organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1-Adamant­yl)-1,3-di­phenyl­propan-2-ol

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 19 July 2010; accepted 28 July 2010; online 31 July 2010)

In the title compound, C25H30O, the adamantane cage consists of three fused cyclo­hexane rings in classical chair conformations, with C—C—C angles in the range 107.15 (9)–111.55 (9)°. The dihedral angle between the benzene rings is 46.91 (4)° and the conformation is stabilized by a weak intra­molecular C—H⋯π inter­action.

Related literature

For the preparation and spectroscopic properties of the title compound, see: Vícha et al. (2006[Vícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709-722.]). For related structures, see: Vaissermann & Lomas (1997[Vaissermann, J. & Lomas, J. S. (1997). Acta Cryst. C53, 1341-1343.]); Vícha & Nečas (2010[Vícha, R. & Nečas, M. (2010). Acta Cryst. E66, o1626.]).

[Scheme 1]

Experimental

Crystal data
  • C25H30O

  • Mr = 346.49

  • Monoclinic, C 2/c

  • a = 24.2808 (10) Å

  • b = 6.3978 (2) Å

  • c = 25.2555 (14) Å

  • β = 106.183 (5)°

  • V = 3767.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 (large Be window) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.965, Tmax = 1.000

  • 17425 measured reflections

  • 3315 independent reflections

  • 2381 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 0.96

  • 3315 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg1 0.95 2.70 3.3172 (13) 123

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title compound, both benzene rings (C13–C18 and C20–C25) are essentially planar with maximum deviations from their respective best planes of 0.0053 (12) Å for C17 and 0.0073 (12) Å for C25. The angle between the best planes of these rings is 46.97 (3)°. The torsion angles that describe the arrangement of the two benzyl substituents and the adamantane cage – C2—C1—C11—O1, C1—C11—C12—C13, C1—C11—C19—C20, C11—C12—C13—C14 and C11—C19—C20—C21 – are 63.42 (11)°, -134.29 (10)°, -174.22 (10)°, -104.43 (13)°, and 107.99 (13)°, respectively. The conformation of the molecules in the crystal is stabilized by a weak C—H···π interaction, C14—H14···Cg1 (Cg1 is the centre of gravity of C20–C25), with a C14···Cg1 distance of 3.3172 (13) Å (see Fig. 2 and Table 1). In analogy to the previously published structure of 1-adamantyl(diphenyl)methanol (Vícha & Nečas, 2010), no H-bonds were observed in the crystal packing. The shortest distance between two adjacent O-atoms is 4.7666 (11) Å. Surprisingly, the more strained molecules of di(1-adamantyl)(2,5-diisopropylphenyl)methanol with two bulky adamantane cages form O—H···O linked dimers in the solid state (Vaissermann & Lomas, 1997).

Related literature top

For the preparation and spectroscopic properties of the title compound, see: Vícha et al. (2006). For related structures, see: Vaissermann & Lomas (1997); Vícha & Nečas (2010).

Experimental top

The title compound was isolated from a complex mixture obtained from the reaction of adamantane-1-carbonyl chloride with benzylmagnesium chloride as described previously (Vícha et al., 2006). The crystal used for data collection was grown by slow evaporation of a solution in hexane at room temperature.

Refinement top

Hydrogen atoms were positioned geometrically and refined as riding using standard SHELXTL constraints, with their Uiso values set to 1.2Ueq of that of their parent atoms.

Structure description top

In the title compound, both benzene rings (C13–C18 and C20–C25) are essentially planar with maximum deviations from their respective best planes of 0.0053 (12) Å for C17 and 0.0073 (12) Å for C25. The angle between the best planes of these rings is 46.97 (3)°. The torsion angles that describe the arrangement of the two benzyl substituents and the adamantane cage – C2—C1—C11—O1, C1—C11—C12—C13, C1—C11—C19—C20, C11—C12—C13—C14 and C11—C19—C20—C21 – are 63.42 (11)°, -134.29 (10)°, -174.22 (10)°, -104.43 (13)°, and 107.99 (13)°, respectively. The conformation of the molecules in the crystal is stabilized by a weak C—H···π interaction, C14—H14···Cg1 (Cg1 is the centre of gravity of C20–C25), with a C14···Cg1 distance of 3.3172 (13) Å (see Fig. 2 and Table 1). In analogy to the previously published structure of 1-adamantyl(diphenyl)methanol (Vícha & Nečas, 2010), no H-bonds were observed in the crystal packing. The shortest distance between two adjacent O-atoms is 4.7666 (11) Å. Surprisingly, the more strained molecules of di(1-adamantyl)(2,5-diisopropylphenyl)methanol with two bulky adamantane cages form O—H···O linked dimers in the solid state (Vaissermann & Lomas, 1997).

For the preparation and spectroscopic properties of the title compound, see: Vícha et al. (2006). For related structures, see: Vaissermann & Lomas (1997); Vícha & Nečas (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot (50% probability) of the asymmetric unit. Hydrogen atoms are represented as spheres of arbitrary size.
[Figure 2] Fig. 2. Crystal packing viewed along the b-axis. Intramolecular C—H···π interactions are shown as dotted lines. Cg1 is the center of gravity of C20–C25. H-atoms (except those which are involved in C—H···π interactions) have been omitted for clarity.
2-(1-Adamantyl)-1,3-diphenylpropan-2-ol top
Crystal data top
C25H30OF(000) = 1504
Mr = 346.49Dx = 1.222 Mg m3
Monoclinic, C2/cMelting point: 396 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 24.2808 (10) ÅCell parameters from 6762 reflections
b = 6.3978 (2) Åθ = 3.0–27.2°
c = 25.2555 (14) ŵ = 0.07 mm1
β = 106.183 (5)°T = 120 K
V = 3767.8 (3) Å3Block, colourless
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
3315 independent reflections
Radiation source: Enhance (Mo) X-ray Source2381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scanh = 2828
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 77
Tmin = 0.965, Tmax = 1.000l = 1729
17425 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0466P)2]
where P = (Fo2 + 2Fc2)/3
3315 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C25H30OV = 3767.8 (3) Å3
Mr = 346.49Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.2808 (10) ŵ = 0.07 mm1
b = 6.3978 (2) ÅT = 120 K
c = 25.2555 (14) Å0.40 × 0.30 × 0.20 mm
β = 106.183 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
3315 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2381 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 1.000Rint = 0.024
17425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 0.96Δρmax = 0.20 e Å3
3315 reflectionsΔρmin = 0.21 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01323 (3)0.97763 (12)0.09694 (3)0.0262 (2)
H10.04401.03010.11630.039*
C10.05610 (5)0.71728 (17)0.10148 (5)0.0194 (3)
C20.08736 (5)0.73762 (19)0.03965 (5)0.0238 (3)
H2A0.08070.87900.02680.029*
H2B0.07150.63440.01870.029*
C30.15200 (5)0.70122 (19)0.02840 (5)0.0251 (3)
H30.17100.71470.01200.030*
C40.17747 (5)0.86215 (19)0.05970 (5)0.0267 (3)
H4A0.17171.00490.04710.032*
H4B0.21920.83810.05250.032*
C50.14785 (5)0.84099 (17)0.12124 (5)0.0225 (3)
H50.16400.94660.14200.027*
C60.15777 (5)0.62180 (17)0.14074 (5)0.0246 (3)
H6A0.19940.59690.13410.030*
H6B0.13910.60870.18080.030*
C70.13269 (5)0.46028 (18)0.10926 (5)0.0244 (3)
H70.13950.31680.12180.029*
C80.06786 (5)0.49578 (17)0.12020 (5)0.0232 (3)
H8A0.05190.39020.09990.028*
H8B0.04870.47910.16000.028*
C90.16199 (5)0.48078 (19)0.04750 (5)0.0279 (3)
H9A0.20360.45470.04010.034*
H9B0.14610.37600.02690.034*
C100.08327 (5)0.87808 (17)0.13238 (5)0.0216 (3)
H10A0.06460.86740.17250.026*
H10B0.07671.02100.12040.026*
C110.00961 (5)0.76258 (18)0.11266 (5)0.0212 (3)
C120.04245 (5)0.72698 (18)0.17460 (5)0.0230 (3)
H12A0.01370.71290.19560.028*
H12B0.06310.59210.17760.028*
C130.08517 (5)0.89325 (18)0.20235 (5)0.0221 (3)
C140.14410 (5)0.8651 (2)0.21349 (5)0.0314 (3)
H140.15860.73890.20280.038*
C150.18185 (5)1.0196 (2)0.24008 (6)0.0395 (4)
H150.22200.99860.24720.047*
C160.16163 (6)1.2032 (2)0.25620 (5)0.0365 (4)
H160.18771.30860.27430.044*
C170.10354 (5)1.2327 (2)0.24588 (5)0.0326 (3)
H170.08931.35820.25730.039*
C180.06578 (5)1.08006 (18)0.21888 (5)0.0270 (3)
H180.02571.10330.21150.032*
C190.03612 (5)0.62720 (19)0.07513 (5)0.0269 (3)
H19A0.02620.47910.07920.032*
H19B0.01830.66780.03630.032*
C200.10058 (5)0.64448 (19)0.08689 (5)0.0246 (3)
C210.13650 (5)0.4812 (2)0.11175 (5)0.0289 (3)
H210.12030.35640.12130.035*
C220.19554 (5)0.4986 (2)0.12276 (6)0.0325 (3)
H220.21950.38570.13960.039*
C230.21958 (5)0.6795 (2)0.10939 (5)0.0323 (3)
H230.26010.69220.11740.039*
C240.18452 (5)0.8419 (2)0.08428 (5)0.0324 (3)
H240.20090.96640.07480.039*
C250.12569 (5)0.8235 (2)0.07287 (5)0.0287 (3)
H250.10190.93550.05510.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0248 (5)0.0256 (5)0.0256 (5)0.0059 (4)0.0027 (4)0.0034 (4)
C10.0207 (6)0.0180 (6)0.0199 (7)0.0004 (5)0.0061 (5)0.0003 (5)
C20.0221 (6)0.0273 (7)0.0218 (8)0.0001 (5)0.0058 (6)0.0006 (6)
C30.0211 (6)0.0317 (7)0.0206 (8)0.0003 (5)0.0025 (5)0.0015 (6)
C40.0204 (6)0.0260 (7)0.0323 (8)0.0034 (5)0.0049 (6)0.0029 (6)
C50.0221 (6)0.0195 (6)0.0272 (8)0.0048 (5)0.0092 (6)0.0014 (5)
C60.0197 (6)0.0262 (7)0.0293 (8)0.0006 (5)0.0091 (6)0.0017 (6)
C70.0234 (6)0.0168 (6)0.0345 (8)0.0006 (5)0.0105 (6)0.0005 (6)
C80.0228 (6)0.0199 (6)0.0277 (8)0.0022 (5)0.0083 (6)0.0001 (6)
C90.0192 (6)0.0286 (7)0.0357 (9)0.0032 (5)0.0072 (6)0.0099 (6)
C100.0233 (6)0.0190 (6)0.0225 (7)0.0004 (5)0.0065 (5)0.0000 (5)
C110.0222 (6)0.0209 (6)0.0203 (7)0.0009 (5)0.0057 (5)0.0009 (5)
C120.0225 (6)0.0236 (6)0.0228 (7)0.0016 (5)0.0059 (5)0.0004 (6)
C130.0244 (6)0.0277 (7)0.0138 (7)0.0011 (5)0.0047 (5)0.0023 (5)
C140.0253 (7)0.0422 (8)0.0253 (8)0.0041 (6)0.0046 (6)0.0077 (7)
C150.0238 (7)0.0638 (10)0.0297 (9)0.0067 (7)0.0054 (6)0.0108 (8)
C160.0416 (8)0.0420 (8)0.0241 (8)0.0154 (7)0.0062 (7)0.0061 (7)
C170.0432 (8)0.0280 (7)0.0233 (8)0.0000 (6)0.0038 (6)0.0012 (6)
C180.0274 (7)0.0306 (7)0.0210 (8)0.0036 (5)0.0034 (6)0.0006 (6)
C190.0221 (6)0.0350 (7)0.0240 (8)0.0010 (5)0.0070 (6)0.0058 (6)
C200.0226 (6)0.0337 (7)0.0187 (7)0.0002 (5)0.0076 (5)0.0076 (6)
C210.0299 (7)0.0269 (7)0.0323 (8)0.0002 (5)0.0126 (6)0.0065 (6)
C220.0274 (7)0.0351 (8)0.0346 (9)0.0096 (6)0.0082 (6)0.0060 (7)
C230.0193 (6)0.0439 (8)0.0338 (9)0.0003 (6)0.0077 (6)0.0077 (7)
C240.0283 (7)0.0403 (8)0.0313 (9)0.0021 (6)0.0129 (6)0.0021 (7)
C250.0256 (7)0.0394 (8)0.0224 (8)0.0046 (6)0.0086 (6)0.0046 (6)
Geometric parameters (Å, º) top
O1—C111.4414 (13)C11—C191.5500 (16)
O1—H10.8400C11—C121.5620 (16)
C1—C21.5397 (16)C12—C131.5144 (15)
C1—C81.5454 (15)C12—H12A0.9900
C1—C101.5459 (15)C12—H12B0.9900
C1—C111.5680 (15)C13—C181.3906 (16)
C2—C31.5331 (15)C13—C141.3910 (15)
C2—H2A0.9900C14—C151.3876 (17)
C2—H2B0.9900C14—H140.9500
C3—C41.5296 (16)C15—C161.3774 (19)
C3—C91.5316 (17)C15—H150.9500
C3—H31.0000C16—C171.3741 (17)
C4—C51.5258 (17)C16—H160.9500
C4—H4A0.9900C17—C181.3824 (17)
C4—H4B0.9900C17—H170.9500
C5—C61.5276 (15)C18—H180.9500
C5—C101.5323 (15)C19—C201.5136 (15)
C5—H51.0000C19—H19A0.9900
C6—C71.5299 (15)C19—H19B0.9900
C6—H6A0.9900C20—C251.3891 (16)
C6—H6B0.9900C20—C211.3929 (17)
C7—C91.5289 (17)C21—C221.3866 (16)
C7—C81.5373 (15)C21—H210.9500
C7—H71.0000C22—C231.3798 (18)
C8—H8A0.9900C22—H220.9500
C8—H8B0.9900C23—C241.3801 (17)
C9—H9A0.9900C23—H230.9500
C9—H9B0.9900C24—C251.3812 (16)
C10—H10A0.9900C24—H240.9500
C10—H10B0.9900C25—H250.9500
C11—O1—H1109.5C5—C10—H10B109.4
C2—C1—C8107.87 (9)C1—C10—H10B109.4
C2—C1—C10107.26 (9)H10A—C10—H10B108.0
C8—C1—C10108.34 (9)O1—C11—C19107.30 (9)
C2—C1—C11110.87 (9)O1—C11—C12111.20 (9)
C8—C1—C11112.33 (9)C19—C11—C12110.36 (9)
C10—C1—C11110.01 (9)O1—C11—C1105.31 (9)
C3—C2—C1111.40 (9)C19—C11—C1111.21 (9)
C3—C2—H2A109.3C12—C11—C1111.29 (9)
C1—C2—H2A109.3C13—C12—C11116.98 (9)
C3—C2—H2B109.3C13—C12—H12A108.1
C1—C2—H2B109.3C11—C12—H12A108.1
H2A—C2—H2B108.0C13—C12—H12B108.1
C4—C3—C9109.56 (10)C11—C12—H12B108.0
C4—C3—C2110.03 (10)H12A—C12—H12B107.3
C9—C3—C2108.99 (9)C18—C13—C14117.77 (11)
C4—C3—H3109.4C18—C13—C12119.81 (10)
C9—C3—H3109.4C14—C13—C12122.40 (11)
C2—C3—H3109.4C15—C14—C13120.59 (12)
C5—C4—C3108.84 (9)C15—C14—H14119.7
C5—C4—H4A109.9C13—C14—H14119.7
C3—C4—H4A109.9C16—C15—C14120.59 (12)
C5—C4—H4B109.9C16—C15—H15119.7
C3—C4—H4B109.9C14—C15—H15119.7
H4A—C4—H4B108.3C17—C16—C15119.53 (12)
C4—C5—C6109.76 (10)C17—C16—H16120.2
C4—C5—C10109.94 (10)C15—C16—H16120.2
C6—C5—C10109.16 (9)C16—C17—C18120.06 (13)
C4—C5—H5109.3C16—C17—H17120.0
C6—C5—H5109.3C18—C17—H17120.0
C10—C5—H5109.3C17—C18—C13121.46 (12)
C5—C6—C7109.34 (9)C17—C18—H18119.3
C5—C6—H6A109.8C13—C18—H18119.3
C7—C6—H6A109.8C20—C19—C11114.97 (10)
C5—C6—H6B109.8C20—C19—H19A108.5
C7—C6—H6B109.8C11—C19—H19A108.5
H6A—C6—H6B108.3C20—C19—H19B108.5
C9—C7—C6109.44 (10)C11—C19—H19B108.5
C9—C7—C8109.43 (10)H19A—C19—H19B107.5
C6—C7—C8110.04 (10)C25—C20—C21117.97 (11)
C9—C7—H7109.3C25—C20—C19120.90 (11)
C6—C7—H7109.3C21—C20—C19121.13 (11)
C8—C7—H7109.3C22—C21—C20120.84 (12)
C7—C8—C1110.35 (9)C22—C21—H21119.6
C7—C8—H8A109.6C20—C21—H21119.6
C1—C8—H8A109.6C23—C22—C21120.17 (12)
C7—C8—H8B109.6C23—C22—H22119.9
C1—C8—H8B109.6C21—C22—H22119.9
H8A—C8—H8B108.1C22—C23—C24119.65 (12)
C7—C9—C3109.32 (9)C22—C23—H23120.2
C7—C9—H9A109.8C24—C23—H23120.2
C3—C9—H9A109.8C23—C24—C25120.11 (13)
C7—C9—H9B109.8C23—C24—H24119.9
C3—C9—H9B109.8C25—C24—H24119.9
H9A—C9—H9B108.3C24—C25—C20121.25 (12)
C5—C10—C1111.28 (9)C24—C25—H25119.4
C5—C10—H10A109.4C20—C25—H25119.4
C1—C10—H10A109.4
C8—C1—C2—C358.61 (12)C8—C1—C11—C1968.28 (13)
C10—C1—C2—C357.89 (12)C10—C1—C11—C19170.96 (10)
C11—C1—C2—C3178.01 (9)C2—C1—C11—C12175.98 (9)
C1—C2—C3—C460.09 (13)C8—C1—C11—C1255.21 (12)
C1—C2—C3—C960.06 (12)C10—C1—C11—C1265.55 (12)
C9—C3—C4—C560.47 (12)O1—C11—C12—C1317.22 (14)
C2—C3—C4—C559.33 (12)C19—C11—C12—C13101.75 (11)
C3—C4—C5—C660.57 (11)C1—C11—C12—C13134.29 (10)
C3—C4—C5—C1059.52 (12)C11—C12—C13—C1877.21 (14)
C4—C5—C6—C760.41 (12)C11—C12—C13—C14104.43 (13)
C10—C5—C6—C760.15 (13)C18—C13—C14—C150.20 (19)
C5—C6—C7—C959.80 (12)C12—C13—C14—C15178.59 (12)
C5—C6—C7—C860.48 (13)C13—C14—C15—C160.4 (2)
C9—C7—C8—C160.66 (12)C14—C15—C16—C170.1 (2)
C6—C7—C8—C159.63 (13)C15—C16—C17—C180.8 (2)
C2—C1—C8—C758.44 (12)C16—C17—C18—C131.0 (2)
C10—C1—C8—C757.36 (12)C14—C13—C18—C170.49 (18)
C11—C1—C8—C7179.08 (10)C12—C13—C18—C17177.94 (12)
C6—C7—C9—C359.81 (12)O1—C11—C19—C2071.11 (13)
C8—C7—C9—C360.84 (12)C12—C11—C19—C2050.21 (13)
C4—C3—C9—C760.35 (12)C1—C11—C19—C20174.22 (10)
C2—C3—C9—C760.09 (12)C11—C19—C20—C2572.41 (15)
C4—C5—C10—C160.40 (12)C11—C19—C20—C21107.99 (13)
C6—C5—C10—C160.05 (13)C25—C20—C21—C220.84 (19)
C2—C1—C10—C558.06 (12)C19—C20—C21—C22179.55 (11)
C8—C1—C10—C558.14 (12)C20—C21—C22—C230.34 (19)
C11—C1—C10—C5178.72 (9)C21—C22—C23—C240.9 (2)
C2—C1—C11—O163.42 (11)C22—C23—C24—C250.3 (2)
C8—C1—C11—O1175.82 (9)C23—C24—C25—C200.9 (2)
C10—C1—C11—O155.05 (12)C21—C20—C25—C241.47 (19)
C2—C1—C11—C1952.49 (12)C19—C20—C25—C24178.92 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C20–C25 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg10.952.703.3172 (13)123

Experimental details

Crystal data
Chemical formulaC25H30O
Mr346.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)24.2808 (10), 6.3978 (2), 25.2555 (14)
β (°) 106.183 (5)
V3)3767.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.965, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17425, 3315, 2381
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 0.96
No. of reflections3315
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C20–C25 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg10.952.703.3172 (13)122.82
 

Acknowledgements

Financial support of this work by the Inter­nal Founding Agency of Tomas Bata University in Zlin, project No. IGA/7/FT/10/D, is gratefully acknowledged.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaissermann, J. & Lomas, J. S. (1997). Acta Cryst. C53, 1341–1343.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVícha, R. & Nečas, M. (2010). Acta Cryst. E66, o1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709–722.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds