organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­fluoro­phen­yl)-N′-(2,5-di­meth­oxy­phen­yl)urea

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 8 July 2010; accepted 10 August 2010; online 18 August 2010)

In the title compound, C15H14F2N2O3, the dihedral angle between the benzene rings is 64.5 (1)°. One F atom is disordered over two meta positions, with occupancy factors of 0.72 and 0.28. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds involving two N—H and one C=O groups of the urea central fragment, leading to a supra­molecular chain along [011].

Related literature

For general background to the development of potent inhib­itory agents of tyrosinase and melanin formation used as whitening agents, see: Cabanes et al. (1994[Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982-985.]); Choi et al. (2010[Choi, H., Han, B. H., Lee, T., Kang, S. K. & Sung, C. K. (2010). Acta Cryst. E66, o1142.]); Criton & Le Mellay-Hamon (2008[Criton, M. & Le Mellay-Hamon, V. (2008). Bioorg. Med. Chem. Lett. 18, 3607-3610.]); Germanas et al. (2007[Germanas, J. P., Wang, S., Miner, A., Hao, W. & Ready, J. M. (2007). Bioorg. Med. Chem. Lett. 17, 6871-6875.]); Dawley & Flurkey (1993[Dawley, R. M. & Flurkey, W. H. (1993). J. Food Sci. 58, 609-610.]); Ha et al. (2007[Ha, Y. M., Chung, S. W., Song, S., Lee, H., Suh, H. & Chung, H. Y. (2007). Biol. Pharm. Bull. 30, 1711-1715.]); Hong et al. (2008[Hong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49.]); Kwak et al. (2010[Kwak, S.-Y., Noh, J.-M., Park, S.-H., Byun, J.-W., Choi, H.-R., Park, K.-C. & Lee, Y.-S. (2010). Bioorg. Med. Chem. Lett. 20, 738-741.]); Lee et al. (2007[Lee, C. W., Son, E.-M., Kim, H. S., Xu, P., Batmunkh, T., Lee, B.-J. & Koo, K. A. (2007). Bioorg. Med. Chem. Lett. 17, 5462-5464.]); Nerya et al. (2003[Nerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R. & Tamir, S. (2003). J. Agric. Food Chem. 51, 1201-1207.]); Yi et al. (2009[Yi, W., Cao, R.-H., Chen, Z.-Y., Yu, L., Ma, L. & Song, H.-C. (2009). Chem. Pharm. Bull. 57, 1273-1277.], 2010[Yi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. (2010). Eur. J. Med. Chem. 45, 639-646.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14F2N2O3

  • Mr = 308.28

  • Monoclinic, P 21 /c

  • a = 13.209 (2) Å

  • b = 12.0887 (18) Å

  • c = 9.0740 (12) Å

  • β = 104.990 (4)°

  • V = 1399.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 174 K

  • 0.09 × 0.04 × 0.02 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 10104 measured reflections

  • 2433 independent reflections

  • 1211 reflections with I > 2σ(I)

  • Rint = 0.120

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.145

  • S = 0.96

  • 2433 reflections

  • 218 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O11i 0.84 (4) 2.09 (4) 2.907 (4) 163 (4)
N12—H12⋯O11i 0.80 (4) 2.30 (4) 3.002 (4) 147 (4)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Melanin is the pigment responsible for the color of human skin and it is formed through a series of oxidative reaction in the presence of key enzyme tyrosinase (Ha et al., 2007) that converts tyrosine into melanin. It is secreted by melanocyte cells distributed in the basal layer of the dermis. Its role is to protect the skin from ultraviolet (UV) damage by absorbing the ultraviolet sunlight and removing reactive oxygen species. Therefore these inhibitors are target molecules for developing anti-pigmentation agents. Common tyrosinase inhibitors (Dawley & Flurkey, 1993; Nerya et al., 2003) are hydroquinone, ascorbic acid, kojic acid and arbutin (Cabanes et al., 1994). Recently, numerous reports have focused on the inhibition of tyrosinase. They are containing aromatic, methoxy, hydroxyl (Hong et al., 2008; Lee et al., 2007), aldehyde (Yi et al., 2010), amide (Kwak et al., 2010; Choi et al., 2010), thiosemicarbazone (Yi et al., 2009), thiazole (Germanas et al., 2007), thiourea (Criton & Le Mellay-Hamon, 2008) groups in their structures, and act as a specific functional group to make the skin white by inhibiting the production of melanin. However, most of them are not potent enough to put into practical use due to their weak individual activities, poor skin penetration, and low stability of formulations, as well as toxicity or safety concerns. Consequently, there is still need to search and develop novel tyrosinase inhibitors with better activities together with lower side effects. To complement the inadequacy of current whitening agent above mentioned and maximize the effect of inhabitation of melanin creation, we have synthesized the title compound, (I), from the reaction of 3,4-difluoroaniline with 2,5-dimethoxyphenyl isocyanate, under ambient conditions. Herein, the crystal sturucture of (I) is described (Fig. 1).

The 3,4-difluoroaniline group and 2,5-dimethoxyphenyl moiety are essentially planar, with a mean deviations of 0.007 Å and 0.016 Å, respectively, from the corresponding least-squares planes defined by each nine constituent atoms. The dihedral angle between the benzene rings is 64.5 (1) °. The presence of intermolecular N—H···O hydrogen bonds lead to the formation a supramolecular chain along [011].

Related literature top

For general background to the development of potent inhibitory agents of tyrosinase and melanin formation used as whitening agents, see: Cabanes et al. (1994); Choi et al. (2010); Criton & Le Mellay-Hamon (2008); Germanas et al. (2007); Dawley & Flurkey (1993); Ha et al. (2007); Hong et al. (2008); Kwak et al. (2010); Lee et al. (2007); Nerya et al. (2003); Yi et al. (2009, 2010).

Experimental top

2,5-Dimethoxyphenyl isocyanate and 3,4-difluoroaniline were purchased from Sigma Chemical Co. Solvents used for synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and used without further purification. The title compound was prepared from the reaction of 3,4-difluoroaniline (0.28 ml, 3 mmol) and 2,5-dimethoxyphenyl isocyanate (0.5 g, 3 mmol) in acetonitrile (6 ml). The mixture was refluxed for 8 h at 353 K, and then treated with water and extracted with methylene chloride (2 × 50 mL). The combined extracts were dried over anhydrous magnesium sulfate. Removal of solvent gave a white solid (90%, m.p. 454 K). Single crystals were obtained by slow evaporation of a methylene chloride solution at room temperature.

Refinement top

The amide H atoms were located in a difference map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic and 1.5Ueq(C) for methyl H atoms. Atom F7 is disordered over two positions and the two split atoms are designated by having the suffix A after the atom number. The final occupancy factors are F7 0.72 and F7A 0.28. The measured diffraction fraction is relatively low of 95.5% due to a tiny single-crystal for data collection. This single-crystal was the largest one we could produce as described in the experimental section.

Structure description top

Melanin is the pigment responsible for the color of human skin and it is formed through a series of oxidative reaction in the presence of key enzyme tyrosinase (Ha et al., 2007) that converts tyrosine into melanin. It is secreted by melanocyte cells distributed in the basal layer of the dermis. Its role is to protect the skin from ultraviolet (UV) damage by absorbing the ultraviolet sunlight and removing reactive oxygen species. Therefore these inhibitors are target molecules for developing anti-pigmentation agents. Common tyrosinase inhibitors (Dawley & Flurkey, 1993; Nerya et al., 2003) are hydroquinone, ascorbic acid, kojic acid and arbutin (Cabanes et al., 1994). Recently, numerous reports have focused on the inhibition of tyrosinase. They are containing aromatic, methoxy, hydroxyl (Hong et al., 2008; Lee et al., 2007), aldehyde (Yi et al., 2010), amide (Kwak et al., 2010; Choi et al., 2010), thiosemicarbazone (Yi et al., 2009), thiazole (Germanas et al., 2007), thiourea (Criton & Le Mellay-Hamon, 2008) groups in their structures, and act as a specific functional group to make the skin white by inhibiting the production of melanin. However, most of them are not potent enough to put into practical use due to their weak individual activities, poor skin penetration, and low stability of formulations, as well as toxicity or safety concerns. Consequently, there is still need to search and develop novel tyrosinase inhibitors with better activities together with lower side effects. To complement the inadequacy of current whitening agent above mentioned and maximize the effect of inhabitation of melanin creation, we have synthesized the title compound, (I), from the reaction of 3,4-difluoroaniline with 2,5-dimethoxyphenyl isocyanate, under ambient conditions. Herein, the crystal sturucture of (I) is described (Fig. 1).

The 3,4-difluoroaniline group and 2,5-dimethoxyphenyl moiety are essentially planar, with a mean deviations of 0.007 Å and 0.016 Å, respectively, from the corresponding least-squares planes defined by each nine constituent atoms. The dihedral angle between the benzene rings is 64.5 (1) °. The presence of intermolecular N—H···O hydrogen bonds lead to the formation a supramolecular chain along [011].

For general background to the development of potent inhibitory agents of tyrosinase and melanin formation used as whitening agents, see: Cabanes et al. (1994); Choi et al. (2010); Criton & Le Mellay-Hamon (2008); Germanas et al. (2007); Dawley & Flurkey (1993); Ha et al. (2007); Hong et al. (2008); Kwak et al. (2010); Lee et al. (2007); Nerya et al. (2003); Yi et al. (2009, 2010).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (l), showing the atom-numbering scheme and 50% probability ellipsoids.
N-(3,4-Difluorophenyl)-N'-(2,5-dimethoxyphenyl)urea top
Crystal data top
C15H14F2N2O3F(000) = 640
Mr = 308.28Dx = 1.463 Mg m3
Monoclinic, P21/cMelting point: 454 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.209 (2) ÅCell parameters from 398 reflections
b = 12.0887 (18) Åθ = 3.0–18.6°
c = 9.0740 (12) ŵ = 0.12 mm1
β = 104.990 (4)°T = 174 K
V = 1399.6 (4) Å3Needle, colourless
Z = 40.09 × 0.04 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.120
Radiation source: fine-focus sealed tubeθmax = 25.3°, θmin = 1.6°
φ and ω scansh = 1514
10104 measured reflectionsk = 1214
2433 independent reflectionsl = 410
1211 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0573P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2433 reflectionsΔρmax = 0.25 e Å3
218 parametersΔρmin = 0.26 e Å3
Crystal data top
C15H14F2N2O3V = 1399.6 (4) Å3
Mr = 308.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.209 (2) ŵ = 0.12 mm1
b = 12.0887 (18) ÅT = 174 K
c = 9.0740 (12) Å0.09 × 0.04 × 0.02 mm
β = 104.990 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1211 reflections with I > 2σ(I)
10104 measured reflectionsRint = 0.120
2433 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.25 e Å3
2433 reflectionsΔρmin = 0.26 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6480 (3)0.4327 (3)0.4129 (4)0.0243 (9)
C20.5993 (3)0.4687 (3)0.2657 (4)0.0278 (10)
H20.59910.42450.18180.033*
C30.5517 (3)0.5705 (4)0.2464 (4)0.0351 (11)
H30.51890.59490.14840.042*0.28
C40.5517 (3)0.6365 (3)0.3683 (5)0.0354 (11)
C50.5984 (3)0.6018 (4)0.5137 (4)0.0336 (11)
H50.59730.64680.59640.04*0.72
C60.6469 (3)0.5008 (3)0.5371 (4)0.0278 (10)
H60.67910.47750.63580.033*
F70.5055 (3)0.6079 (3)0.1088 (3)0.0597 (11)0.72
F7A0.6007 (6)0.6720 (7)0.6227 (8)0.041 (2)0.28
F80.5028 (2)0.7365 (2)0.3447 (3)0.0586 (8)
N90.6969 (2)0.3289 (3)0.4443 (3)0.0274 (9)
H90.706 (3)0.302 (3)0.533 (4)0.038 (12)*
C100.7429 (3)0.2699 (3)0.3512 (4)0.0271 (10)
O110.74653 (19)0.3012 (2)0.2231 (2)0.0301 (7)
N120.7839 (3)0.1710 (3)0.4127 (4)0.0315 (9)
H120.775 (3)0.151 (3)0.492 (4)0.036 (13)*
C130.8518 (3)0.1019 (3)0.3556 (4)0.0259 (10)
C140.8499 (3)0.0108 (4)0.3854 (4)0.0295 (10)
C150.9184 (3)0.0817 (4)0.3393 (4)0.0347 (11)
H150.91770.15690.36040.042*
C160.9883 (3)0.0401 (4)0.2614 (4)0.0346 (11)
H161.03410.08750.22990.042*
C170.9893 (3)0.0715 (4)0.2313 (4)0.0317 (10)
C180.9216 (3)0.1432 (3)0.2788 (4)0.0295 (10)
H180.92330.21860.2590.035*
O190.7767 (2)0.0423 (2)0.4625 (3)0.0381 (7)
C200.7657 (4)0.1587 (4)0.4843 (5)0.0496 (13)
H20A0.74760.19510.3870.074*
H20B0.71140.17090.53530.074*
H20C0.83070.18790.54530.074*
O211.0554 (2)0.1220 (2)0.1555 (3)0.0414 (8)
C221.1393 (3)0.0546 (4)0.1310 (4)0.0423 (12)
H22A1.180.02650.22710.063*
H22B1.18330.09840.08460.063*
H22C1.11070.0060.06510.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (2)0.018 (2)0.0284 (19)0.0011 (19)0.0118 (16)0.0004 (16)
C20.030 (2)0.024 (3)0.0296 (19)0.001 (2)0.0088 (17)0.0009 (17)
C30.034 (3)0.034 (3)0.036 (2)0.004 (2)0.0063 (19)0.007 (2)
C40.034 (3)0.016 (3)0.055 (3)0.010 (2)0.010 (2)0.004 (2)
C50.030 (3)0.028 (3)0.045 (2)0.000 (2)0.0121 (19)0.006 (2)
C60.030 (2)0.027 (3)0.0278 (19)0.003 (2)0.0082 (16)0.0031 (17)
F70.077 (3)0.052 (3)0.0428 (18)0.022 (2)0.0015 (17)0.0155 (18)
F7A0.050 (6)0.031 (5)0.050 (4)0.006 (5)0.025 (4)0.016 (4)
F80.066 (2)0.0366 (18)0.0715 (16)0.0211 (15)0.0138 (14)0.0024 (13)
N90.039 (2)0.025 (2)0.0191 (16)0.0072 (18)0.0103 (14)0.0042 (15)
C100.025 (3)0.031 (3)0.0251 (19)0.001 (2)0.0065 (16)0.0030 (18)
O110.0381 (17)0.0301 (18)0.0248 (12)0.0040 (14)0.0133 (11)0.0004 (11)
N120.043 (2)0.025 (2)0.0300 (18)0.0083 (18)0.0158 (16)0.0063 (16)
C130.029 (3)0.021 (3)0.0270 (19)0.004 (2)0.0059 (17)0.0016 (17)
C140.035 (3)0.026 (3)0.0265 (19)0.003 (2)0.0066 (18)0.0019 (18)
C150.046 (3)0.020 (3)0.037 (2)0.003 (2)0.008 (2)0.0021 (18)
C160.042 (3)0.027 (3)0.036 (2)0.011 (2)0.0121 (19)0.0048 (19)
C170.033 (3)0.024 (3)0.039 (2)0.007 (2)0.0094 (19)0.0010 (19)
C180.037 (3)0.018 (3)0.034 (2)0.001 (2)0.0105 (18)0.0033 (17)
O190.0450 (19)0.0241 (19)0.0492 (15)0.0003 (15)0.0193 (14)0.0043 (13)
C200.066 (3)0.028 (3)0.057 (3)0.012 (3)0.019 (2)0.003 (2)
O210.0436 (19)0.035 (2)0.0553 (16)0.0122 (15)0.0299 (14)0.0078 (14)
C220.043 (3)0.041 (3)0.050 (2)0.012 (2)0.024 (2)0.003 (2)
Geometric parameters (Å, º) top
C1—C21.394 (5)C13—C141.390 (5)
C1—C61.400 (5)C14—O191.385 (4)
C1—N91.406 (5)C14—C151.387 (5)
C2—C31.371 (5)C15—C161.394 (5)
C2—H20.93C15—H150.93
C3—C41.365 (5)C16—C171.377 (5)
C3—F71.320 (5)C16—H160.93
C4—F81.361 (4)C17—O211.386 (5)
C4—C51.369 (5)C17—C181.391 (5)
C5—C61.369 (5)C18—H180.93
C5—H50.93O19—C201.434 (5)
C6—H60.93C20—H20A0.96
N9—C101.362 (4)C20—H20B0.96
N9—H90.84 (4)C20—H20C0.96
C10—O111.235 (4)O21—C221.439 (4)
C10—N121.370 (5)C22—H22A0.96
N12—C131.418 (5)C22—H22B0.96
N12—H120.80 (4)C22—H22C0.96
C13—C181.385 (5)
C2—C1—C6119.3 (4)C14—C13—N12117.5 (4)
C2—C1—N9123.2 (3)O19—C14—C15125.3 (4)
C6—C1—N9117.5 (3)O19—C14—C13114.7 (4)
C3—C2—C1119.0 (3)C15—C14—C13120.1 (4)
C3—C2—H2120.5C14—C15—C16120.0 (4)
C1—C2—H2120.5C14—C15—H15120
F7—C3—C4118.0 (4)C16—C15—H15120
F7—C3—C2120.9 (4)C17—C16—C15119.7 (4)
C4—C3—C2121.1 (4)C17—C16—H16120.2
C4—C3—H3119.4C15—C16—H16120.2
C2—C3—H3119.4C16—C17—O21124.7 (4)
F8—C4—C3119.4 (4)C16—C17—C18120.7 (4)
F8—C4—C5120.1 (4)O21—C17—C18114.6 (4)
C3—C4—C5120.5 (4)C13—C18—C17119.7 (4)
C6—C5—C4119.9 (4)C13—C18—H18120.1
C6—C5—H5120C17—C18—H18120.1
C4—C5—H5120C14—O19—C20116.7 (3)
C5—C6—C1120.1 (4)O19—C20—H20A109.5
C5—C6—H6119.9O19—C20—H20B109.5
C1—C6—H6119.9H20A—C20—H20B109.5
C10—N9—C1126.7 (3)O19—C20—H20C109.5
C10—N9—H9115 (3)H20A—C20—H20C109.5
C1—N9—H9118 (3)H20B—C20—H20C109.5
O11—C10—N9123.7 (4)C17—O21—C22115.9 (3)
O11—C10—N12122.9 (4)O21—C22—H22A109.5
N9—C10—N12113.4 (3)O21—C22—H22B109.5
C10—N12—C13125.9 (3)H22A—C22—H22B109.5
C10—N12—H12120 (3)O21—C22—H22C109.5
C13—N12—H12114 (3)H22A—C22—H22C109.5
C18—C13—C14119.9 (4)H22B—C22—H22C109.5
C18—C13—N12122.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O11i0.84 (4)2.09 (4)2.907 (4)163 (4)
N12—H12···O11i0.80 (4)2.30 (4)3.002 (4)147 (4)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14F2N2O3
Mr308.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)174
a, b, c (Å)13.209 (2), 12.0887 (18), 9.0740 (12)
β (°) 104.990 (4)
V3)1399.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.09 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10104, 2433, 1211
Rint0.120
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.145, 0.96
No. of reflections2433
No. of parameters218
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O11i0.84 (4)2.09 (4)2.907 (4)163 (4)
N12—H12···O11i0.80 (4)2.30 (4)3.002 (4)147 (4)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We wish to thank the DBIO Company for partial support of this work.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985.  CrossRef CAS PubMed Google Scholar
First citationChoi, H., Han, B. H., Lee, T., Kang, S. K. & Sung, C. K. (2010). Acta Cryst. E66, o1142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCriton, M. & Le Mellay-Hamon, V. (2008). Bioorg. Med. Chem. Lett. 18, 3607–3610.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDawley, R. M. & Flurkey, W. H. (1993). J. Food Sci. 58, 609–610.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGermanas, J. P., Wang, S., Miner, A., Hao, W. & Ready, J. M. (2007). Bioorg. Med. Chem. Lett. 17, 6871–6875.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHa, Y. M., Chung, S. W., Song, S., Lee, H., Suh, H. & Chung, H. Y. (2007). Biol. Pharm. Bull. 30, 1711–1715.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKwak, S.-Y., Noh, J.-M., Park, S.-H., Byun, J.-W., Choi, H.-R., Park, K.-C. & Lee, Y.-S. (2010). Bioorg. Med. Chem. Lett. 20, 738–741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, C. W., Son, E.-M., Kim, H. S., Xu, P., Batmunkh, T., Lee, B.-J. & Koo, K. A. (2007). Bioorg. Med. Chem. Lett. 17, 5462–5464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R. & Tamir, S. (2003). J. Agric. Food Chem. 51, 1201–1207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYi, W., Cao, R.-H., Chen, Z.-Y., Yu, L., Ma, L. & Song, H.-C. (2009). Chem. Pharm. Bull. 57, 1273–1277.  CrossRef PubMed CAS Google Scholar
First citationYi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. (2010). Eur. J. Med. Chem. 45, 639–646.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds