organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-n-butyl­ammonium 2-[(3,5-di-tert-butyl-4-hy­dr­oxy­benz­yl)sulfan­yl]benzoate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 16 July 2010; accepted 23 August 2010; online 28 August 2010)

The title salt, C8H20N+·C22H27O3S, is a proton-transfer compound derived from the recently reported parent carb­oxy­lic acid [Alhadi et al. (2010). Acta Cryst. E66, o1787] by the addition of a second equivalent of di-n-butyl­amine, yielding the di-n-butyl­ammonium carboxyl­ate salt. The structure of the carboxyl­ate anion resembles that of the parent carb­oxy­lic acid. The main difference lies in the position of the H atom in the 4-hy­droxy group. In the anion the O—H bond is perpendicular, rather than parallel, to the benzyl ring. This position appears to facilitate hydrogen bonding to an O atom of the carboxyl­ate group of a symmetry-related anion. In addition, there are three N—H⋯O hydrogen bonds. In contrast, the neutral species hydrogen bonds via a carboxylic acid dimer. The dihedral angle between the benzene rings in the anion is 79.19 (7)°.

Related literature

For the structure of the parent benzoic acid, see: Alhadi et al. (2010[Alhadi, A. A., Khaledi, H., Mohd Ali, H. & Olmstead, M. M. (2010). Acta Cryst. E66, o1787.]). For a similar structure based on nicotinic acid, see: Mansor et al. (2008[Mansor, S., Yehye, W. A., Ariffin, A., Rahman, N. A. & Ng, S. W. (2008). Acta Cryst. E64, o1799.]).

[Scheme 1]

Experimental

Crystal data
  • C8H20N+·C22H27O3S

  • Mr = 501.75

  • Orthorhombic, P b c a

  • a = 12.8631 (5) Å

  • b = 20.1109 (9) Å

  • c = 23.0930 (9) Å

  • V = 5973.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.60 × 0.40 × 0.35 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.954

  • 44646 measured reflections

  • 5277 independent reflections

  • 3311 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.138

  • S = 1.01

  • 5277 reflections

  • 333 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.81 (2) 2.02 (2) 2.723 (3) 146 (3)
N1—H1A⋯O2 0.89 (2) 1.88 (2) 2.767 (3) 177 (3)
N1—H1B⋯O1ii 0.89 (2) 2.00 (2) 2.806 (3) 150 (3)
N1—H1B⋯O2ii 0.89 (2) 2.36 (2) 3.167 (3) 150 (2)
N1—H1B⋯O2ii 0.89 (2) 2.36 (2) 3.167 (3) 150 (2)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 2007[Bruker (2007). APEX2, SAINT and XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As shown in Fig. 1, the title compound is a di-n-butylammonium salt. It is a proton transfer derivative of the previously reported benzoic acid analog (Alhadi et al., 2010). In contrast to the structure of the parent carboxylic acid in which the C—O—H fragment was found coplanar to the aromatic ring and therefore not involved in any hydrogen bonding, in the present structure the O—H bond is perpendicular to the aromatic ring, and it participates in hydrogen bonding to the carboxylate group of the neighboring anion, forming an infinite chain along the a axis (Fig. 2). This arrangement is similar to that reported for the salt based on nicotinic acid (Mansor et al., 2008). The dihedral angle between the aromatic rings C2/C3/C4/C5/C6/C7 and C9/C10/C11/C12/C13/C14 is 79.19 (7)°.

Related literature top

For the structure of the parent benzoic acid, see: Alhadi et al. (2010). For a similar structure based on nicotinic acid, see: Mansor et al. (2008).

Experimental top

Thiosalicylic acid (0.154 g, 1 mmol), 2,6-di-t-butylphenol (2.00 g, 1 mmol) and paraformaldehyde (0.291 g, 1 mmol) were ground into a homogenous powder and to this was added di-n-butylamine (0.1 ml). The slurry was heated to 353 K for 2.5 h, then cooled to 323 K. Ethanol (20 ml) was added and the mixture was stirred for 1 h at room temperature. To the resulting clear solution di-n-butylamine (0.1 ml) was added and the solution was set aside in the dark for 5 days whereupon the colorless crystals of the title compound were obtained.

Refinement top

The C-bound hydrogen atoms were placed at calculated positions (C—H 0.93–0.97 Å) and were treated as riding on their parent atoms. The nitrogen- and oxygen-bound hydrogen atoms were located in a difference map and were refined freely with distances restrained to N—H 0.86 (2) and O—H 0.82 (2) Å. For all H atoms, Uiso(H) was set to 1.2–1.5 Ueq(carrier atom).

Structure description top

As shown in Fig. 1, the title compound is a di-n-butylammonium salt. It is a proton transfer derivative of the previously reported benzoic acid analog (Alhadi et al., 2010). In contrast to the structure of the parent carboxylic acid in which the C—O—H fragment was found coplanar to the aromatic ring and therefore not involved in any hydrogen bonding, in the present structure the O—H bond is perpendicular to the aromatic ring, and it participates in hydrogen bonding to the carboxylate group of the neighboring anion, forming an infinite chain along the a axis (Fig. 2). This arrangement is similar to that reported for the salt based on nicotinic acid (Mansor et al., 2008). The dihedral angle between the aromatic rings C2/C3/C4/C5/C6/C7 and C9/C10/C11/C12/C13/C14 is 79.19 (7)°.

For the structure of the parent benzoic acid, see: Alhadi et al. (2010). For a similar structure based on nicotinic acid, see: Mansor et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level. H atoms participating in hydrogen bonding are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the hydrogen bonding interactions (dashed lines) as viewed down b. Symmetry codes: ' = x - 1, y, z; " = -x + 1, -y, -z + 1.
Di-n-butylammonium 2-[(3,5-di-tert-butyl-4-hydroxybenzyl)sulfanyl]benzoate top
Crystal data top
C8H20N+·C22H27O3SF(000) = 2192
Mr = 501.75Dx = 1.116 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3944 reflections
a = 12.8631 (5) Åθ = 2.4–19.4°
b = 20.1109 (9) ŵ = 0.14 mm1
c = 23.0930 (9) ÅT = 296 K
V = 5973.9 (4) Å3Irregular block, colourless
Z = 80.60 × 0.40 × 0.35 mm
Data collection top
Bruker APEXII
diffractometer
5277 independent reflections
Radiation source: fine-focus sealed tube3311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.922, Tmax = 0.954k = 2323
44646 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0533P)2 + 2.2704P]
where P = (Fo2 + 2Fc2)/3
5277 reflections(Δ/σ)max < 0.001
333 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = 0.17 e Å3
0 constraints
Crystal data top
C8H20N+·C22H27O3SV = 5973.9 (4) Å3
Mr = 501.75Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.8631 (5) ŵ = 0.14 mm1
b = 20.1109 (9) ÅT = 296 K
c = 23.0930 (9) Å0.60 × 0.40 × 0.35 mm
Data collection top
Bruker APEXII
diffractometer
5277 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3311 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.954Rint = 0.080
44646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.28 e Å3
5277 reflectionsΔρmin = 0.17 e Å3
333 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4142 (2)0.10279 (13)0.41431 (11)0.0573 (7)
S10.64187 (5)0.14037 (4)0.37500 (3)0.0571 (2)
O10.32489 (16)0.08674 (12)0.42807 (11)0.1060 (9)
O20.49152 (15)0.07570 (10)0.43550 (9)0.0799 (6)
O31.11548 (13)0.06947 (10)0.41947 (9)0.0676 (5)
H31.1701 (18)0.0878 (16)0.4133 (14)0.101*
N10.65789 (17)0.01880 (12)0.49304 (11)0.0639 (6)
H1A0.6030 (17)0.0360 (13)0.4749 (11)0.077*
H1B0.639 (2)0.0157 (11)0.5148 (11)0.077*
C20.42822 (17)0.15713 (11)0.37050 (9)0.0443 (6)
C30.34012 (19)0.18891 (13)0.34973 (11)0.0552 (6)
H3A0.27540.17570.36350.066*
C40.3448 (2)0.23882 (15)0.30980 (12)0.0669 (8)
H40.28430.25910.29660.080*
C50.4395 (2)0.25874 (15)0.28939 (13)0.0732 (9)
H50.44360.29280.26230.088*
C60.5294 (2)0.22837 (14)0.30893 (12)0.0648 (7)
H60.59340.24220.29450.078*
C70.52605 (17)0.17767 (12)0.34970 (10)0.0459 (6)
C80.74329 (17)0.18495 (13)0.33648 (11)0.0579 (7)
H8A0.73540.17890.29500.069*
H8B0.73940.23210.34500.069*
C90.84580 (18)0.15715 (13)0.35632 (11)0.0512 (6)
C100.89894 (18)0.11082 (12)0.32410 (11)0.0516 (6)
H100.87160.09790.28850.062*
C110.99201 (17)0.08236 (12)0.34249 (10)0.0482 (6)
C121.02979 (17)0.10199 (12)0.39672 (10)0.0486 (6)
C130.97987 (18)0.15064 (13)0.43035 (10)0.0524 (6)
C140.88760 (18)0.17683 (13)0.40858 (11)0.0556 (7)
H140.85270.20890.43020.067*
C151.0201 (2)0.17282 (17)0.49001 (12)0.0734 (9)
C160.9545 (3)0.2305 (2)0.51411 (17)0.1397 (19)
H16A0.95770.26750.48790.209*
H16B0.98140.24360.55120.209*
H16C0.88370.21640.51830.209*
C171.0103 (3)0.1149 (2)0.53240 (13)0.1155 (15)
H17A1.05070.07800.51860.173*
H17B0.93870.10200.53550.173*
H17C1.03540.12840.56970.173*
C181.1328 (2)0.19722 (19)0.48760 (15)0.0960 (11)
H18A1.17790.16050.47900.144*
H18B1.15160.21610.52430.144*
H18C1.13950.23040.45790.144*
C191.04977 (19)0.03203 (13)0.30369 (11)0.0579 (7)
C200.9917 (2)0.02028 (16)0.24637 (13)0.0822 (9)
H20A1.02980.01090.22310.123*
H20B0.98540.06160.22580.123*
H20C0.92370.00280.25430.123*
C211.1572 (2)0.05973 (17)0.28782 (13)0.0846 (10)
H21A1.20010.06100.32180.127*
H21B1.14970.10390.27250.127*
H21C1.18890.03170.25920.127*
C221.0605 (2)0.03551 (15)0.33351 (14)0.0824 (9)
H22A1.09750.06550.30860.124*
H22B0.99260.05320.34150.124*
H22C1.09800.03020.36910.124*
C230.7166 (4)0.1192 (2)0.3170 (2)0.1382 (17)
H23A0.69440.15930.33590.207*
H23B0.77000.12950.28940.207*
H23C0.65850.09930.29740.207*
C240.7569 (3)0.0731 (3)0.35968 (18)0.1261 (15)
H24A0.77900.03310.33970.151*
H24B0.81830.09280.37710.151*
C250.6833 (3)0.05329 (18)0.40777 (15)0.0897 (10)
H25A0.62220.03250.39100.108*
H25B0.66080.09290.42830.108*
C260.7327 (2)0.00614 (17)0.44985 (13)0.0771 (9)
H26A0.78920.02860.46960.093*
H26B0.76190.03120.42880.093*
C270.7013 (2)0.06935 (16)0.53258 (14)0.0783 (9)
H27A0.72570.10710.51020.094*
H27B0.76030.05070.55300.094*
C280.6206 (3)0.09282 (17)0.57620 (15)0.0901 (10)
H28A0.56470.11500.55570.108*
H28B0.59140.05440.59570.108*
C290.6642 (3)0.1391 (2)0.62032 (18)0.1121 (13)
H29A0.69880.17550.60060.135*
H29B0.71600.11570.64300.135*
C300.5837 (3)0.1671 (3)0.6604 (2)0.1449 (18)
H30A0.53350.19180.63840.217*
H30B0.61640.19590.68800.217*
H30C0.54940.13140.68040.217*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (15)0.0638 (17)0.0644 (17)0.0003 (14)0.0004 (13)0.0071 (14)
S10.0381 (3)0.0675 (4)0.0658 (4)0.0052 (3)0.0047 (3)0.0172 (3)
O10.0492 (12)0.1187 (19)0.150 (2)0.0007 (12)0.0137 (13)0.0679 (17)
O20.0560 (12)0.0903 (15)0.0934 (15)0.0010 (11)0.0136 (10)0.0372 (12)
O30.0384 (10)0.0833 (14)0.0810 (13)0.0067 (10)0.0051 (9)0.0132 (11)
N10.0461 (13)0.0715 (17)0.0741 (17)0.0010 (12)0.0089 (12)0.0213 (13)
C20.0394 (13)0.0497 (14)0.0437 (13)0.0041 (11)0.0048 (10)0.0035 (11)
C30.0408 (14)0.0645 (17)0.0603 (16)0.0078 (12)0.0032 (12)0.0009 (14)
C40.0497 (16)0.080 (2)0.0707 (18)0.0224 (15)0.0118 (13)0.0079 (16)
C50.0632 (18)0.080 (2)0.076 (2)0.0161 (16)0.0034 (15)0.0288 (16)
C60.0465 (15)0.0763 (19)0.0715 (18)0.0088 (14)0.0009 (13)0.0221 (16)
C70.0400 (13)0.0513 (14)0.0462 (14)0.0064 (11)0.0047 (10)0.0040 (12)
C80.0407 (14)0.0651 (17)0.0679 (17)0.0015 (13)0.0041 (12)0.0126 (14)
C90.0388 (13)0.0586 (16)0.0562 (15)0.0020 (12)0.0018 (11)0.0095 (12)
C100.0429 (13)0.0609 (16)0.0510 (15)0.0045 (13)0.0015 (11)0.0036 (13)
C110.0379 (13)0.0557 (15)0.0512 (15)0.0006 (11)0.0068 (11)0.0065 (12)
C120.0309 (12)0.0614 (16)0.0536 (15)0.0005 (12)0.0056 (11)0.0088 (12)
C130.0375 (13)0.0700 (17)0.0497 (15)0.0021 (12)0.0020 (11)0.0026 (13)
C140.0413 (14)0.0644 (17)0.0612 (17)0.0033 (12)0.0051 (12)0.0020 (13)
C150.0501 (16)0.113 (2)0.0569 (18)0.0101 (17)0.0042 (13)0.0163 (17)
C160.106 (3)0.208 (5)0.105 (3)0.055 (3)0.034 (2)0.092 (3)
C170.072 (2)0.217 (5)0.058 (2)0.007 (3)0.0067 (17)0.031 (3)
C180.070 (2)0.128 (3)0.090 (2)0.016 (2)0.0125 (17)0.031 (2)
C190.0473 (15)0.0646 (17)0.0616 (17)0.0025 (13)0.0091 (12)0.0025 (14)
C200.084 (2)0.091 (2)0.071 (2)0.0077 (18)0.0033 (17)0.0192 (18)
C210.0661 (19)0.102 (3)0.086 (2)0.0117 (18)0.0308 (16)0.0162 (19)
C220.079 (2)0.069 (2)0.099 (2)0.0095 (17)0.0052 (18)0.0039 (18)
C230.154 (4)0.123 (3)0.138 (4)0.040 (3)0.021 (3)0.026 (3)
C240.081 (3)0.181 (5)0.116 (3)0.021 (3)0.007 (2)0.011 (3)
C250.071 (2)0.099 (3)0.099 (3)0.0172 (19)0.0035 (19)0.003 (2)
C260.0496 (17)0.098 (2)0.084 (2)0.0130 (17)0.0005 (15)0.0249 (19)
C270.0577 (18)0.088 (2)0.089 (2)0.0107 (17)0.0169 (16)0.0154 (18)
C280.069 (2)0.095 (3)0.107 (3)0.0073 (19)0.0078 (19)0.009 (2)
C290.090 (3)0.130 (3)0.117 (3)0.010 (2)0.009 (2)0.021 (3)
C300.105 (3)0.183 (5)0.147 (4)0.021 (3)0.022 (3)0.055 (4)
Geometric parameters (Å, º) top
C1—O21.235 (3)C17—H17B0.9600
C1—O11.235 (3)C17—H17C0.9600
C1—C21.500 (3)C18—H18A0.9600
S1—C71.767 (2)C18—H18B0.9600
S1—C81.816 (2)C18—H18C0.9600
O3—C121.385 (3)C19—C221.529 (4)
O3—H30.806 (18)C19—C211.534 (4)
N1—C261.474 (4)C19—C201.538 (4)
N1—C271.476 (4)C20—H20A0.9600
N1—H1A0.890 (17)C20—H20B0.9600
N1—H1B0.892 (17)C20—H20C0.9600
C2—C31.387 (3)C21—H21A0.9600
C2—C71.409 (3)C21—H21B0.9600
C3—C41.364 (4)C21—H21C0.9600
C3—H3A0.9300C22—H22A0.9600
C4—C51.366 (4)C22—H22B0.9600
C4—H40.9300C22—H22C0.9600
C5—C61.383 (3)C23—C241.450 (5)
C5—H50.9300C23—H23A0.9600
C6—C71.389 (3)C23—H23B0.9600
C6—H60.9300C23—H23C0.9600
C8—C91.504 (3)C24—C251.513 (5)
C8—H8A0.9700C24—H24A0.9700
C8—H8B0.9700C24—H24B0.9700
C9—C101.374 (3)C25—C261.499 (4)
C9—C141.379 (3)C25—H25A0.9700
C10—C111.393 (3)C25—H25B0.9700
C10—H100.9300C26—H26A0.9700
C11—C121.400 (3)C26—H26B0.9700
C11—C191.543 (3)C27—C281.521 (4)
C12—C131.405 (3)C27—H27A0.9700
C13—C141.392 (3)C27—H27B0.9700
C13—C151.538 (4)C28—C291.490 (5)
C14—H140.9300C28—H28A0.9700
C15—C171.526 (5)C28—H28B0.9700
C15—C181.532 (4)C29—C301.498 (5)
C15—C161.538 (4)C29—H29A0.9700
C16—H16A0.9600C29—H29B0.9700
C16—H16B0.9600C30—H30A0.9600
C16—H16C0.9600C30—H30B0.9600
C17—H17A0.9600C30—H30C0.9600
O2—C1—O1122.1 (3)H18A—C18—H18C109.5
O2—C1—C2119.5 (2)H18B—C18—H18C109.5
O1—C1—C2118.4 (2)C22—C19—C21110.4 (2)
C7—S1—C8103.55 (11)C22—C19—C20107.2 (2)
C12—O3—H3114 (3)C21—C19—C20106.7 (2)
C26—N1—C27114.0 (2)C22—C19—C11111.4 (2)
C26—N1—H1A109.4 (18)C21—C19—C11109.5 (2)
C27—N1—H1A108.8 (18)C20—C19—C11111.5 (2)
C26—N1—H1B107.3 (18)C19—C20—H20A109.5
C27—N1—H1B106.9 (18)C19—C20—H20B109.5
H1A—N1—H1B110 (3)H20A—C20—H20B109.5
C3—C2—C7118.5 (2)C19—C20—H20C109.5
C3—C2—C1118.1 (2)H20A—C20—H20C109.5
C7—C2—C1123.4 (2)H20B—C20—H20C109.5
C4—C3—C2122.5 (2)C19—C21—H21A109.5
C4—C3—H3A118.8C19—C21—H21B109.5
C2—C3—H3A118.8H21A—C21—H21B109.5
C3—C4—C5119.2 (2)C19—C21—H21C109.5
C3—C4—H4120.4H21A—C21—H21C109.5
C5—C4—H4120.4H21B—C21—H21C109.5
C4—C5—C6120.2 (3)C19—C22—H22A109.5
C4—C5—H5119.9C19—C22—H22B109.5
C6—C5—H5119.9H22A—C22—H22B109.5
C5—C6—C7121.3 (2)C19—C22—H22C109.5
C5—C6—H6119.4H22A—C22—H22C109.5
C7—C6—H6119.4H22B—C22—H22C109.5
C6—C7—C2118.3 (2)C24—C23—H23A109.5
C6—C7—S1120.62 (18)C24—C23—H23B109.5
C2—C7—S1121.05 (17)H23A—C23—H23B109.5
C9—C8—S1107.30 (17)C24—C23—H23C109.5
C9—C8—H8A110.3H23A—C23—H23C109.5
S1—C8—H8A110.3H23B—C23—H23C109.5
C9—C8—H8B110.3C23—C24—C25116.3 (4)
S1—C8—H8B110.3C23—C24—H24A108.2
H8A—C8—H8B108.5C25—C24—H24A108.2
C10—C9—C14118.3 (2)C23—C24—H24B108.2
C10—C9—C8121.6 (2)C25—C24—H24B108.2
C14—C9—C8120.1 (2)H24A—C24—H24B107.4
C9—C10—C11122.7 (2)C26—C25—C24112.1 (3)
C9—C10—H10118.6C26—C25—H25A109.2
C11—C10—H10118.6C24—C25—H25A109.2
C10—C11—C12117.1 (2)C26—C25—H25B109.2
C10—C11—C19120.4 (2)C24—C25—H25B109.2
C12—C11—C19122.5 (2)H25A—C25—H25B107.9
O3—C12—C11118.8 (2)N1—C26—C25112.2 (2)
O3—C12—C13118.9 (2)N1—C26—H26A109.2
C11—C12—C13122.2 (2)C25—C26—H26A109.2
C14—C13—C12117.0 (2)N1—C26—H26B109.2
C14—C13—C15120.0 (2)C25—C26—H26B109.2
C12—C13—C15122.9 (2)H26A—C26—H26B107.9
C9—C14—C13122.7 (2)N1—C27—C28111.4 (2)
C9—C14—H14118.7N1—C27—H27A109.3
C13—C14—H14118.7C28—C27—H27A109.3
C17—C15—C18110.2 (3)N1—C27—H27B109.3
C17—C15—C13109.0 (3)C28—C27—H27B109.3
C18—C15—C13112.2 (2)H27A—C27—H27B108.0
C17—C15—C16107.4 (3)C29—C28—C27113.0 (3)
C18—C15—C16106.9 (3)C29—C28—H28A109.0
C13—C15—C16111.0 (2)C27—C28—H28A109.0
C15—C16—H16A109.5C29—C28—H28B109.0
C15—C16—H16B109.5C27—C28—H28B109.0
H16A—C16—H16B109.5H28A—C28—H28B107.8
C15—C16—H16C109.5C28—C29—C30113.4 (3)
H16A—C16—H16C109.5C28—C29—H29A108.9
H16B—C16—H16C109.5C30—C29—H29A108.9
C15—C17—H17A109.5C28—C29—H29B108.9
C15—C17—H17B109.5C30—C29—H29B108.9
H17A—C17—H17B109.5H29A—C29—H29B107.7
C15—C17—H17C109.5C29—C30—H30A109.5
H17A—C17—H17C109.5C29—C30—H30B109.5
H17B—C17—H17C109.5H30A—C30—H30B109.5
C15—C18—H18A109.5C29—C30—H30C109.5
C15—C18—H18B109.5H30A—C30—H30C109.5
H18A—C18—H18B109.5H30B—C30—H30C109.5
C15—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.81 (2)2.02 (2)2.723 (3)146 (3)
N1—H1A···O20.89 (2)1.88 (2)2.767 (3)177 (3)
N1—H1B···O1ii0.89 (2)2.00 (2)2.806 (3)150 (3)
N1—H1B···O2ii0.89 (2)2.36 (2)3.167 (3)150 (2)
N1—H1B···O2ii0.89 (2)2.36 (2)3.167 (3)150 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H20N+·C22H27O3S
Mr501.75
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.8631 (5), 20.1109 (9), 23.0930 (9)
V3)5973.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.60 × 0.40 × 0.35
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.922, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
44646, 5277, 3311
Rint0.080
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.138, 1.01
No. of reflections5277
No. of parameters333
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 2007), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.806 (18)2.02 (2)2.723 (3)146 (3)
N1—H1A···O20.890 (17)1.878 (17)2.767 (3)177 (3)
N1—H1B···O1ii0.892 (17)2.00 (2)2.806 (3)150 (3)
N1—H1B···O2ii0.892 (17)2.36 (2)3.167 (3)150 (2)
N1—H1B···O2ii0.892 (17)2.36 (2)3.167 (3)150 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant FP009/2008 C).

References

First citationAlhadi, A. A., Khaledi, H., Mohd Ali, H. & Olmstead, M. M. (2010). Acta Cryst. E66, o1787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMansor, S., Yehye, W. A., Ariffin, A., Rahman, N. A. & Ng, S. W. (2008). Acta Cryst. E64, o1799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds