organic compounds
6-Benzyloxycoumarin
aDepartment of Materials Science and Technology, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: koketsu@gifu-u.ac.jp
In the title compound, 6-benzyloxy-2H-1-benzopyran-2-one, C16H12O3, the coumarin unit and benzyl plane in the molecule are perpendicular to each other [86.92 (7)°]. The crystal packing is stabilized by π–π stacking interactions, with an interplanar separation between inversion-related coumarin units of 3.618 (3) Å. The shows intermolecular C—H⋯O hydrogen bonding between neighboring molecules.
Related literature
For general background to coumarin, see: Adfa et al. (2010); Gunnewegh et al. (1995); Li et al. (1998); Murray et al. (1982); Schönberg & Latif (1954). For related compounds, see: Chinnakali et al. (1998); Jasinski et al. (2003).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2001); cell CrystalClear; data reduction: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810029430/zl2289sup1.cif
contains datablocks I, General. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810029430/zl2289Isup2.hkl
A mixture of 6-hydroxycoumarin (30 mg, 0.19 mmol), benzyl bromide (43.8 cm3, 0.37 mmol), and potassium carbonate (51 mg, 0.37 mmol) in DMF (5.0 cm3) was stirred at 353 K for 1.5 h. The reaction mixture was extracted with ethyl acetate and washed with water. The organic layer was dried over sodium sulfate and evaporated to dryness. The residue was purified by δ 5.10 (2H, s, CH2), 6.42 (1H, d, J = 9.6 Hz), 6.99 (1H, d, J = 2.8 Hz), 7.18 (1H, dd, J = 8.9 and 2.8 Hz), 7.26 (1H, d, J = 8.9 Hz), 7.34–7.44 (5H, m, Ar), 7.63 (1H, d, J = 9.6 Hz); 13C-NMR (150 MHz, CDCl3): δ 70.8, 111.5, 117.2, 118.1, 119.3, 120.3, 127.6, 128.4, 128.8, 136.4, 143.3, 148.7, 155.3, 161.1. Single crystals of 6-benzyloxycoumarin were grown by recrystallization from a solution in chloroform-hexane (10:3).
on silica gel with n-hexane/ethyl acetate (7:3) to give the title compound (40.3 mg, 86.4%) as colourless crystals, m.p. 385 K. 1H-NMR (600 MHz, CDCl3):C-bound H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) for the H atoms.
Coumarin and its derivatives have been found to exhibit various biological and pharmacological activities, such as molluscicidal (Schönberg and Latif, 1954), termiticidal (Adfa et al., 2010), rodenticidal, anthelmintic, antibacterial, antioxidant, anti-inflammatory, and anti-cancer, and they have been used as anticoagulant agents and fluorescent brighteners (Murray et al., 1982; Gunnewegh et al., 1995; Li et al., 1998). The title compound is one of the derivatives of coumarin. In order to investigate the structure activity relationship (SAR) of the compound for biological activities, it is essential to determine the configuration of 6-benzyloxycoumarin.
The molecular structure of the title compound is illustrated in Fig. 1. The coumarin moiety and benzyl planes (r.m.s deviations 0.039 and 0.017 Å) in the molecule are perpendicular to each other with a dihedral angle between the plane of the atoms O1–O3, C1–C9 and that of C10–C15 of 86.92 (7)°. The structure shows intermolecular C—H···O hydrogen bonding between four neighboring molecules (Table 1 and Fig. 2): C3···O2i, C5···O1i and C8i···O3 [symmetry code (i) x, 1 + y, z]; C3ii···O2, C5ii···O1 and C8···O3ii [symmetry code (ii) x, -1 + y, z]; C2···O2iii and C2iii···O2 [symmetry code (iii) 1/2 - x, -1/2 - y, -z]; C16···O2iv and C16iv···O2 [symmetry code (iv) -x, -y, -z]. There also exist π–π stacking interactions between the coumarin moieties with an interplanar separation of 3.618 (3) Å (based on all atoms but the phenyl ring C atoms, symmetry operator for the second molecule iv). Similar structural features are also observed in other coumarin derivatives (Chinnakali et al., 1998; Jasinski et al., 2003).
For general background to coumarin, see: Adfa et al. (2010); Gunnewegh et al. (1995); Li et al. (1998); Murray et al. (1982); Schönberg & Latif (1954). For related compounds, see: Chinnakali et al. (1998); Jasinski et al. (2003).
Data collection: CrystalClear (Rigaku/MSC, 2001); cell
CrystalClear (Rigaku/MSC, 2001); data reduction: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C16H12O3 | F(000) = 1056 |
Mr = 252.26 | Dx = 1.300 Mg m−3 |
Monoclinic, C2/c | Melting point: 385 K |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71070 Å |
a = 20.391 (12) Å | Cell parameters from 2417 reflections |
b = 6.732 (4) Å | θ = 3.1–27.5° |
c = 18.844 (11) Å | µ = 0.09 mm−1 |
β = 94.833 (8)° | T = 296 K |
V = 2578 (3) Å3 | Prism, colourless |
Z = 8 | 0.30 × 0.10 × 0.10 mm |
Rigaku AFC7R Mercury CCD diffractometer | 2070 reflections with I > 2σ(I) |
Radiation source: Rotating Anode | Rint = 0.039 |
Graphite monochromator | θmax = 27.5°, θmin = 3.1° |
Detector resolution: 14.6199 pixels mm-1 | h = −23→26 |
dtintegrate.ref scans | k = −7→8 |
10197 measured reflections | l = −24→24 |
2912 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.075 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.190 | H-atom parameters constrained |
S = 1.20 | w = 1/[σ2(Fo2) + (0.0813P)2 + 0.4589P] where P = (Fo2 + 2Fc2)/3 |
2912 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C16H12O3 | V = 2578 (3) Å3 |
Mr = 252.26 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 20.391 (12) Å | µ = 0.09 mm−1 |
b = 6.732 (4) Å | T = 296 K |
c = 18.844 (11) Å | 0.30 × 0.10 × 0.10 mm |
β = 94.833 (8)° |
Rigaku AFC7R Mercury CCD diffractometer | 2070 reflections with I > 2σ(I) |
10197 measured reflections | Rint = 0.039 |
2912 independent reflections |
R[F2 > 2σ(F2)] = 0.075 | 0 restraints |
wR(F2) = 0.190 | H-atom parameters constrained |
S = 1.20 | Δρmax = 0.16 e Å−3 |
2912 reflections | Δρmin = −0.18 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.08714 (7) | −0.28238 (19) | 0.06726 (8) | 0.0517 (4) | |
C1 | 0.14413 (11) | −0.2635 (3) | 0.03418 (12) | 0.0499 (5) | |
O2 | 0.17437 (9) | −0.4146 (2) | 0.02481 (10) | 0.0698 (5) | |
C2 | 0.16227 (12) | −0.0660 (3) | 0.01380 (13) | 0.0565 (6) | |
H2 | 0.1997 | −0.0486 | −0.0105 | 0.068* | |
C3 | 0.12678 (11) | 0.0923 (3) | 0.02892 (13) | 0.0545 (6) | |
H3 | 0.1395 | 0.2176 | 0.0145 | 0.065* | |
C4 | 0.06915 (10) | 0.0725 (3) | 0.06722 (11) | 0.0441 (5) | |
C5 | 0.03075 (11) | 0.2315 (3) | 0.08766 (12) | 0.0499 (6) | |
H5 | 0.0418 | 0.3605 | 0.0757 | 0.060* | |
C6 | −0.02290 (11) | 0.1989 (3) | 0.12518 (13) | 0.0505 (5) | |
C7 | −0.04011 (11) | 0.0050 (3) | 0.14279 (13) | 0.0586 (6) | |
H7 | −0.0765 | −0.0173 | 0.1683 | 0.070* | |
C8 | −0.00300 (11) | −0.1532 (3) | 0.12231 (13) | 0.0552 (6) | |
H8 | −0.0144 | −0.2823 | 0.1338 | 0.066* | |
C9 | 0.05060 (10) | −0.1191 (3) | 0.08502 (11) | 0.0438 (5) | |
O3 | −0.05721 (8) | 0.3649 (2) | 0.14299 (11) | 0.0687 (5) | |
C10 | −0.11309 (13) | 0.3365 (3) | 0.18242 (16) | 0.0676 (7) | |
H10A | −0.0995 | 0.2785 | 0.2284 | 0.081* | |
H10B | −0.1438 | 0.2461 | 0.1570 | 0.081* | |
C11 | −0.14576 (11) | 0.5327 (3) | 0.19239 (12) | 0.0512 (6) | |
C12 | −0.13279 (13) | 0.6408 (3) | 0.25384 (13) | 0.0612 (6) | |
H12 | −0.1017 | 0.5947 | 0.2889 | 0.073* | |
C13 | −0.16522 (14) | 0.8164 (3) | 0.26425 (14) | 0.0652 (7) | |
H13 | −0.1561 | 0.8872 | 0.3063 | 0.078* | |
C14 | −0.21066 (13) | 0.8871 (3) | 0.21321 (14) | 0.0609 (7) | |
H14 | −0.2326 | 1.0056 | 0.2204 | 0.073* | |
C15 | −0.22378 (13) | 0.7825 (4) | 0.15136 (14) | 0.0676 (7) | |
H15 | −0.2546 | 0.8303 | 0.1163 | 0.081* | |
C16 | −0.19132 (14) | 0.6060 (3) | 0.14083 (13) | 0.0633 (7) | |
H16 | −0.2003 | 0.5361 | 0.0986 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0507 (9) | 0.0364 (7) | 0.0700 (10) | 0.0055 (6) | 0.0165 (7) | 0.0010 (6) |
C1 | 0.0495 (13) | 0.0468 (11) | 0.0544 (13) | 0.0074 (9) | 0.0111 (10) | −0.0030 (9) |
O2 | 0.0723 (12) | 0.0497 (9) | 0.0911 (13) | 0.0141 (8) | 0.0283 (10) | −0.0049 (8) |
C2 | 0.0532 (14) | 0.0518 (12) | 0.0673 (15) | 0.0009 (10) | 0.0221 (11) | 0.0011 (10) |
C3 | 0.0528 (14) | 0.0423 (11) | 0.0710 (15) | −0.0025 (9) | 0.0213 (11) | 0.0034 (10) |
C4 | 0.0417 (12) | 0.0379 (10) | 0.0530 (12) | −0.0008 (8) | 0.0064 (9) | 0.0019 (8) |
C5 | 0.0471 (13) | 0.0324 (9) | 0.0716 (15) | −0.0010 (8) | 0.0139 (11) | 0.0032 (9) |
C6 | 0.0444 (12) | 0.0366 (10) | 0.0719 (15) | 0.0018 (8) | 0.0132 (10) | −0.0017 (9) |
C7 | 0.0472 (13) | 0.0428 (11) | 0.0891 (17) | 0.0001 (9) | 0.0253 (12) | 0.0079 (11) |
C8 | 0.0497 (13) | 0.0350 (10) | 0.0832 (16) | −0.0009 (8) | 0.0201 (11) | 0.0081 (10) |
C9 | 0.0428 (12) | 0.0329 (9) | 0.0559 (12) | 0.0027 (8) | 0.0062 (9) | 0.0009 (8) |
O3 | 0.0594 (11) | 0.0386 (8) | 0.1138 (14) | 0.0039 (7) | 0.0417 (10) | 0.0007 (8) |
C10 | 0.0616 (16) | 0.0473 (12) | 0.099 (2) | 0.0020 (11) | 0.0363 (14) | 0.0014 (12) |
C11 | 0.0481 (13) | 0.0437 (11) | 0.0648 (14) | 0.0003 (9) | 0.0223 (11) | −0.0001 (10) |
C12 | 0.0580 (15) | 0.0583 (13) | 0.0663 (16) | 0.0040 (11) | −0.0015 (12) | −0.0023 (11) |
C13 | 0.0728 (18) | 0.0573 (13) | 0.0664 (15) | 0.0008 (12) | 0.0112 (13) | −0.0144 (12) |
C14 | 0.0550 (15) | 0.0485 (12) | 0.0829 (18) | 0.0063 (10) | 0.0280 (13) | 0.0006 (11) |
C15 | 0.0596 (16) | 0.0721 (16) | 0.0709 (17) | 0.0104 (12) | 0.0045 (13) | 0.0135 (13) |
C16 | 0.0697 (17) | 0.0645 (14) | 0.0568 (14) | 0.0001 (12) | 0.0115 (12) | −0.0070 (11) |
O1—C1 | 1.370 (3) | C8—H8 | 0.9300 |
O1—C9 | 1.385 (2) | O3—C10 | 1.425 (3) |
C1—O2 | 1.210 (2) | C10—C11 | 1.499 (3) |
C1—C2 | 1.440 (3) | C10—H10A | 0.9700 |
C2—C3 | 1.333 (3) | C10—H10B | 0.9700 |
C2—H2 | 0.9300 | C11—C12 | 1.374 (3) |
C3—C4 | 1.436 (3) | C11—C16 | 1.378 (3) |
C3—H3 | 0.9300 | C12—C13 | 1.377 (3) |
C4—C9 | 1.393 (3) | C12—H12 | 0.9300 |
C4—C5 | 1.399 (3) | C13—C14 | 1.364 (4) |
C5—C6 | 1.369 (3) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | C14—C15 | 1.369 (4) |
C6—O3 | 1.375 (2) | C14—H14 | 0.9300 |
C6—C7 | 1.399 (3) | C15—C16 | 1.382 (3) |
C7—C8 | 1.380 (3) | C15—H15 | 0.9300 |
C7—H7 | 0.9300 | C16—H16 | 0.9300 |
C8—C9 | 1.368 (3) | ||
C1—O1—C9 | 122.04 (15) | O1—C9—C4 | 120.94 (18) |
O2—C1—O1 | 116.78 (18) | C6—O3—C10 | 117.63 (16) |
O2—C1—C2 | 126.2 (2) | O3—C10—C11 | 109.29 (17) |
O1—C1—C2 | 116.97 (17) | O3—C10—H10A | 109.8 |
C3—C2—C1 | 121.7 (2) | C11—C10—H10A | 109.8 |
C3—C2—H2 | 119.2 | O3—C10—H10B | 109.8 |
C1—C2—H2 | 119.2 | C11—C10—H10B | 109.8 |
C2—C3—C4 | 121.00 (18) | H10A—C10—H10B | 108.3 |
C2—C3—H3 | 119.5 | C12—C11—C16 | 118.4 (2) |
C4—C3—H3 | 119.5 | C12—C11—C10 | 121.1 (2) |
C9—C4—C5 | 118.17 (19) | C16—C11—C10 | 120.5 (2) |
C9—C4—C3 | 117.23 (17) | C11—C12—C13 | 120.9 (2) |
C5—C4—C3 | 124.61 (18) | C11—C12—H12 | 119.5 |
C6—C5—C4 | 120.65 (18) | C13—C12—H12 | 119.5 |
C6—C5—H5 | 119.7 | C14—C13—C12 | 120.3 (2) |
C4—C5—H5 | 119.7 | C14—C13—H13 | 119.8 |
C5—C6—O3 | 116.17 (17) | C12—C13—H13 | 119.8 |
C5—C6—C7 | 119.94 (19) | C13—C14—C15 | 119.6 (2) |
O3—C6—C7 | 123.9 (2) | C13—C14—H14 | 120.2 |
C8—C7—C6 | 119.9 (2) | C15—C14—H14 | 120.2 |
C8—C7—H7 | 120.0 | C14—C15—C16 | 120.2 (2) |
C6—C7—H7 | 120.0 | C14—C15—H15 | 119.9 |
C9—C8—C7 | 119.67 (18) | C16—C15—H15 | 119.9 |
C9—C8—H8 | 120.2 | C11—C16—C15 | 120.6 (2) |
C7—C8—H8 | 120.2 | C11—C16—H16 | 119.7 |
C8—C9—O1 | 117.41 (16) | C15—C16—H16 | 119.7 |
C8—C9—C4 | 121.62 (18) | ||
C9—O1—C1—O2 | 175.73 (19) | C5—C4—C9—C8 | −0.9 (3) |
C9—O1—C1—C2 | −4.4 (3) | C3—C4—C9—C8 | 179.1 (2) |
O2—C1—C2—C3 | −177.5 (3) | C5—C4—C9—O1 | −179.01 (18) |
O1—C1—C2—C3 | 2.7 (3) | C3—C4—C9—O1 | 1.0 (3) |
C1—C2—C3—C4 | 0.8 (4) | C5—C6—O3—C10 | −179.6 (2) |
C2—C3—C4—C9 | −2.7 (3) | C7—C6—O3—C10 | 0.7 (4) |
C2—C3—C4—C5 | 177.3 (2) | C6—O3—C10—C11 | −176.5 (2) |
C9—C4—C5—C6 | 1.1 (3) | O3—C10—C11—C12 | −96.5 (3) |
C3—C4—C5—C6 | −178.9 (2) | O3—C10—C11—C16 | 85.6 (3) |
C4—C5—C6—O3 | 179.72 (19) | C16—C11—C12—C13 | 1.0 (4) |
C4—C5—C6—C7 | −0.6 (4) | C10—C11—C12—C13 | −176.9 (2) |
C5—C6—C7—C8 | 0.0 (4) | C11—C12—C13—C14 | −0.5 (4) |
O3—C6—C7—C8 | 179.6 (2) | C12—C13—C14—C15 | −0.2 (4) |
C6—C7—C8—C9 | 0.2 (4) | C13—C14—C15—C16 | 0.2 (4) |
C7—C8—C9—O1 | 178.4 (2) | C12—C11—C16—C15 | −1.0 (4) |
C7—C8—C9—C4 | 0.3 (4) | C10—C11—C16—C15 | 177.0 (2) |
C1—O1—C9—C8 | −175.6 (2) | C14—C15—C16—C11 | 0.3 (4) |
C1—O1—C9—C4 | 2.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.93 | 2.62 | 3.472 (3) | 153 |
C3—H3···O2ii | 0.93 | 2.58 | 3.461 (3) | 159 |
C5—H5···O1ii | 0.93 | 2.59 | 3.501 (3) | 168 |
C8—H8···O3iii | 0.93 | 2.54 | 3.460 (3) | 170 |
C16—H16···O2iv | 0.93 | 2.56 | 3.421 (3) | 154 |
Symmetry codes: (i) −x+1/2, −y−1/2, −z; (ii) x, y+1, z; (iii) x, y−1, z; (iv) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C16H12O3 |
Mr | 252.26 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 20.391 (12), 6.732 (4), 18.844 (11) |
β (°) | 94.833 (8) |
V (Å3) | 2578 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.30 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Rigaku AFC7R Mercury CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10197, 2912, 2070 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.075, 0.190, 1.20 |
No. of reflections | 2912 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.18 |
Computer programs: CrystalClear (Rigaku/MSC, 2001), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Yadokari-XG 2009 and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.93 | 2.62 | 3.472 (3) | 153.1 |
C3—H3···O2ii | 0.93 | 2.58 | 3.461 (3) | 158.5 |
C5—H5···O1ii | 0.93 | 2.59 | 3.501 (3) | 168.1 |
C8—H8···O3iii | 0.93 | 2.54 | 3.460 (3) | 169.5 |
C16—H16···O2iv | 0.93 | 2.56 | 3.421 (3) | 153.9 |
Symmetry codes: (i) −x+1/2, −y−1/2, −z; (ii) x, y+1, z; (iii) x, y−1, z; (iv) −x, −y, −z. |
References
Adfa, M., Yoshimura, T., Komura, K. & Koketsu, M. (2010). J. Chem. Ecol. 36, 720–726. Web of Science CrossRef CAS PubMed Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chinnakali, K., Fun, H.-K., Sriraghavan, K. & Ramakrishnan, V. T. (1998). Acta Cryst. C54, 542–544. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gunnewegh, E. A., Hoefnagel, A. J. & van Bekkum, H. (1995). J. Mol. Catal. A Chem. 100, 87–92. CrossRef CAS Web of Science Google Scholar
Jasinski, J. P., Jasinski, J. M., Li, Y. & Crosby, D. J. (2003). Acta Cryst. E59, o153–o154. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224. CrossRef Google Scholar
Li, T.-S., Zhang, Z.-H., Yang, F. & Fu, C.-G. (1998). J. Chem. Res. (S), pp. 38–39. Web of Science CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Murray, R. D. H., Mendez, J. & Brown, S. A. (1982). The Natural Coumarins (Occurrence, Chemistry and Biochemistry). New York: John Wiley & Sons. Google Scholar
Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Schönberg, A. & Latif, N. (1954). J. Am. Chem. Soc. 76, 6208–6210. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wakita, K. (2001). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarin and its derivatives have been found to exhibit various biological and pharmacological activities, such as molluscicidal (Schönberg and Latif, 1954), termiticidal (Adfa et al., 2010), rodenticidal, anthelmintic, antibacterial, antioxidant, anti-inflammatory, and anti-cancer, and they have been used as anticoagulant agents and fluorescent brighteners (Murray et al., 1982; Gunnewegh et al., 1995; Li et al., 1998). The title compound is one of the derivatives of coumarin. In order to investigate the structure activity relationship (SAR) of the compound for biological activities, it is essential to determine the configuration of 6-benzyloxycoumarin.
The molecular structure of the title compound is illustrated in Fig. 1. The coumarin moiety and benzyl planes (r.m.s deviations 0.039 and 0.017 Å) in the molecule are perpendicular to each other with a dihedral angle between the plane of the atoms O1–O3, C1–C9 and that of C10–C15 of 86.92 (7)°. The structure shows intermolecular C—H···O hydrogen bonding between four neighboring molecules (Table 1 and Fig. 2): C3···O2i, C5···O1i and C8i···O3 [symmetry code (i) x, 1 + y, z]; C3ii···O2, C5ii···O1 and C8···O3ii [symmetry code (ii) x, -1 + y, z]; C2···O2iii and C2iii···O2 [symmetry code (iii) 1/2 - x, -1/2 - y, -z]; C16···O2iv and C16iv···O2 [symmetry code (iv) -x, -y, -z]. There also exist π–π stacking interactions between the coumarin moieties with an interplanar separation of 3.618 (3) Å (based on all atoms but the phenyl ring C atoms, symmetry operator for the second molecule iv). Similar structural features are also observed in other coumarin derivatives (Chinnakali et al., 1998; Jasinski et al., 2003).