organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Benzyl­oxycoumarin

aDepartment of Materials Science and Technology, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: koketsu@gifu-u.ac.jp

(Received 1 July 2010; accepted 23 July 2010; online 31 July 2010)

In the title compound, 6-benz­yloxy-2H-1-benzopyran-2-one, C16H12O3, the coumarin unit and benzyl plane in the mol­ecule are perpendicular to each other [86.92 (7)°]. The crystal packing is stabilized by ππ stacking inter­actions, with an inter­planar separation between inversion-related coumarin units of 3.618 (3) Å. The crystal structure shows inter­molecular C—H⋯O hydrogen bonding between neighboring mol­ecules.

Related literature

For general background to coumarin, see: Adfa et al. (2010[Adfa, M., Yoshimura, T., Komura, K. & Koketsu, M. (2010). J. Chem. Ecol. 36, 720-726.]); Gunnewegh et al. (1995[Gunnewegh, E. A., Hoefnagel, A. J. & van Bekkum, H. (1995). J. Mol. Catal. A Chem. 100, 87-92.]); Li et al. (1998[Li, T.-S., Zhang, Z.-H., Yang, F. & Fu, C.-G. (1998). J. Chem. Res. (S), pp. 38-39.]); Murray et al. (1982[Murray, R. D. H., Mendez, J. & Brown, S. A. (1982). The Natural Coumarins (Occurrence, Chemistry and Biochemistry). New York: John Wiley & Sons.]); Schönberg & Latif (1954[Schönberg, A. & Latif, N. (1954). J. Am. Chem. Soc. 76, 6208-6210.]). For related compounds, see: Chinnakali et al. (1998[Chinnakali, K., Fun, H.-K., Sriraghavan, K. & Ramakrishnan, V. T. (1998). Acta Cryst. C54, 542-544.]); Jasinski et al. (2003[Jasinski, J. P., Jasinski, J. M., Li, Y. & Crosby, D. J. (2003). Acta Cryst. E59, o153-o154.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O3

  • Mr = 252.26

  • Monoclinic, C 2/c

  • a = 20.391 (12) Å

  • b = 6.732 (4) Å

  • c = 18.844 (11) Å

  • β = 94.833 (8)°

  • V = 2578 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Rigaku AFC7R Mercury CCD diffractometer

  • 10197 measured reflections

  • 2912 independent reflections

  • 2070 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.190

  • S = 1.20

  • 2912 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.62 3.472 (3) 153
C3—H3⋯O2ii 0.93 2.58 3.461 (3) 159
C5—H5⋯O1ii 0.93 2.59 3.501 (3) 168
C8—H8⋯O3iii 0.93 2.54 3.460 (3) 170
C16—H16⋯O2iv 0.93 2.56 3.421 (3) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (ii) x, y+1, z; (iii) x, y-1, z; (iv) -x, -y, -z.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: Yadokari-XG 2009 (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG 2009 and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Coumarin and its derivatives have been found to exhibit various biological and pharmacological activities, such as molluscicidal (Schönberg and Latif, 1954), termiticidal (Adfa et al., 2010), rodenticidal, anthelmintic, antibacterial, antioxidant, anti-inflammatory, and anti-cancer, and they have been used as anticoagulant agents and fluorescent brighteners (Murray et al., 1982; Gunnewegh et al., 1995; Li et al., 1998). The title compound is one of the derivatives of coumarin. In order to investigate the structure activity relationship (SAR) of the compound for biological activities, it is essential to determine the configuration of 6-benzyloxycoumarin.

The molecular structure of the title compound is illustrated in Fig. 1. The coumarin moiety and benzyl planes (r.m.s deviations 0.039 and 0.017 Å) in the molecule are perpendicular to each other with a dihedral angle between the plane of the atoms O1–O3, C1–C9 and that of C10–C15 of 86.92 (7)°. The structure shows intermolecular C—H···O hydrogen bonding between four neighboring molecules (Table 1 and Fig. 2): C3···O2i, C5···O1i and C8i···O3 [symmetry code (i) x, 1 + y, z]; C3ii···O2, C5ii···O1 and C8···O3ii [symmetry code (ii) x, -1 + y, z]; C2···O2iii and C2iii···O2 [symmetry code (iii) 1/2 - x, -1/2 - y, -z]; C16···O2iv and C16iv···O2 [symmetry code (iv) -x, -y, -z]. There also exist ππ stacking interactions between the coumarin moieties with an interplanar separation of 3.618 (3) Å (based on all atoms but the phenyl ring C atoms, symmetry operator for the second molecule iv). Similar structural features are also observed in other coumarin derivatives (Chinnakali et al., 1998; Jasinski et al., 2003).

Related literature top

For general background to coumarin, see: Adfa et al. (2010); Gunnewegh et al. (1995); Li et al. (1998); Murray et al. (1982); Schönberg & Latif (1954). For related compounds, see: Chinnakali et al. (1998); Jasinski et al. (2003).

Experimental top

A mixture of 6-hydroxycoumarin (30 mg, 0.19 mmol), benzyl bromide (43.8 cm3, 0.37 mmol), and potassium carbonate (51 mg, 0.37 mmol) in DMF (5.0 cm3) was stirred at 353 K for 1.5 h. The reaction mixture was extracted with ethyl acetate and washed with water. The organic layer was dried over sodium sulfate and evaporated to dryness. The residue was purified by column chromatography on silica gel with n-hexane/ethyl acetate (7:3) to give the title compound (40.3 mg, 86.4%) as colourless crystals, m.p. 385 K. 1H-NMR (600 MHz, CDCl3): δ 5.10 (2H, s, CH2), 6.42 (1H, d, J = 9.6 Hz), 6.99 (1H, d, J = 2.8 Hz), 7.18 (1H, dd, J = 8.9 and 2.8 Hz), 7.26 (1H, d, J = 8.9 Hz), 7.34–7.44 (5H, m, Ar), 7.63 (1H, d, J = 9.6 Hz); 13C-NMR (150 MHz, CDCl3): δ 70.8, 111.5, 117.2, 118.1, 119.3, 120.3, 127.6, 128.4, 128.8, 136.4, 143.3, 148.7, 155.3, 161.1. Single crystals of 6-benzyloxycoumarin were grown by recrystallization from a solution in chloroform-hexane (10:3).

Refinement top

C-bound H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) for the H atoms.

Structure description top

Coumarin and its derivatives have been found to exhibit various biological and pharmacological activities, such as molluscicidal (Schönberg and Latif, 1954), termiticidal (Adfa et al., 2010), rodenticidal, anthelmintic, antibacterial, antioxidant, anti-inflammatory, and anti-cancer, and they have been used as anticoagulant agents and fluorescent brighteners (Murray et al., 1982; Gunnewegh et al., 1995; Li et al., 1998). The title compound is one of the derivatives of coumarin. In order to investigate the structure activity relationship (SAR) of the compound for biological activities, it is essential to determine the configuration of 6-benzyloxycoumarin.

The molecular structure of the title compound is illustrated in Fig. 1. The coumarin moiety and benzyl planes (r.m.s deviations 0.039 and 0.017 Å) in the molecule are perpendicular to each other with a dihedral angle between the plane of the atoms O1–O3, C1–C9 and that of C10–C15 of 86.92 (7)°. The structure shows intermolecular C—H···O hydrogen bonding between four neighboring molecules (Table 1 and Fig. 2): C3···O2i, C5···O1i and C8i···O3 [symmetry code (i) x, 1 + y, z]; C3ii···O2, C5ii···O1 and C8···O3ii [symmetry code (ii) x, -1 + y, z]; C2···O2iii and C2iii···O2 [symmetry code (iii) 1/2 - x, -1/2 - y, -z]; C16···O2iv and C16iv···O2 [symmetry code (iv) -x, -y, -z]. There also exist ππ stacking interactions between the coumarin moieties with an interplanar separation of 3.618 (3) Å (based on all atoms but the phenyl ring C atoms, symmetry operator for the second molecule iv). Similar structural features are also observed in other coumarin derivatives (Chinnakali et al., 1998; Jasinski et al., 2003).

For general background to coumarin, see: Adfa et al. (2010); Gunnewegh et al. (1995); Li et al. (1998); Murray et al. (1982); Schönberg & Latif (1954). For related compounds, see: Chinnakali et al. (1998); Jasinski et al. (2003).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-numbering scheme of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed perpendicular to the coumarin plane. The C—H···O hydrogen bonding interactions between the neighboring molecules are shown as dashed lines.
6-Benzyloxy-2H-1-benzopyran-2-one top
Crystal data top
C16H12O3F(000) = 1056
Mr = 252.26Dx = 1.300 Mg m3
Monoclinic, C2/cMelting point: 385 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71070 Å
a = 20.391 (12) ÅCell parameters from 2417 reflections
b = 6.732 (4) Åθ = 3.1–27.5°
c = 18.844 (11) ŵ = 0.09 mm1
β = 94.833 (8)°T = 296 K
V = 2578 (3) Å3Prism, colourless
Z = 80.30 × 0.10 × 0.10 mm
Data collection top
Rigaku AFC7R Mercury CCD
diffractometer
2070 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.039
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 14.6199 pixels mm-1h = 2326
dtintegrate.ref scansk = 78
10197 measured reflectionsl = 2424
2912 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.4589P]
where P = (Fo2 + 2Fc2)/3
2912 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H12O3V = 2578 (3) Å3
Mr = 252.26Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.391 (12) ŵ = 0.09 mm1
b = 6.732 (4) ÅT = 296 K
c = 18.844 (11) Å0.30 × 0.10 × 0.10 mm
β = 94.833 (8)°
Data collection top
Rigaku AFC7R Mercury CCD
diffractometer
2070 reflections with I > 2σ(I)
10197 measured reflectionsRint = 0.039
2912 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.20Δρmax = 0.16 e Å3
2912 reflectionsΔρmin = 0.18 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08714 (7)0.28238 (19)0.06726 (8)0.0517 (4)
C10.14413 (11)0.2635 (3)0.03418 (12)0.0499 (5)
O20.17437 (9)0.4146 (2)0.02481 (10)0.0698 (5)
C20.16227 (12)0.0660 (3)0.01380 (13)0.0565 (6)
H20.19970.04860.01050.068*
C30.12678 (11)0.0923 (3)0.02892 (13)0.0545 (6)
H30.13950.21760.01450.065*
C40.06915 (10)0.0725 (3)0.06722 (11)0.0441 (5)
C50.03075 (11)0.2315 (3)0.08766 (12)0.0499 (6)
H50.04180.36050.07570.060*
C60.02290 (11)0.1989 (3)0.12518 (13)0.0505 (5)
C70.04011 (11)0.0050 (3)0.14279 (13)0.0586 (6)
H70.07650.01730.16830.070*
C80.00300 (11)0.1532 (3)0.12231 (13)0.0552 (6)
H80.01440.28230.13380.066*
C90.05060 (10)0.1191 (3)0.08502 (11)0.0438 (5)
O30.05721 (8)0.3649 (2)0.14299 (11)0.0687 (5)
C100.11309 (13)0.3365 (3)0.18242 (16)0.0676 (7)
H10A0.09950.27850.22840.081*
H10B0.14380.24610.15700.081*
C110.14576 (11)0.5327 (3)0.19239 (12)0.0512 (6)
C120.13279 (13)0.6408 (3)0.25384 (13)0.0612 (6)
H120.10170.59470.28890.073*
C130.16522 (14)0.8164 (3)0.26425 (14)0.0652 (7)
H130.15610.88720.30630.078*
C140.21066 (13)0.8871 (3)0.21321 (14)0.0609 (7)
H140.23261.00560.22040.073*
C150.22378 (13)0.7825 (4)0.15136 (14)0.0676 (7)
H150.25460.83030.11630.081*
C160.19132 (14)0.6060 (3)0.14083 (13)0.0633 (7)
H160.20030.53610.09860.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0507 (9)0.0364 (7)0.0700 (10)0.0055 (6)0.0165 (7)0.0010 (6)
C10.0495 (13)0.0468 (11)0.0544 (13)0.0074 (9)0.0111 (10)0.0030 (9)
O20.0723 (12)0.0497 (9)0.0911 (13)0.0141 (8)0.0283 (10)0.0049 (8)
C20.0532 (14)0.0518 (12)0.0673 (15)0.0009 (10)0.0221 (11)0.0011 (10)
C30.0528 (14)0.0423 (11)0.0710 (15)0.0025 (9)0.0213 (11)0.0034 (10)
C40.0417 (12)0.0379 (10)0.0530 (12)0.0008 (8)0.0064 (9)0.0019 (8)
C50.0471 (13)0.0324 (9)0.0716 (15)0.0010 (8)0.0139 (11)0.0032 (9)
C60.0444 (12)0.0366 (10)0.0719 (15)0.0018 (8)0.0132 (10)0.0017 (9)
C70.0472 (13)0.0428 (11)0.0891 (17)0.0001 (9)0.0253 (12)0.0079 (11)
C80.0497 (13)0.0350 (10)0.0832 (16)0.0009 (8)0.0201 (11)0.0081 (10)
C90.0428 (12)0.0329 (9)0.0559 (12)0.0027 (8)0.0062 (9)0.0009 (8)
O30.0594 (11)0.0386 (8)0.1138 (14)0.0039 (7)0.0417 (10)0.0007 (8)
C100.0616 (16)0.0473 (12)0.099 (2)0.0020 (11)0.0363 (14)0.0014 (12)
C110.0481 (13)0.0437 (11)0.0648 (14)0.0003 (9)0.0223 (11)0.0001 (10)
C120.0580 (15)0.0583 (13)0.0663 (16)0.0040 (11)0.0015 (12)0.0023 (11)
C130.0728 (18)0.0573 (13)0.0664 (15)0.0008 (12)0.0112 (13)0.0144 (12)
C140.0550 (15)0.0485 (12)0.0829 (18)0.0063 (10)0.0280 (13)0.0006 (11)
C150.0596 (16)0.0721 (16)0.0709 (17)0.0104 (12)0.0045 (13)0.0135 (13)
C160.0697 (17)0.0645 (14)0.0568 (14)0.0001 (12)0.0115 (12)0.0070 (11)
Geometric parameters (Å, º) top
O1—C11.370 (3)C8—H80.9300
O1—C91.385 (2)O3—C101.425 (3)
C1—O21.210 (2)C10—C111.499 (3)
C1—C21.440 (3)C10—H10A0.9700
C2—C31.333 (3)C10—H10B0.9700
C2—H20.9300C11—C121.374 (3)
C3—C41.436 (3)C11—C161.378 (3)
C3—H30.9300C12—C131.377 (3)
C4—C91.393 (3)C12—H120.9300
C4—C51.399 (3)C13—C141.364 (4)
C5—C61.369 (3)C13—H130.9300
C5—H50.9300C14—C151.369 (4)
C6—O31.375 (2)C14—H140.9300
C6—C71.399 (3)C15—C161.382 (3)
C7—C81.380 (3)C15—H150.9300
C7—H70.9300C16—H160.9300
C8—C91.368 (3)
C1—O1—C9122.04 (15)O1—C9—C4120.94 (18)
O2—C1—O1116.78 (18)C6—O3—C10117.63 (16)
O2—C1—C2126.2 (2)O3—C10—C11109.29 (17)
O1—C1—C2116.97 (17)O3—C10—H10A109.8
C3—C2—C1121.7 (2)C11—C10—H10A109.8
C3—C2—H2119.2O3—C10—H10B109.8
C1—C2—H2119.2C11—C10—H10B109.8
C2—C3—C4121.00 (18)H10A—C10—H10B108.3
C2—C3—H3119.5C12—C11—C16118.4 (2)
C4—C3—H3119.5C12—C11—C10121.1 (2)
C9—C4—C5118.17 (19)C16—C11—C10120.5 (2)
C9—C4—C3117.23 (17)C11—C12—C13120.9 (2)
C5—C4—C3124.61 (18)C11—C12—H12119.5
C6—C5—C4120.65 (18)C13—C12—H12119.5
C6—C5—H5119.7C14—C13—C12120.3 (2)
C4—C5—H5119.7C14—C13—H13119.8
C5—C6—O3116.17 (17)C12—C13—H13119.8
C5—C6—C7119.94 (19)C13—C14—C15119.6 (2)
O3—C6—C7123.9 (2)C13—C14—H14120.2
C8—C7—C6119.9 (2)C15—C14—H14120.2
C8—C7—H7120.0C14—C15—C16120.2 (2)
C6—C7—H7120.0C14—C15—H15119.9
C9—C8—C7119.67 (18)C16—C15—H15119.9
C9—C8—H8120.2C11—C16—C15120.6 (2)
C7—C8—H8120.2C11—C16—H16119.7
C8—C9—O1117.41 (16)C15—C16—H16119.7
C8—C9—C4121.62 (18)
C9—O1—C1—O2175.73 (19)C5—C4—C9—C80.9 (3)
C9—O1—C1—C24.4 (3)C3—C4—C9—C8179.1 (2)
O2—C1—C2—C3177.5 (3)C5—C4—C9—O1179.01 (18)
O1—C1—C2—C32.7 (3)C3—C4—C9—O11.0 (3)
C1—C2—C3—C40.8 (4)C5—C6—O3—C10179.6 (2)
C2—C3—C4—C92.7 (3)C7—C6—O3—C100.7 (4)
C2—C3—C4—C5177.3 (2)C6—O3—C10—C11176.5 (2)
C9—C4—C5—C61.1 (3)O3—C10—C11—C1296.5 (3)
C3—C4—C5—C6178.9 (2)O3—C10—C11—C1685.6 (3)
C4—C5—C6—O3179.72 (19)C16—C11—C12—C131.0 (4)
C4—C5—C6—C70.6 (4)C10—C11—C12—C13176.9 (2)
C5—C6—C7—C80.0 (4)C11—C12—C13—C140.5 (4)
O3—C6—C7—C8179.6 (2)C12—C13—C14—C150.2 (4)
C6—C7—C8—C90.2 (4)C13—C14—C15—C160.2 (4)
C7—C8—C9—O1178.4 (2)C12—C11—C16—C151.0 (4)
C7—C8—C9—C40.3 (4)C10—C11—C16—C15177.0 (2)
C1—O1—C9—C8175.6 (2)C14—C15—C16—C110.3 (4)
C1—O1—C9—C42.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.623.472 (3)153
C3—H3···O2ii0.932.583.461 (3)159
C5—H5···O1ii0.932.593.501 (3)168
C8—H8···O3iii0.932.543.460 (3)170
C16—H16···O2iv0.932.563.421 (3)154
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formulaC16H12O3
Mr252.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)20.391 (12), 6.732 (4), 18.844 (11)
β (°) 94.833 (8)
V3)2578 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerRigaku AFC7R Mercury CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10197, 2912, 2070
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.190, 1.20
No. of reflections2912
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2001), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Yadokari-XG 2009 and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.623.472 (3)153.1
C3—H3···O2ii0.932.583.461 (3)158.5
C5—H5···O1ii0.932.593.501 (3)168.1
C8—H8···O3iii0.932.543.460 (3)169.5
C16—H16···O2iv0.932.563.421 (3)153.9
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y, z.
 

References

First citationAdfa, M., Yoshimura, T., Komura, K. & Koketsu, M. (2010). J. Chem. Ecol. 36, 720–726.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChinnakali, K., Fun, H.-K., Sriraghavan, K. & Ramakrishnan, V. T. (1998). Acta Cryst. C54, 542–544.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGunnewegh, E. A., Hoefnagel, A. J. & van Bekkum, H. (1995). J. Mol. Catal. A Chem. 100, 87–92.  CrossRef CAS Web of Science Google Scholar
First citationJasinski, J. P., Jasinski, J. M., Li, Y. & Crosby, D. J. (2003). Acta Cryst. E59, o153–o154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationLi, T.-S., Zhang, Z.-H., Yang, F. & Fu, C.-G. (1998). J. Chem. Res. (S), pp. 38–39.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurray, R. D. H., Mendez, J. & Brown, S. A. (1982). The Natural Coumarins (Occurrence, Chemistry and Biochemistry). New York: John Wiley & Sons.  Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSchönberg, A. & Latif, N. (1954). J. Am. Chem. Soc. 76, 6208–6210.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds