organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(3-chloro­benz­yl)ammonium] 2-phenyl­propane­dioate dihydrate

aDepartment of Chemistry, Faculty of Science, University of Ghana, Box LG56 Legon, Accra, Ghana, and bDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: kadabohs@ug.edu.gh

(Received 15 July 2010; accepted 26 July 2010; online 31 July 2010)

In the asymmetric unit of the title compound, 2C7H9ClN+·C9H6O42−·2H2O, there are two crystallographically independent cations, one dianion and two water mol­ecules. The dihedral angle between the two carboxyl­ate groups of the dianion is 78.1 (2)°. In the crystal, the components are held together by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming a layer parallel to the bc plane, with the hydro­philic and hydro­phobic groups located in the inner and outer regions of the layers, respectively.

Related literature

For related structures, see: Ueda et al. (2005[Ueda, S., Fukunaga, T. & Ishida, H. (2005). Acta Cryst. E61, o1845-o1847.]); Gotoh & Ishida (2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]).

[Scheme 1]

Experimental

Crystal data
  • 2C7H9ClN+·C9H6O42−·2H2O

  • Mr = 499.39

  • Monoclinic, P 21 /c

  • a = 17.3487 (7) Å

  • b = 9.7903 (5) Å

  • c = 14.3496 (6) Å

  • β = 103.3832 (12)°

  • V = 2371.07 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 93 K

  • 0.36 × 0.25 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID-II diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.809, Tmax = 0.969

  • 22684 measured reflections

  • 5404 independent reflections

  • 4801 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.03

  • 5404 reflections

  • 312 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.91 1.89 2.7789 (13) 165
N1—H1B⋯O1i 0.91 1.91 2.7891 (14) 163
N1—H1C⋯O4ii 0.91 1.82 2.7286 (13) 175
N2—H2A⋯O2 0.91 2.12 2.9783 (13) 157
N2—H2A⋯O4 0.91 2.40 2.9220 (13) 117
N2—H2B⋯O5iii 0.91 1.98 2.8530 (14) 159
N2—H2C⋯O5i 0.91 2.01 2.8863 (13) 162
O5—H5A⋯O1 0.795 (18) 1.931 (18) 2.7158 (12) 169.2 (16)
O5—H5B⋯O3i 0.841 (17) 1.868 (17) 2.6818 (12) 162.6 (15)
O6—H6A⋯O1 0.828 (17) 2.060 (17) 2.8559 (13) 161.0 (16)
O6—H6B⋯O3iv 0.856 (17) 1.945 (17) 2.7948 (13) 172.3 (16)
C9—H9⋯O4 0.95 2.58 3.2035 (15) 123
C15—H15⋯O2 0.95 2.39 3.2341 (15) 148
C22—H22⋯O3v 0.95 2.58 3.4936 (15) 160
C23—H23A⋯O6vi 0.99 2.49 3.3424 (15) 144
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x, -y+2, -z+1; (v) x, y-1, z; (vi) -x, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]).

Supporting information


Comment top

The title compound was investigated as part of a structural study on D—H···A hydrogen bonding (D = N, O or C; A = N or O) in carboxylic acid and pyridine systems (Ueda et al., 2005; Gotoh & Ishida, 2009).

The molecular structure of the compound and the crystal packing of the molecules viewed along the crystallographic b axis are shown in Figures 1 and 2, respectively. In its asymmetric unit the title compound has two crystallographically independent cations, one dianion and two water molecules. The two 3-chlorobenzylammonium cations have inverted but otherwise virtually indentical conformations as shown by the rotational angle of the ammonium group against the remainder of the molecule, N1-C16-C10-C11 = -119.04 (12)° and N2-C23-C17-C18 = 113.49 (12)° for the two groups (the two crystallographically independent ions are opposite enantiomers, but as as the structure is centrosymmetric both ions are present as racemic pairs throughout the structure).

The C—O bond length in one of the carboxylates is slightly longer than in the other with the respective values of O1—C1 and O2—C1 being 1.2714 (14) and 1.2501 (14) Å. The O3—C3 and O4—C3 bond lengths in the other carboxylates are 1.2559 (14) and 1.2538 (14) Å, respectively, making the carbonyl distance in the latter indistinguishable from the single bond due to resonance. The slight difference in the two sets of carbonyl distances may be attributed to the number of H bonds their respective O atoms are involved in, as H bonds tend to stabilize negative charge at the O atoms. The three O atoms with only two strong H bonds have C-O distances below 1.6 Å, the one with three strong H bonds has a C-O distance larger than 1.7 Å.

The molecules associate by placement of all the phenyl rings in one direction, while the hydrophilic ammonium and the carboxylate ends are oriented towards the other end and are hydrogen bonded to water molecules, resulting in alternating hydrophobic and hydrophylic regions respectively in the crystal packing. In the hydrophilic regions the water molecules act as donors and acceptors in an extended hydrogen bonding network. Each water molecule serves as a bridge that links a 3-chlorobenzylammonium moiety and a phenylmalonate group. This arrangement affords an interconnectivity of water and donor protons such that two of the ammonium H atoms are donated to the water O atoms in a short N—H···O contact of comparable length [N2—H2B···O5iii = 1.98Å and N2—H2C···O5i = 2.01Å; Table 1], while the water H atoms are donated to the carboxylate O atoms [O5—H5A···O1 = 1.931 (18), O5—H5B···O3i = 1.868 (17), O6—H6A···O1 = 2.060 (17) and O6—H6B···O3iv = 1.945 (17) Å; Table 1].

In the hydrophobic regions the chloro-substituted aromatic rings show some stacking of parallel-shifted aromatic rings with each other, but the shortest centroid to centroid distance is larger than 4.3 Å and the interplanar separation is with greater than 3.6 Å also rather long for an attractive π-π stacking interaction. In the absence of any other directional interactions in the hydrophobic section of the structure it thus can be assumed that the crystal packing in these layers is likely to be dominated by shape recognition via dispersion forces.

Related literature top

For related structures, see: Ueda et al. (2005); Gotoh & Ishida (2009).

Experimental top

Single crystals of the title compound were grown by slow evaporation of a water-ethanol solution (1:1 v/v; 20 ml) of 3-chlorobenzylamine (0.71 g, 5.0 mmol) and phenylmalonic acid (0.45 g, 0.25 mmol) at room temperature.

Refinement top

All H atoms were found in a difference Fourier map. Positional parameters of the water H atoms were refined, with Uiso(H) = 1.2Ueq(O). The NH3+ groups were refined as rigid groups (N—H = 0.91 Å), with Uiso(H) = 1.5Ueq(N), allowing for rotation around the C—N bonds. Other C-bound H atoms were refined as riding, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound was investigated as part of a structural study on D—H···A hydrogen bonding (D = N, O or C; A = N or O) in carboxylic acid and pyridine systems (Ueda et al., 2005; Gotoh & Ishida, 2009).

The molecular structure of the compound and the crystal packing of the molecules viewed along the crystallographic b axis are shown in Figures 1 and 2, respectively. In its asymmetric unit the title compound has two crystallographically independent cations, one dianion and two water molecules. The two 3-chlorobenzylammonium cations have inverted but otherwise virtually indentical conformations as shown by the rotational angle of the ammonium group against the remainder of the molecule, N1-C16-C10-C11 = -119.04 (12)° and N2-C23-C17-C18 = 113.49 (12)° for the two groups (the two crystallographically independent ions are opposite enantiomers, but as as the structure is centrosymmetric both ions are present as racemic pairs throughout the structure).

The C—O bond length in one of the carboxylates is slightly longer than in the other with the respective values of O1—C1 and O2—C1 being 1.2714 (14) and 1.2501 (14) Å. The O3—C3 and O4—C3 bond lengths in the other carboxylates are 1.2559 (14) and 1.2538 (14) Å, respectively, making the carbonyl distance in the latter indistinguishable from the single bond due to resonance. The slight difference in the two sets of carbonyl distances may be attributed to the number of H bonds their respective O atoms are involved in, as H bonds tend to stabilize negative charge at the O atoms. The three O atoms with only two strong H bonds have C-O distances below 1.6 Å, the one with three strong H bonds has a C-O distance larger than 1.7 Å.

The molecules associate by placement of all the phenyl rings in one direction, while the hydrophilic ammonium and the carboxylate ends are oriented towards the other end and are hydrogen bonded to water molecules, resulting in alternating hydrophobic and hydrophylic regions respectively in the crystal packing. In the hydrophilic regions the water molecules act as donors and acceptors in an extended hydrogen bonding network. Each water molecule serves as a bridge that links a 3-chlorobenzylammonium moiety and a phenylmalonate group. This arrangement affords an interconnectivity of water and donor protons such that two of the ammonium H atoms are donated to the water O atoms in a short N—H···O contact of comparable length [N2—H2B···O5iii = 1.98Å and N2—H2C···O5i = 2.01Å; Table 1], while the water H atoms are donated to the carboxylate O atoms [O5—H5A···O1 = 1.931 (18), O5—H5B···O3i = 1.868 (17), O6—H6A···O1 = 2.060 (17) and O6—H6B···O3iv = 1.945 (17) Å; Table 1].

In the hydrophobic regions the chloro-substituted aromatic rings show some stacking of parallel-shifted aromatic rings with each other, but the shortest centroid to centroid distance is larger than 4.3 Å and the interplanar separation is with greater than 3.6 Å also rather long for an attractive π-π stacking interaction. In the absence of any other directional interactions in the hydrophobic section of the structure it thus can be assumed that the crystal packing in these layers is likely to be dominated by shape recognition via dispersion forces.

For related structures, see: Ueda et al. (2005); Gotoh & Ishida (2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) diagram of 3-chlorobenzylammonium phenylmalonate dihydrate, showing the atom-numbering scheme. Displacement ellipsoids for non-hydrogen atoms are plotted at 50% probability and hydrogen atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A part of the crystal packing of the crystal structure of 3-chlorobenzylammonium phenylmalonate dihydrate, viewed down the b axis showing a network of hydrogen bonds. Hydrogen bonds are shown by broken lines. Colour codes for residues: RED & BLACK = 3-chlorobenzylammonium; GREEN = phenylmalonate; BLUE & YELLOW = water molecules.
Bis[(3-chlorobenzyl)ammonium] 2-phenylpropanedioate dihydrate top
Crystal data top
2C7H9ClN+·C9H6O42·2H2OF(000) = 1048.00
Mr = 499.39Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 19587 reflections
a = 17.3487 (7) Åθ = 3.2–27.5°
b = 9.7903 (5) ŵ = 0.32 mm1
c = 14.3496 (6) ÅT = 93 K
β = 103.3832 (12)°Block, colorless
V = 2371.07 (17) Å30.36 × 0.25 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-II
diffractometer
4801 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.026
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2222
Tmin = 0.809, Tmax = 0.969k = 1212
22684 measured reflectionsl = 1718
5404 independent reflections
Refinement top
Refinement on F2312 parameters
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.045P)2 + 0.8144P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.35 e Å3
5404 reflectionsΔρmin = 0.28 e Å3
Crystal data top
2C7H9ClN+·C9H6O42·2H2OV = 2371.07 (17) Å3
Mr = 499.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.3487 (7) ŵ = 0.32 mm1
b = 9.7903 (5) ÅT = 93 K
c = 14.3496 (6) Å0.36 × 0.25 × 0.10 mm
β = 103.3832 (12)°
Data collection top
Rigaku R-AXIS RAPID-II
diffractometer
5404 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4801 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.969Rint = 0.026
22684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030312 parameters
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
5404 reflectionsΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.439729 (18)0.35812 (3)0.16174 (2)0.02351 (8)
Cl20.456436 (18)0.67256 (3)0.58413 (2)0.02689 (9)
O10.01868 (5)0.88588 (8)0.27920 (6)0.01579 (17)
O20.12915 (5)0.76812 (8)0.33753 (6)0.01682 (17)
O30.10538 (5)1.13611 (8)0.50629 (6)0.01916 (18)
O40.11331 (5)0.90909 (8)0.52121 (6)0.01844 (18)
O50.03654 (5)0.85786 (9)0.08701 (6)0.01747 (17)
H5A0.0194 (10)0.8553 (16)0.1434 (13)0.021*
H5B0.0583 (9)0.7825 (18)0.0693 (11)0.021*
O60.06079 (6)0.68283 (9)0.36504 (7)0.02034 (18)
H6A0.0353 (10)0.7262 (17)0.3327 (12)0.024*
H6B0.0720 (9)0.7440 (17)0.4024 (12)0.024*
N10.10896 (6)0.55243 (10)0.20825 (7)0.01391 (19)
H1A0.11340.63280.24090.021*
H1B0.06130.51350.20790.021*
H1C0.11260.56840.14690.021*
N20.09606 (6)0.61282 (10)0.50244 (7)0.0162 (2)
H2A0.11110.67800.46500.024*
H2B0.05100.64000.51930.024*
H2C0.08690.53290.46930.024*
C10.09030 (7)0.87682 (11)0.32604 (7)0.0126 (2)
C20.12851 (6)1.00848 (11)0.37329 (8)0.0127 (2)
H20.10161.08770.33520.015*
C30.11362 (6)1.01818 (11)0.47553 (8)0.0136 (2)
C40.21663 (7)1.01807 (11)0.37713 (8)0.0138 (2)
C50.24195 (7)1.08640 (12)0.30411 (8)0.0173 (2)
H50.20401.12740.25340.021*
C60.32227 (8)1.09505 (13)0.30482 (10)0.0225 (3)
H60.33871.14020.25410.027*
C70.37820 (7)1.03784 (13)0.37942 (10)0.0238 (3)
H70.43301.04520.38060.029*
C80.35360 (7)0.96960 (13)0.45254 (9)0.0227 (3)
H80.39180.93010.50370.027*
C90.27344 (7)0.95889 (12)0.45108 (9)0.0188 (2)
H90.25720.91090.50080.023*
C100.25586 (7)0.50774 (12)0.25364 (8)0.0152 (2)
C110.30228 (7)0.42829 (12)0.20729 (8)0.0170 (2)
H110.28040.35020.17150.020*
C120.38073 (7)0.46418 (12)0.21377 (8)0.0171 (2)
C130.41351 (7)0.58019 (12)0.26201 (9)0.0195 (2)
H130.46720.60380.26550.023*
C140.36614 (7)0.66165 (13)0.30541 (9)0.0215 (3)
H140.38740.74300.33740.026*
C150.28821 (7)0.62547 (12)0.30251 (9)0.0188 (2)
H150.25690.68080.33380.023*
C160.17387 (7)0.45831 (12)0.25573 (9)0.0175 (2)
H16A0.16510.36810.22380.021*
H16B0.17100.44560.32330.021*
C170.23541 (7)0.54046 (12)0.56655 (8)0.0163 (2)
C180.30291 (7)0.62186 (12)0.58334 (8)0.0175 (2)
H180.30220.71090.60940.021*
C190.37141 (7)0.57119 (13)0.56150 (9)0.0197 (2)
C200.37432 (8)0.44271 (13)0.52259 (9)0.0227 (3)
H200.42160.41050.50740.027*
C210.30677 (8)0.36155 (13)0.50613 (9)0.0227 (3)
H210.30770.27300.47940.027*
C220.23794 (7)0.40932 (12)0.52858 (9)0.0191 (2)
H220.19230.35270.51810.023*
C230.16042 (7)0.59252 (12)0.59052 (8)0.0176 (2)
H23A0.14250.52640.63320.021*
H23B0.17150.68030.62530.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01977 (15)0.02374 (15)0.02822 (16)0.00445 (11)0.00803 (12)0.00380 (12)
Cl20.01780 (15)0.02676 (17)0.03560 (18)0.00173 (11)0.00518 (13)0.00059 (13)
O10.0139 (4)0.0185 (4)0.0145 (4)0.0003 (3)0.0021 (3)0.0018 (3)
O20.0175 (4)0.0127 (4)0.0199 (4)0.0010 (3)0.0035 (3)0.0034 (3)
O30.0283 (5)0.0130 (4)0.0172 (4)0.0028 (3)0.0073 (4)0.0026 (3)
O40.0290 (5)0.0124 (4)0.0146 (4)0.0008 (3)0.0065 (3)0.0003 (3)
O50.0221 (4)0.0164 (4)0.0127 (4)0.0040 (3)0.0017 (3)0.0005 (3)
O60.0251 (5)0.0176 (4)0.0199 (4)0.0012 (3)0.0084 (4)0.0022 (3)
N10.0148 (4)0.0134 (4)0.0135 (4)0.0012 (4)0.0031 (4)0.0012 (3)
N20.0158 (5)0.0133 (5)0.0197 (5)0.0012 (4)0.0043 (4)0.0015 (4)
C10.0146 (5)0.0151 (5)0.0088 (5)0.0007 (4)0.0044 (4)0.0011 (4)
C20.0157 (5)0.0101 (5)0.0119 (5)0.0011 (4)0.0027 (4)0.0003 (4)
C30.0136 (5)0.0139 (5)0.0129 (5)0.0004 (4)0.0020 (4)0.0017 (4)
C40.0162 (5)0.0100 (5)0.0149 (5)0.0005 (4)0.0028 (4)0.0031 (4)
C50.0200 (6)0.0140 (5)0.0180 (5)0.0005 (4)0.0045 (5)0.0008 (4)
C60.0238 (6)0.0185 (6)0.0286 (6)0.0024 (5)0.0127 (5)0.0013 (5)
C70.0167 (6)0.0196 (6)0.0356 (7)0.0015 (5)0.0074 (5)0.0074 (5)
C80.0193 (6)0.0204 (6)0.0252 (6)0.0036 (5)0.0016 (5)0.0021 (5)
C90.0204 (6)0.0176 (6)0.0174 (5)0.0006 (4)0.0022 (5)0.0005 (4)
C100.0147 (5)0.0146 (5)0.0153 (5)0.0004 (4)0.0012 (4)0.0030 (4)
C110.0182 (5)0.0143 (5)0.0177 (5)0.0007 (4)0.0022 (5)0.0003 (4)
C120.0172 (5)0.0162 (5)0.0177 (5)0.0036 (4)0.0038 (4)0.0015 (4)
C130.0140 (5)0.0191 (6)0.0247 (6)0.0015 (4)0.0028 (5)0.0010 (5)
C140.0200 (6)0.0166 (6)0.0265 (6)0.0024 (4)0.0027 (5)0.0042 (5)
C150.0179 (6)0.0178 (6)0.0208 (6)0.0010 (4)0.0046 (5)0.0022 (4)
C160.0159 (5)0.0152 (5)0.0210 (6)0.0002 (4)0.0036 (5)0.0039 (4)
C170.0181 (5)0.0166 (5)0.0134 (5)0.0041 (4)0.0023 (4)0.0027 (4)
C180.0197 (6)0.0154 (5)0.0168 (5)0.0024 (4)0.0028 (5)0.0009 (4)
C190.0174 (5)0.0212 (6)0.0192 (6)0.0007 (5)0.0014 (5)0.0040 (5)
C200.0201 (6)0.0243 (6)0.0237 (6)0.0072 (5)0.0053 (5)0.0009 (5)
C210.0262 (6)0.0172 (6)0.0231 (6)0.0052 (5)0.0025 (5)0.0024 (5)
C220.0194 (6)0.0165 (5)0.0196 (6)0.0007 (4)0.0007 (5)0.0003 (4)
C230.0182 (5)0.0175 (5)0.0165 (5)0.0018 (4)0.0031 (5)0.0006 (4)
Geometric parameters (Å, º) top
Cl1—C121.7427 (12)C8—C91.3899 (17)
Cl2—C191.7448 (13)C8—H80.9500
O1—C11.2714 (14)C9—H90.9500
O2—C11.2501 (14)C10—C111.3941 (16)
O3—C31.2559 (14)C10—C151.3975 (16)
O4—C31.2538 (14)C10—C161.5095 (16)
O5—H5A0.795 (18)C11—C121.3878 (16)
O5—H5B0.840 (18)C11—H110.9500
O6—H6A0.828 (18)C12—C131.3822 (17)
O6—H6B0.855 (17)C13—C141.3914 (18)
N1—C161.4921 (14)C13—H130.9500
N1—H1A0.9100C14—C151.3888 (17)
N1—H1B0.9100C14—H140.9500
N1—H1C0.9100C15—H150.9500
N2—C231.4935 (15)C16—H16A0.9900
N2—H2A0.9100C16—H16B0.9900
N2—H2B0.9100C17—C181.3906 (17)
N2—H2C0.9100C17—C221.3994 (16)
C1—C21.5338 (15)C17—C231.5092 (16)
C2—C41.5199 (15)C18—C191.3889 (17)
C2—C31.5503 (15)C18—H180.9500
C2—H21.0000C19—C201.3818 (18)
C4—C91.3960 (16)C20—C211.3901 (19)
C4—C51.3969 (16)C20—H200.9500
C5—C61.3937 (17)C21—C221.3880 (18)
C5—H50.9500C21—H210.9500
C6—C71.3858 (19)C22—H220.9500
C6—H60.9500C23—H23A0.9900
C7—C81.3916 (19)C23—H23B0.9900
C7—H70.9500
H5A—O5—H5B108.4 (15)C15—C10—C16121.68 (11)
H6A—O6—H6B102.7 (15)C12—C11—C10119.51 (11)
C16—N1—H1A109.5C12—C11—H11120.2
C16—N1—H1B109.5C10—C11—H11120.2
H1A—N1—H1B109.5C13—C12—C11121.67 (11)
C16—N1—H1C109.5C13—C12—Cl1119.33 (9)
H1A—N1—H1C109.5C11—C12—Cl1118.99 (9)
H1B—N1—H1C109.5C12—C13—C14118.56 (11)
C23—N2—H2A109.5C12—C13—H13120.7
C23—N2—H2B109.5C14—C13—H13120.7
H2A—N2—H2B109.5C15—C14—C13120.81 (11)
C23—N2—H2C109.5C15—C14—H14119.6
H2A—N2—H2C109.5C13—C14—H14119.6
H2B—N2—H2C109.5C14—C15—C10120.02 (11)
O2—C1—O1124.07 (10)C14—C15—H15120.0
O2—C1—C2119.50 (10)C10—C15—H15120.0
O1—C1—C2116.40 (9)N1—C16—C10114.08 (9)
C4—C2—C1113.34 (9)N1—C16—H16A108.7
C4—C2—C3110.39 (9)C10—C16—H16A108.7
C1—C2—C3108.67 (9)N1—C16—H16B108.7
C4—C2—H2108.1C10—C16—H16B108.7
C1—C2—H2108.1H16A—C16—H16B107.6
C3—C2—H2108.1C18—C17—C22119.48 (11)
O4—C3—O3125.78 (10)C18—C17—C23120.18 (11)
O4—C3—C2117.67 (9)C22—C17—C23120.33 (11)
O3—C3—C2116.51 (10)C19—C18—C17119.10 (11)
C9—C4—C5118.66 (11)C19—C18—H18120.4
C9—C4—C2121.95 (10)C17—C18—H18120.4
C5—C4—C2119.39 (10)C20—C19—C18121.97 (12)
C6—C5—C4120.74 (11)C20—C19—Cl2118.99 (10)
C6—C5—H5119.6C18—C19—Cl2119.04 (10)
C4—C5—H5119.6C19—C20—C21118.74 (11)
C7—C6—C5120.08 (12)C19—C20—H20120.6
C7—C6—H6120.0C21—C20—H20120.6
C5—C6—H6120.0C22—C21—C20120.31 (12)
C6—C7—C8119.63 (12)C22—C21—H21119.8
C6—C7—H7120.2C20—C21—H21119.8
C8—C7—H7120.2C21—C22—C17120.38 (11)
C9—C8—C7120.34 (12)C21—C22—H22119.8
C9—C8—H8119.8C17—C22—H22119.8
C7—C8—H8119.8N2—C23—C17111.54 (9)
C8—C9—C4120.53 (11)N2—C23—H23A109.3
C8—C9—H9119.7C17—C23—H23A109.3
C4—C9—H9119.7N2—C23—H23B109.3
C11—C10—C15119.37 (11)C17—C23—H23B109.3
C11—C10—C16118.79 (10)H23A—C23—H23B108.0
O2—C1—C2—C435.03 (14)C10—C11—C12—C132.61 (18)
O1—C1—C2—C4147.07 (10)C10—C11—C12—Cl1176.06 (9)
O2—C1—C2—C388.10 (12)C11—C12—C13—C140.44 (18)
O1—C1—C2—C389.81 (11)Cl1—C12—C13—C14178.22 (10)
C4—C2—C3—O489.86 (12)C12—C13—C14—C151.64 (19)
C1—C2—C3—O435.02 (13)C13—C14—C15—C101.55 (19)
C4—C2—C3—O387.97 (12)C11—C10—C15—C140.64 (18)
C1—C2—C3—O3147.15 (10)C16—C10—C15—C14174.74 (11)
C1—C2—C4—C985.18 (13)C11—C10—C16—N1119.05 (12)
C3—C2—C4—C936.99 (14)C15—C10—C16—N165.55 (14)
C1—C2—C4—C593.96 (12)C22—C17—C18—C190.32 (17)
C3—C2—C4—C5143.87 (10)C23—C17—C18—C19179.41 (10)
C9—C4—C5—C60.20 (17)C17—C18—C19—C200.70 (18)
C2—C4—C5—C6178.97 (10)C17—C18—C19—Cl2179.13 (9)
C4—C5—C6—C71.26 (18)C18—C19—C20—C210.84 (19)
C5—C6—C7—C81.21 (19)Cl2—C19—C20—C21178.99 (10)
C6—C7—C8—C90.12 (19)C19—C20—C21—C220.04 (19)
C7—C8—C9—C40.95 (18)C20—C21—C22—C171.05 (19)
C5—C4—C9—C80.90 (17)C18—C17—C22—C211.18 (18)
C2—C4—C9—C8179.95 (11)C23—C17—C22—C21179.73 (11)
C15—C10—C11—C122.67 (17)C18—C17—C23—N2113.48 (12)
C16—C10—C11—C12172.85 (10)C22—C17—C23—N267.43 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.911.892.7789 (13)165
N1—H1B···O1i0.911.912.7891 (14)163
N1—H1C···O4ii0.911.822.7286 (13)175
N2—H2A···O20.912.122.9783 (13)157
N2—H2A···O40.912.402.9220 (13)117
N2—H2B···O5iii0.911.982.8530 (14)159
N2—H2C···O5i0.912.012.8863 (13)162
O5—H5A···O10.795 (18)1.931 (18)2.7158 (12)169.2 (16)
O5—H5B···O3i0.841 (17)1.868 (17)2.6818 (12)162.6 (15)
O6—H6A···O10.828 (17)2.060 (17)2.8559 (13)161.0 (16)
O6—H6B···O3iv0.856 (17)1.945 (17)2.7948 (13)172.3 (16)
C9—H9···O40.952.583.2035 (15)123
C15—H15···O20.952.393.2341 (15)148
C22—H22···O3v0.952.583.4936 (15)160
C23—H23A···O6vi0.992.493.3424 (15)144
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2; (iv) x, y+2, z+1; (v) x, y1, z; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C7H9ClN+·C9H6O42·2H2O
Mr499.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)17.3487 (7), 9.7903 (5), 14.3496 (6)
β (°) 103.3832 (12)
V3)2371.07 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.36 × 0.25 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID-II
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.809, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
22684, 5404, 4801
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.03
No. of reflections5404
No. of parameters312
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.28

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.911.892.7789 (13)165
N1—H1B···O1i0.911.912.7891 (14)163
N1—H1C···O4ii0.911.822.7286 (13)175
N2—H2A···O20.912.122.9783 (13)157
N2—H2A···O40.912.402.9220 (13)117
N2—H2B···O5iii0.911.982.8530 (14)159
N2—H2C···O5i0.912.012.8863 (13)162
O5—H5A···O10.795 (18)1.931 (18)2.7158 (12)169.2 (16)
O5—H5B···O3i0.841 (17)1.868 (17)2.6818 (12)162.6 (15)
O6—H6A···O10.828 (17)2.060 (17)2.8559 (13)161.0 (16)
O6—H6B···O3iv0.856 (17)1.945 (17)2.7948 (13)172.3 (16)
C9—H9···O40.952.583.2035 (15)123
C15—H15···O20.952.393.2341 (15)148
C22—H22···O3v0.952.583.4936 (15)160
C23—H23A···O6vi0.992.493.3424 (15)144
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2; (iv) x, y+2, z+1; (v) x, y1, z; (vi) x, y+1, z+1.
 

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUeda, S., Fukunaga, T. & Ishida, H. (2005). Acta Cryst. E61, o1845–o1847.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds