—H4C···Cl0.932.323.194 (2)156
O4—H4D···O3iii0.882.022.805 (2)148
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C6H8O4)Cl2(C15H11N3)2]·4H2O
Mr880.70
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.2334 (16), 9.5678 (19), 11.548 (2)
α, β, γ (°)83.42 (3), 81.69 (3), 84.38 (3)
V3)891.2 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.25 × 0.22 × 0.07
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.680, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
8834, 4046, 3751
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.080, 1.25
No. of reflections4046
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.51

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O4i0.871.942.767 (2)160
O3—H3D···O10.772.082.829 (2)163
O4—H4C···Cl0.932.323.194 (2)156
O4—H4D···O3ii0.882.022.805 (2)148
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

This project was sponsored by the K. C. Wong Fund of Ningbo University and a Ningbo Municipal Natural Science Foundation grant (No. 2010A610160).

References

First citationForster, P. M. & Cheetham, A. K. (2002). Angew. Chem. Int. Ed. 41, 457–459.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). Inorg. Chem. 41, 5226–5234.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZheng, Y.-Q., Cheng, D.-Y., Lin, J.-L., Li, Z.-F. & Wang, X.-W. (2008). Eur. J. Inorg. Chem. pp. 4453–4461.  Web of Science CSD CrossRef Google Scholar
First citationZheng, Y.-Q., Lin, J.-L., Xu, W., Xie, H.-Z., Sun, J. & Wang, X.-W. (2008). Inorg. Chem. 47, 10280–10287.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds