organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-3-(4-fluoro­phenyl­sulfon­yl)-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 28 June 2010; accepted 29 June 2010; online 3 July 2010)

In the title compound, C15H10F2O3S, the 4-fluoro­phenyl ring makes a dihedral angle of 73.20 (4)° with the plane of the benzofuran fragment. The crystal structure is stabilized by aromatic ππ inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.805 (3) Å]. The crystal structure also exhibits weak inter­molecular C—H⋯O and C—H⋯F inter­actions.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the structures of related 5-halo-2-methyl-3-phenyl­sulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o930.],c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008c). Acta Cryst. E64, o1190.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10F2O3S

  • Mr = 308.29

  • Triclinic, [P \overline 1]

  • a = 7.2799 (9) Å

  • b = 9.5161 (12) Å

  • c = 10.1052 (13) Å

  • α = 89.844 (2)°

  • β = 75.057 (2)°

  • γ = 74.558 (2)°

  • V = 650.32 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.674, Tmax = 0.746

  • 5657 measured reflections

  • 2797 independent reflections

  • 2404 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.10

  • 2797 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2i 0.93 2.45 3.247 (2) 144
C14—H14⋯F2ii 0.93 2.53 3.441 (2) 168
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compounds containing a benzofuran skeleton show diverse pharmacological properties such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), and antimicrobial (Khan et al., 2005) activities. These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 5-halo-2-methyl-3-phenylsulfonyl-1-benzofuran analogues (Choi et al., 2008a,b,c), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 73.20 (4)°. The crystal packing (Fig. 2) is stabilized by aromatic ππ interactions between the furan and the benzene rings of neighbouring molecules, with a Cg1···Cg2iii distance of 3.805 (3) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively). The molecular packing (Fig. 2) is further stabilized by a weak intermolecular C—H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the OSO unit (C11—H11···O2i, see Table 1 for symmetry operator and numerical values). The crystal packing (Fig. 2) also exhibits C—H···F hydrogen bonds between the 4-fluorophenyl H atom and the fluorine of 4-fluorophenyl ring (C14—H14···F2ii, Table 1).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 5-halo-2-methyl-3-phenylsulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a,b,c).

Experimental top

77% 3-chloroperoxybenzoic acid (381 mg, 1.7 mmol) was added in small portions to a stirred solution of 5-fluoro-3-(4-fluorophenylsulfanyl)-2-methyl-1-benzofuran (221 mg, 0.8 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colorless solid [yield 76%, m.p. 426–427 K; Rf = 0.49 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Structure description top

Compounds containing a benzofuran skeleton show diverse pharmacological properties such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), and antimicrobial (Khan et al., 2005) activities. These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 5-halo-2-methyl-3-phenylsulfonyl-1-benzofuran analogues (Choi et al., 2008a,b,c), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 73.20 (4)°. The crystal packing (Fig. 2) is stabilized by aromatic ππ interactions between the furan and the benzene rings of neighbouring molecules, with a Cg1···Cg2iii distance of 3.805 (3) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively). The molecular packing (Fig. 2) is further stabilized by a weak intermolecular C—H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the OSO unit (C11—H11···O2i, see Table 1 for symmetry operator and numerical values). The crystal packing (Fig. 2) also exhibits C—H···F hydrogen bonds between the 4-fluorophenyl H atom and the fluorine of 4-fluorophenyl ring (C14—H14···F2ii, Table 1).

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 5-halo-2-methyl-3-phenylsulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a,b,c).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. ππ, C—H···O, and C—H···F interactions (dotted lines) in the crystal structure of the title compound. Cg1 and Cg2 denote the ring centroids. [Symmetry codes: (i) - x + 1, - y, - z + 1; (ii) - x, - y, - z; (iii) - x, - y + 1, -z + 1.]
5-Fluoro-3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofuran top
Crystal data top
C15H10F2O3SZ = 2
Mr = 308.29F(000) = 316
Triclinic, P1Dx = 1.574 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2799 (9) ÅCell parameters from 3365 reflections
b = 9.5161 (12) Åθ = 2.9–27.5°
c = 10.1052 (13) ŵ = 0.28 mm1
α = 89.844 (2)°T = 173 K
β = 75.057 (2)°Block, colourless
γ = 74.558 (2)°0.40 × 0.40 × 0.30 mm
V = 650.32 (14) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2797 independent reflections
Radiation source: rotating anode2404 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.017
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.1°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.674, Tmax = 0.746l = 1212
5657 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.092H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.2972P]
where P = (Fo2 + 2Fc2)/3
2797 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H10F2O3Sγ = 74.558 (2)°
Mr = 308.29V = 650.32 (14) Å3
Triclinic, P1Z = 2
a = 7.2799 (9) ÅMo Kα radiation
b = 9.5161 (12) ŵ = 0.28 mm1
c = 10.1052 (13) ÅT = 173 K
α = 89.844 (2)°0.40 × 0.40 × 0.30 mm
β = 75.057 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2797 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2404 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.746Rint = 0.017
5657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.10Δρmax = 0.25 e Å3
2797 reflectionsΔρmin = 0.39 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.53634 (6)0.20772 (5)0.28012 (4)0.02732 (13)
F10.23174 (19)0.31294 (13)0.87101 (11)0.0452 (3)
F20.00277 (18)0.11034 (13)0.17822 (13)0.0504 (3)
O10.20792 (17)0.60640 (12)0.41364 (12)0.0278 (3)
O20.63798 (19)0.12784 (14)0.37331 (13)0.0368 (3)
O30.64674 (18)0.23753 (14)0.14903 (13)0.0370 (3)
C10.3867 (2)0.37201 (17)0.36913 (16)0.0241 (3)
C20.3083 (2)0.39702 (17)0.51670 (16)0.0237 (3)
C30.3194 (3)0.31470 (19)0.63059 (17)0.0282 (4)
H30.38830.21620.62170.034*
C40.2220 (3)0.3886 (2)0.75675 (17)0.0313 (4)
C50.1178 (3)0.5354 (2)0.77703 (18)0.0315 (4)
H50.05690.57870.86540.038*
C60.1057 (2)0.61649 (19)0.66459 (18)0.0295 (4)
H60.03700.71510.67420.035*
C70.2007 (2)0.54383 (17)0.53726 (17)0.0240 (3)
C80.3217 (2)0.50019 (18)0.31296 (17)0.0262 (3)
C90.3471 (3)0.5460 (2)0.17131 (18)0.0368 (4)
H9A0.41970.46290.10770.055*
H9B0.41850.61870.15880.055*
H9C0.21970.58610.15520.055*
C100.3712 (2)0.11336 (17)0.25046 (17)0.0255 (3)
C110.2913 (3)0.03091 (18)0.35213 (18)0.0318 (4)
H110.32310.02660.43570.038*
C120.1637 (3)0.04468 (19)0.3270 (2)0.0365 (4)
H120.10940.10120.39290.044*
C130.1192 (3)0.03435 (19)0.2028 (2)0.0353 (4)
C140.1938 (3)0.0481 (2)0.10132 (19)0.0349 (4)
H140.15890.05350.01880.042*
C150.3225 (3)0.12286 (19)0.12576 (17)0.0299 (4)
H150.37600.17910.05910.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0230 (2)0.0282 (2)0.0273 (2)0.00234 (16)0.00558 (16)0.00427 (16)
F10.0603 (8)0.0539 (7)0.0261 (5)0.0203 (6)0.0153 (5)0.0133 (5)
F20.0482 (7)0.0426 (7)0.0666 (8)0.0219 (6)0.0165 (6)0.0066 (6)
O10.0291 (6)0.0244 (6)0.0282 (6)0.0056 (5)0.0066 (5)0.0038 (5)
O20.0312 (7)0.0346 (7)0.0412 (7)0.0030 (5)0.0159 (6)0.0035 (6)
O30.0317 (7)0.0438 (8)0.0311 (7)0.0125 (6)0.0014 (5)0.0081 (6)
C10.0227 (8)0.0255 (8)0.0235 (8)0.0062 (6)0.0058 (6)0.0006 (6)
C20.0209 (7)0.0253 (8)0.0257 (8)0.0071 (6)0.0070 (6)0.0002 (6)
C30.0299 (9)0.0266 (8)0.0287 (9)0.0060 (7)0.0107 (7)0.0035 (7)
C40.0338 (9)0.0404 (10)0.0242 (8)0.0162 (8)0.0095 (7)0.0077 (7)
C50.0289 (9)0.0405 (10)0.0240 (8)0.0122 (7)0.0020 (7)0.0047 (7)
C60.0245 (8)0.0281 (9)0.0328 (9)0.0057 (7)0.0037 (7)0.0049 (7)
C70.0217 (8)0.0250 (8)0.0260 (8)0.0078 (6)0.0061 (6)0.0028 (6)
C80.0246 (8)0.0291 (8)0.0256 (8)0.0091 (6)0.0060 (6)0.0017 (6)
C90.0422 (11)0.0401 (10)0.0287 (9)0.0124 (8)0.0097 (8)0.0092 (8)
C100.0240 (8)0.0216 (8)0.0271 (8)0.0009 (6)0.0058 (6)0.0023 (6)
C110.0357 (9)0.0254 (8)0.0322 (9)0.0031 (7)0.0112 (8)0.0030 (7)
C120.0412 (11)0.0247 (9)0.0415 (10)0.0093 (8)0.0072 (8)0.0063 (7)
C130.0318 (9)0.0254 (9)0.0478 (11)0.0068 (7)0.0101 (8)0.0070 (8)
C140.0346 (10)0.0381 (10)0.0314 (9)0.0072 (8)0.0106 (8)0.0053 (8)
C150.0302 (9)0.0302 (9)0.0259 (8)0.0055 (7)0.0045 (7)0.0008 (7)
Geometric parameters (Å, º) top
S—O31.4323 (13)C6—C71.380 (2)
S—O21.4381 (13)C6—H60.9300
S—C11.7422 (16)C8—C91.475 (2)
S—C101.7618 (17)C9—H9A0.9600
F1—C41.3665 (19)C9—H9B0.9600
F2—C131.352 (2)C9—H9C0.9600
O1—C81.367 (2)C10—C151.391 (2)
O1—C71.3771 (19)C10—C111.393 (2)
C1—C81.364 (2)C11—C121.387 (3)
C1—C21.448 (2)C11—H110.9300
C2—C71.394 (2)C12—C131.372 (3)
C2—C31.398 (2)C12—H120.9300
C3—C41.377 (2)C13—C141.378 (3)
C3—H30.9300C14—C151.385 (2)
C4—C51.388 (3)C14—H140.9300
C5—C61.380 (2)C15—H150.9300
C5—H50.9300
O3—S—O2119.98 (8)C1—C8—O1110.39 (14)
O3—S—C1109.12 (8)C1—C8—C9134.23 (16)
O2—S—C1106.45 (8)O1—C8—C9115.37 (15)
O3—S—C10107.42 (8)C8—C9—H9A109.5
O2—S—C10107.79 (8)C8—C9—H9B109.5
C1—S—C10105.15 (7)H9A—C9—H9B109.5
C8—O1—C7107.03 (12)C8—C9—H9C109.5
C8—C1—C2107.54 (14)H9A—C9—H9C109.5
C8—C1—S126.42 (13)H9B—C9—H9C109.5
C2—C1—S126.04 (12)C15—C10—C11121.13 (16)
C7—C2—C3119.16 (15)C15—C10—S119.32 (13)
C7—C2—C1104.38 (14)C11—C10—S119.55 (13)
C3—C2—C1136.45 (15)C12—C11—C10119.08 (17)
C4—C3—C2115.79 (16)C12—C11—H11120.5
C4—C3—H3122.1C10—C11—H11120.5
C2—C3—H3122.1C13—C12—C11118.63 (17)
F1—C4—C3117.75 (16)C13—C12—H12120.7
F1—C4—C5117.29 (16)C11—C12—H12120.7
C3—C4—C5124.94 (16)F2—C13—C12118.23 (17)
C6—C5—C4119.29 (16)F2—C13—C14118.35 (17)
C6—C5—H5120.4C12—C13—C14123.42 (17)
C4—C5—H5120.4C13—C14—C15118.08 (17)
C7—C6—C5116.58 (16)C13—C14—H14121.0
C7—C6—H6121.7C15—C14—H14121.0
C5—C6—H6121.7C14—C15—C10119.64 (17)
O1—C7—C6125.09 (15)C14—C15—H15120.2
O1—C7—C2110.65 (14)C10—C15—H15120.2
C6—C7—C2124.23 (16)
O3—S—C1—C823.50 (17)C1—C2—C7—C6177.47 (15)
O2—S—C1—C8154.33 (15)C2—C1—C8—O10.33 (18)
C10—S—C1—C891.47 (16)S—C1—C8—O1179.79 (11)
O3—S—C1—C2156.64 (14)C2—C1—C8—C9179.30 (18)
O2—S—C1—C225.81 (16)S—C1—C8—C90.6 (3)
C10—S—C1—C288.39 (15)C7—O1—C8—C10.06 (18)
C8—C1—C2—C70.58 (18)C7—O1—C8—C9179.77 (14)
S—C1—C2—C7179.54 (12)O3—S—C10—C1520.43 (15)
C8—C1—C2—C3179.31 (18)O2—S—C10—C15151.02 (13)
S—C1—C2—C30.8 (3)C1—S—C10—C1595.72 (14)
C7—C2—C3—C40.7 (2)O3—S—C10—C11159.71 (13)
C1—C2—C3—C4177.87 (17)O2—S—C10—C1129.12 (15)
C2—C3—C4—F1178.93 (14)C1—S—C10—C1184.14 (14)
C2—C3—C4—C50.4 (3)C15—C10—C11—C121.1 (2)
F1—C4—C5—C6179.38 (15)S—C10—C11—C12179.07 (13)
C3—C4—C5—C60.9 (3)C10—C11—C12—C130.6 (3)
C4—C5—C6—C70.1 (2)C11—C12—C13—F2178.91 (15)
C8—O1—C7—C6177.63 (15)C11—C12—C13—C140.4 (3)
C8—O1—C7—C20.46 (17)F2—C13—C14—C15178.45 (15)
C5—C6—C7—O1178.90 (15)C12—C13—C14—C150.8 (3)
C5—C6—C7—C21.1 (3)C13—C14—C15—C100.3 (3)
C3—C2—C7—O1179.63 (14)C11—C10—C15—C140.6 (2)
C1—C2—C7—O10.64 (17)S—C10—C15—C14179.53 (13)
C3—C2—C7—C61.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.932.453.247 (2)144
C14—H14···F2ii0.932.533.441 (2)168
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC15H10F2O3S
Mr308.29
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.2799 (9), 9.5161 (12), 10.1052 (13)
α, β, γ (°)89.844 (2), 75.057 (2), 74.558 (2)
V3)650.32 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.674, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
5657, 2797, 2404
Rint0.017
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.10
No. of reflections2797
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.932.453.247 (2)143.7
C14—H14···F2ii0.932.533.441 (2)168.0
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o930.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008c). Acta Cryst. E64, o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds