metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra-μ1,1-azido-bis­­(μ2-pyrimidine-2-carboxyl­ato)tricopper(II)]

aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com

(Received 2 June 2010; accepted 8 July 2010; online 21 July 2010)

In the title compound, [Cu3(C5H3N2O2)2(N3)4]n, one of the CuII atoms lies on an inversion centre and is octa­hedrally coordinated by two bidentate chelating pyrimidine-2-carboxyl­ate ligands and two azide anions, each of which gives an N:N-bridge to the second inversion-related CuII centre in the formula unit. The second CuII atom is five-coordinated with a distorted square-pyramidal coordination sphere comprising a single bidentate chelating pyrimidine-2-carboxyl­ate anion and three azide N anions, two of which doubly bridge centrosymmetric CuII centres, giving a two-dimensional network structure extending parallel to (010).

Related literature

Copper azide complexes have attracted much attention in recent years because the azide anions can mediate magnetic inter­actions effectively between the copper ions, see: Zhao et al. (2009[Zhao, J.-P., Hu, B.-W., Yang, Q., Liu, F.-C., Hu, T.-L. & Bu, X.-H. (2009). Chin. Sci. Bull. 54, 2461-2466.]). The structures of the complexes are dependant on the co-ligand and conditions employed in the synthesis, see: Zeng et al. (2009[Zeng, Y.-F., Hu, X., Liu, F.-C. & Bu, X.-H. (2009). Chem. Soc. Rev. 38 469-480.]). For azide complexes with 2,2′-bipyrimidine or oxalate as co-ligands, see: Cortes et al. (1996[Cortes, R., Lezama, L., Pizarro, J. L., Arriortua, M. A. & Rojo, T. (1996). Angew. Chem. Int. Ed. Engl. 35, 1810-1812.]); Escuer et al. (1994[Escuer, A., Vicente, R., Solans, X. & Font-Bardia, M. (1994). Inorg. Chem. 33, 6007-6011.]) and for an azide complex with a pyrimidine-2-carboxyl­ate ligand, see: Suarez-Varela et al. (2008[Suarez-Varela, J., Mota, A. J., Aouryaghal, H., Cano, J., Rodriguez-Dieguez, A., Luneau, D., Colacio, E. (2008). Inorg. Chem. 47, 8143-8158.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(C5H3N2O2)2(N3)4]

  • Mr = 604.96

  • Monoclinic, P 21 /c

  • a = 7.4743 (15) Å

  • b = 14.997 (3) Å

  • c = 9.479 (4) Å

  • β = 122.31 (2)°

  • V = 898.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.59 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.625, Tmax = 1.000

  • 7028 measured reflections

  • 1572 independent reflections

  • 1305 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.134

  • S = 1.24

  • 1572 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Copper azide complexes have attracted much attention in recent years because the azide anions can mediate magnetic interactions effectively between the copper ions (Zhao et al., 2009). The structures of those complexes are dependant on the co-ligand and conditions employed in the synthesis (Zeng et al., 2009). Some azide complexes with 2,2'-bipyrimidine or oxalate as co-ligands have been reported (Cortes et al., 1996); Escuer et al., 1994). The pyrimidine-2-carboxylate ligand can be considered as the combination of 2,2'-bipyrimidine and oxalate, and a new metal azide complex with it as ligand has been reported (Suarez-Varela et al., 2008). In this work we report a new copper(II) azide complex with pyrimidine-2-carboxylate as co-ligand, [Cu3(C5H3N2O2)2(N3)4]n (I), prepared under hydrothermal conditions and its structure is reported here.

In the asymmetric units of the title compound, there are one and a half copper(II) cations, two azido anions and two pyrimidine-2-carboxylate ligands (Fig. 1). One of the cations (Cu2) lies on an inversion centre and is octahedrally coordinated by two bidentate chelate pyrimidine-2-carboxylato-N,O ligands and two azido anions, each giving an N bridge to the inversion-related Cu1 centres in the formula unit [Cu2—Cu1, 3.4652 (14) Å]. A second weak contact between a carboxyl O (O1) to Cu1 is also present [Cu1···O1, 2.950 (4) Å] but is too long to be considered a bridging (Cu–O) bond. The coordination sphere about Cu1 is five-coordinate with a distorted square pyramidal coordination sphere comprising a single bidentate chelate pyrimidine-2-carboxylate anion and three azido N anions, one bridging to Cu2, the other two giving double N bridges to centrosymmetrically related Cu centres [Cu1—Cu1iii, 3.329 (2) Å] [symmetry code: (iii) x -1, y, z]. Structure extension results in a two-dimensional network (Figs. 2, 3).

Related literature top

Copper azide complexes have attracted much attention in recent years because the azide anions can mediate magnetic interactions effectively between the copper ions, see: Zhao et al. (2009). The structures of the complexes are dependant on the co-ligand and conditions employed in the synthesis, see: Zeng et al. (2009). For azide complexes with 2,2'-bipyrimidine or oxalate as co-ligands, see: Cortes et al. (1996); Escuer et al. (1994) and for an azide complex with a pyrimidine-2-carboxylate ligand, see: Suarez-Varela et al. (2008).

Experimental top

A mixture of copper(II) nitrate (1.5mmol) and sodium azide (2 mmol), and pyrimidine-2-carboxylic acid (0.5 mmol) in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Black crystals of the title complex were collected after the bomb was allowed to cool to room temperature (yield 20% based on Cu). Caution: azides may be explosive: although we have had no problems in this work, only small quantities should be prepared and should be handled with great caution.

Refinement top

Hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Copper azide complexes have attracted much attention in recent years because the azide anions can mediate magnetic interactions effectively between the copper ions (Zhao et al., 2009). The structures of those complexes are dependant on the co-ligand and conditions employed in the synthesis (Zeng et al., 2009). Some azide complexes with 2,2'-bipyrimidine or oxalate as co-ligands have been reported (Cortes et al., 1996); Escuer et al., 1994). The pyrimidine-2-carboxylate ligand can be considered as the combination of 2,2'-bipyrimidine and oxalate, and a new metal azide complex with it as ligand has been reported (Suarez-Varela et al., 2008). In this work we report a new copper(II) azide complex with pyrimidine-2-carboxylate as co-ligand, [Cu3(C5H3N2O2)2(N3)4]n (I), prepared under hydrothermal conditions and its structure is reported here.

In the asymmetric units of the title compound, there are one and a half copper(II) cations, two azido anions and two pyrimidine-2-carboxylate ligands (Fig. 1). One of the cations (Cu2) lies on an inversion centre and is octahedrally coordinated by two bidentate chelate pyrimidine-2-carboxylato-N,O ligands and two azido anions, each giving an N bridge to the inversion-related Cu1 centres in the formula unit [Cu2—Cu1, 3.4652 (14) Å]. A second weak contact between a carboxyl O (O1) to Cu1 is also present [Cu1···O1, 2.950 (4) Å] but is too long to be considered a bridging (Cu–O) bond. The coordination sphere about Cu1 is five-coordinate with a distorted square pyramidal coordination sphere comprising a single bidentate chelate pyrimidine-2-carboxylate anion and three azido N anions, one bridging to Cu2, the other two giving double N bridges to centrosymmetrically related Cu centres [Cu1—Cu1iii, 3.329 (2) Å] [symmetry code: (iii) x -1, y, z]. Structure extension results in a two-dimensional network (Figs. 2, 3).

Copper azide complexes have attracted much attention in recent years because the azide anions can mediate magnetic interactions effectively between the copper ions, see: Zhao et al. (2009). The structures of the complexes are dependant on the co-ligand and conditions employed in the synthesis, see: Zeng et al. (2009). For azide complexes with 2,2'-bipyrimidine or oxalate as co-ligands, see: Cortes et al. (1996); Escuer et al. (1994) and for an azide complex with a pyrimidine-2-carboxylate ligand, see: Suarez-Varela et al. (2008).

Computing details top

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination mode and linkage of the metal ions and ligands in (I). Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) -x + 2, -y, -z; (B) -x + 1, -y, -z - 1; (C) -x + 1, -y, -z; (D) x - 1, y, z].
[Figure 2] Fig. 2. The two-dimensional network structure of (I).
[Figure 3] Fig. 3. The packing mode of the complex in the unit cell.
Poly[tetra-µ1,1-azido-bis(µ2-pyrimidine-2-carboxylato)tricopper(II)] top
Crystal data top
[Cu3(C5H3N2O2)2(N3)4]F(000) = 594
Mr = 604.96Dx = 2.237 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7433 reflections
a = 7.4743 (15) Åθ = 3.2–27.5°
b = 14.997 (3) ŵ = 3.59 mm1
c = 9.479 (4) ÅT = 293 K
β = 122.31 (2)°Block, black
V = 898.0 (5) Å30.20 × 0.18 × 0.18 mm
Z = 2
Data collection top
Rigaku SCXmini CCD
diffractometer
1572 independent reflections
Radiation source: fine-focus sealed tube1305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.625, Tmax = 1.000k = 1717
7028 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.0543P)2 + 2.0516P]
where P = (Fo2 + 2Fc2)/3
1572 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu3(C5H3N2O2)2(N3)4]V = 898.0 (5) Å3
Mr = 604.96Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4743 (15) ŵ = 3.59 mm1
b = 14.997 (3) ÅT = 293 K
c = 9.479 (4) Å0.20 × 0.18 × 0.18 mm
β = 122.31 (2)°
Data collection top
Rigaku SCXmini CCD
diffractometer
1572 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1305 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 1.000Rint = 0.061
7028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.24Δρmax = 0.71 e Å3
1572 reflectionsΔρmin = 0.46 e Å3
151 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.64025 (11)0.01316 (5)0.29370 (10)0.0259 (3)
Cu20.500000.000000.000000.0221 (3)
O10.7728 (6)0.0882 (3)0.0359 (5)0.0278 (12)
O21.1215 (6)0.0703 (3)0.1528 (5)0.0234 (12)
N10.4612 (8)0.0444 (4)0.2223 (7)0.0279 (17)
N20.4377 (9)0.1253 (4)0.2455 (7)0.0344 (19)
N30.4134 (13)0.2001 (5)0.2695 (10)0.063 (3)
N40.4241 (9)0.0895 (4)0.4673 (7)0.0365 (19)
N50.2454 (9)0.0933 (4)0.4977 (6)0.035 (2)
N60.0719 (11)0.0987 (6)0.5367 (8)0.064 (3)
N71.1181 (8)0.0896 (3)0.2648 (6)0.0245 (17)
N80.7462 (8)0.0827 (3)0.1309 (6)0.0224 (17)
C10.9407 (9)0.0464 (4)0.1173 (7)0.0214 (17)
C20.9320 (9)0.0481 (4)0.1760 (7)0.0221 (17)
C30.7414 (11)0.1682 (4)0.1722 (9)0.033 (2)
C40.9286 (12)0.2167 (5)0.2647 (9)0.038 (3)
C51.1161 (11)0.1746 (4)0.3094 (8)0.032 (2)
H3A0.612500.195100.138800.0390*
H4A0.927200.275500.295300.0460*
H5A1.243100.205500.371300.0390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0184 (4)0.0326 (5)0.0258 (5)0.0030 (3)0.0112 (4)0.0039 (3)
Cu20.0168 (6)0.0274 (6)0.0215 (6)0.0014 (4)0.0099 (5)0.0009 (4)
O10.026 (2)0.026 (2)0.030 (2)0.0038 (19)0.014 (2)0.0047 (19)
O20.018 (2)0.028 (2)0.023 (2)0.0004 (17)0.0102 (18)0.0010 (18)
N10.025 (3)0.031 (3)0.034 (3)0.001 (2)0.020 (3)0.001 (3)
N20.029 (3)0.048 (4)0.035 (3)0.001 (3)0.023 (3)0.001 (3)
N30.091 (6)0.032 (4)0.092 (6)0.014 (4)0.066 (5)0.011 (4)
N40.026 (3)0.045 (4)0.035 (3)0.003 (3)0.014 (3)0.010 (3)
N50.035 (4)0.050 (4)0.018 (3)0.012 (3)0.012 (3)0.002 (3)
N60.034 (4)0.114 (7)0.040 (4)0.025 (4)0.018 (3)0.001 (4)
N70.021 (3)0.024 (3)0.026 (3)0.005 (2)0.011 (2)0.003 (2)
N80.021 (3)0.025 (3)0.022 (3)0.001 (2)0.012 (2)0.002 (2)
C10.021 (3)0.026 (3)0.016 (3)0.001 (3)0.009 (3)0.000 (3)
C20.027 (3)0.020 (3)0.022 (3)0.000 (3)0.015 (3)0.002 (2)
C30.035 (4)0.029 (4)0.037 (4)0.007 (3)0.021 (3)0.002 (3)
C40.047 (5)0.025 (4)0.041 (4)0.000 (3)0.022 (4)0.004 (3)
C50.030 (4)0.035 (4)0.026 (4)0.011 (3)0.012 (3)0.004 (3)
Geometric parameters (Å, º) top
Cu1—N11.991 (7)N2—N31.140 (10)
Cu1—N41.946 (6)N4—N51.208 (10)
Cu1—N4i2.563 (6)N5—N61.146 (12)
Cu1—O2ii1.995 (5)N7—C21.334 (9)
Cu1—N7ii2.030 (6)N7—C51.346 (8)
Cu2—O12.298 (5)N8—C21.321 (10)
Cu2—N12.077 (6)N8—C31.347 (8)
Cu2—N82.006 (6)C1—C21.537 (9)
Cu2—O1iii2.298 (5)C3—C41.394 (12)
Cu2—N1iii2.077 (6)C4—C51.381 (13)
Cu2—N8iii2.006 (5)C3—H3A0.9300
O1—C11.236 (8)C4—H4A0.9300
O2—C11.258 (9)C5—H5A0.9300
N1—N21.229 (8)
N1—Cu1—N497.9 (3)Cu1—N1—N2115.2 (5)
N1—Cu1—N4i101.4 (2)Cu2—N1—N2115.3 (5)
O2ii—Cu1—N191.3 (2)N1—N2—N3178.9 (8)
N1—Cu1—N7ii155.5 (2)Cu1—N4—N5122.8 (5)
N4—Cu1—N4i85.8 (2)Cu1—N4—Cu1i94.2 (2)
O2ii—Cu1—N4167.4 (2)Cu1i—N4—N599.0 (4)
N4—Cu1—N7ii93.4 (3)N4—N5—N6175.6 (7)
O2ii—Cu1—N4i83.89 (19)C2—N7—C5117.2 (6)
N4i—Cu1—N7ii101.0 (2)Cu1ii—N7—C2112.0 (4)
O2ii—Cu1—N7ii81.5 (2)Cu1ii—N7—C5130.6 (5)
O1—Cu2—N188.1 (2)Cu2—N8—C2114.5 (4)
O1—Cu2—N879.4 (2)Cu2—N8—C3127.6 (6)
O1—Cu2—O1iii180.00C2—N8—C3117.8 (6)
O1—Cu2—N1iii91.9 (2)O1—C1—O2127.6 (6)
O1—Cu2—N8iii100.6 (2)O1—C1—C2117.9 (6)
N1—Cu2—N890.8 (2)O2—C1—C2114.4 (6)
O1iii—Cu2—N191.9 (2)N7—C2—N8125.6 (6)
N1—Cu2—N1iii180.00N7—C2—C1115.3 (6)
N1—Cu2—N8iii89.2 (2)N8—C2—C1119.1 (6)
O1iii—Cu2—N8100.6 (2)N8—C3—C4120.4 (8)
N1iii—Cu2—N889.2 (2)C3—C4—C5117.9 (7)
N8—Cu2—N8iii180.00N7—C5—C4121.1 (7)
O1iii—Cu2—N1iii88.1 (2)N8—C3—H3A120.00
O1iii—Cu2—N8iii79.4 (2)C4—C3—H3A120.00
N1iii—Cu2—N8iii90.8 (2)C3—C4—H4A121.00
Cu2—O1—C1109.0 (4)C5—C4—H4A121.00
Cu1ii—O2—C1116.6 (4)N7—C5—H5A119.00
Cu1—N1—Cu2116.8 (3)C4—C5—H5A119.00
O1—Cu1—N1—N2136.0 (5)N8—Cu2—N1—Cu184.3 (3)
N4—Cu1—N1—Cu2103.7 (3)N8—Cu2—N1—N255.7 (6)
N4—Cu1—N1—N2116.3 (5)O1iii—Cu2—N1—Cu1175.1 (3)
N4i—Cu1—N1—Cu2169.0 (3)O1iii—Cu2—N1—N244.9 (6)
N4i—Cu1—N1—N228.9 (5)N8iii—Cu2—N1—Cu195.7 (3)
O2ii—Cu1—N1—Cu284.9 (3)N8iii—Cu2—N1—N2124.3 (6)
O2ii—Cu1—N1—N255.1 (5)O1—Cu2—N8—C22.2 (4)
N7ii—Cu1—N1—Cu212.9 (8)O1—Cu2—N8—C3175.8 (6)
N7ii—Cu1—N1—N2127.2 (6)N1—Cu2—N8—C290.1 (5)
O1—Cu1—N4—N572.4 (6)N1—Cu2—N8—C387.9 (6)
O1—Cu1—N4—Cu1i175.86 (15)O1iii—Cu2—N8—C2177.8 (4)
N1—Cu1—N4—N52.6 (6)O1iii—Cu2—N8—C34.3 (6)
N1—Cu1—N4—Cu1i100.9 (2)N1iii—Cu2—N8—C289.9 (5)
N4i—Cu1—N4—N5103.5 (6)N1iii—Cu2—N8—C392.2 (6)
N4i—Cu1—N4—Cu1i0.0 (2)Cu1—O1—C1—O291.6 (6)
N7ii—Cu1—N4—N5155.7 (6)Cu1—O1—C1—C284.7 (5)
N7ii—Cu1—N4—Cu1i100.8 (2)Cu2—O1—C1—O2175.2 (5)
N1—Cu1—N4i—Cu1i97.2 (3)Cu2—O1—C1—C21.2 (6)
N1—Cu1—N4i—N5i138.6 (4)Cu1ii—O2—C1—O1178.1 (5)
N4—Cu1—N4i—Cu1i0.0 (3)Cu1ii—O2—C1—C25.5 (6)
N4—Cu1—N4i—N5i124.2 (5)C5—N7—C2—N81.4 (9)
O1—Cu1—O2ii—C1ii87.9 (4)C5—N7—C2—C1175.8 (5)
N1—Cu1—O2ii—C1ii160.8 (4)Cu1ii—N7—C2—N8176.8 (5)
O1—Cu1—N7ii—C2ii84.5 (4)Cu1ii—N7—C2—C10.4 (6)
O1—Cu1—N7ii—C5ii90.1 (6)C2—N7—C5—C40.0 (10)
N1—Cu1—N7ii—C2ii75.9 (7)Cu1ii—N7—C5—C4174.4 (5)
N1—Cu1—N7ii—C5ii98.7 (7)Cu2—N8—C2—N7179.3 (5)
N4—Cu1—N7ii—C2ii166.6 (4)Cu2—N8—C2—C13.6 (7)
N4—Cu1—N7ii—C5ii18.8 (6)C3—N8—C2—N72.6 (9)
N1—Cu2—O1—Cu12.98 (18)C3—N8—C2—C1174.6 (6)
N1—Cu2—O1—C191.6 (4)Cu2—N8—C3—C4179.9 (5)
N8—Cu2—O1—Cu194.14 (17)C2—N8—C3—C42.2 (10)
N8—Cu2—O1—C10.4 (4)O1—C1—C2—N7179.3 (5)
N1iii—Cu2—O1—Cu1177.02 (18)O1—C1—C2—N83.3 (8)
N1iii—Cu2—O1—C188.4 (4)O2—C1—C2—N73.9 (8)
N8iii—Cu2—O1—Cu185.86 (17)O2—C1—C2—N8173.5 (5)
N8iii—Cu2—O1—C1179.6 (4)N8—C3—C4—C51.0 (11)
O1—Cu2—N1—Cu14.9 (3)C3—C4—C5—N70.2 (11)
O1—Cu2—N1—N2135.1 (6)
Symmetry codes: (i) x+1, y, z1; (ii) x+2, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu3(C5H3N2O2)2(N3)4]
Mr604.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.4743 (15), 14.997 (3), 9.479 (4)
β (°) 122.31 (2)
V3)898.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.59
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerRigaku SCXmini CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.625, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7028, 1572, 1305
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.134, 1.24
No. of reflections1572
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.46

Computer programs: SCXmini Benchtop Crystallography System Software (Rigaku, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCortes, R., Lezama, L., Pizarro, J. L., Arriortua, M. A. & Rojo, T. (1996). Angew. Chem. Int. Ed. Engl. 35, 1810–1812.  CSD CrossRef CAS Web of Science Google Scholar
First citationEscuer, A., Vicente, R., Solans, X. & Font-Bardia, M. (1994). Inorg. Chem. 33, 6007–6011.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuarez-Varela, J., Mota, A. J., Aouryaghal, H., Cano, J., Rodriguez-Dieguez, A., Luneau, D., Colacio, E. (2008). Inorg. Chem. 47, 8143–8158.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZeng, Y.-F., Hu, X., Liu, F.-C. & Bu, X.-H. (2009). Chem. Soc. Rev. 38 469–480.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, J.-P., Hu, B.-W., Yang, Q., Liu, F.-C., Hu, T.-L. & Bu, X.-H. (2009). Chin. Sci. Bull. 54, 2461–2466.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds