organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-pyridyl­sulfan­yl)eth­yl]ammonium perchlorate

aShanghai Sunvea Chemical Materials Science and Technology Co. Ltd, Shanghai 201611, People's Republic of China, bQingdao University of Science and Technology, Qingdao 266042, People's Republic of China, cInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 July 2010; accepted 10 August 2010; online 18 August 2010)

The cation and anion of the title salt, C14H18N3S2+·ClO4, lie on a twofold rotation axis. The cation is a W-shaped entity with the aromatic rings at the ends; the ammonium NH2+ group is a hydrogen-bond donor to the pyridyl N atoms. The perchlorate ion has one O atom disordered over two sites in a 0.50:0.50 ratio.

Related literature

For the structure of tris­[2-(2-pyridyl­sulfan­yl)eth­yl]ammonium perchlorate, see: An et al. (2010[An, Y., Li, X.-F., Chen, H.-G. & Dong, L.-H. (2010). Acta Cryst. E66, o101.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N3S2+·ClO4

  • Mr = 391.88

  • Monoclinic, P 2/n

  • a = 8.1265 (6) Å

  • b = 9.2291 (7) Å

  • c = 11.9872 (9) Å

  • β = 97.534 (7)°

  • V = 891.28 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 4.31 mm−1

  • T = 293 K

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Oxford Xcalibur Sapphire-3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.345, Tmax = 1.000

  • 3124 measured reflections

  • 1736 independent reflections

  • 1427 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.214

  • S = 1.11

  • 1736 reflections

  • 120 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.86 2.11 2.832 (5) 141

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We are engaged in the study of metal complexes of di- and tri-(pyridylsulfanyl)alkylamines as such compounds owing to their flexible nature. We reported earlier the synthesis of tris[2-(2-pyridylsulfanyl)ethyl]amine, whose reaction with copper perchlorate gave instead tris[2-(2-pyridylsulfanyl)ethyl]ammonium perchlorate (An et al., 2010). The two-legged bis[2-(2-pyridylsulfanyl)ethyl]amine, in the present study, reacted with copper perchlorate to afford the corresponding ammonium perchlorate (Scheme and Fig. 1).

Related literature top

For the structure of tris[2-(2-pyridylsulfanyl)ethyl]ammonium perchlorate, see: An et al. (2010).

Experimental top

Bis(2-chloroethyl)ammonium hydrochloride (8.92 g, 0.05 mol) in ethanol (100 ml) was added to a solution (353 K) of 2-mercaptopyridine (12.23 g, 0.11 mol) and potassium hydroxide (6.17 g, 0.11 mol) in ethanol (200 ml). The mixture was heated at 353 K for 8 h. The solvent was removed to yield a yellow oil; this was column chromatographed with ethly acetate/petroleum ether (3/5 v/v) as eluent; yield 65%. 1H NMR (CDCl3, 400 MHz, p.p.m.): 3.316–3.349 (t, 4H), 2.959–2.992 (t, 4H), 6.924–6.960 (m, 2H), 7.154–7.173 (m, 2H), 7.416–7.459 (m, 2H), 8.382–8.393 (m, 2H).

The title salt was obtained from the reaction of bis[2-(2-pyridylsulfanyl)ethyl]amine (0.5 mmol, 0.146 g) and copper perchlorate (0.5 mmol, 0.132 g) in ethanol. Colorless crystals were separated from the blue solution after three days. CH&N elemental analysis, calculated for C14H18O4N3S2Cl: C 42.91, H 4.63, N 10.72%; Found: C 42.73, H 4.35, N 11.02%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 times Ueq(C). The ammonium H-atom was similarly positioned [N—H 0.86 Å] and its temperature factor tied by a factor of 1.2.

The perchlorate ion is disordered about the twofold rotation axis with respect to one O atom; two O atoms were assigned half-occupancy. The Cl—O distances were restrained to within 0.005 Å of each other, as were the O···O separations.

Structure description top

We are engaged in the study of metal complexes of di- and tri-(pyridylsulfanyl)alkylamines as such compounds owing to their flexible nature. We reported earlier the synthesis of tris[2-(2-pyridylsulfanyl)ethyl]amine, whose reaction with copper perchlorate gave instead tris[2-(2-pyridylsulfanyl)ethyl]ammonium perchlorate (An et al., 2010). The two-legged bis[2-(2-pyridylsulfanyl)ethyl]amine, in the present study, reacted with copper perchlorate to afford the corresponding ammonium perchlorate (Scheme and Fig. 1).

For the structure of tris[2-(2-pyridylsulfanyl)ethyl]ammonium perchlorate, see: An et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C14H18N3S2]+[ClO4]- at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. For the cation, the unlabeled atoms are related to the labeled ones by symmetry 1/2-x, y, 3/2-z.
Bis[2-(2-pyridylsulfanyl)ethyl]ammonium perchlorate top
Crystal data top
C14H18N3S2+·ClO4F(000) = 408
Mr = 391.88Dx = 1.460 Mg m3
Monoclinic, P2/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yacCell parameters from 1783 reflections
a = 8.1265 (6) Åθ = 3.7–72.5°
b = 9.2291 (7) ŵ = 4.31 mm1
c = 11.9872 (9) ÅT = 293 K
β = 97.534 (7)°Prism, yellow
V = 891.28 (12) Å30.15 × 0.15 × 0.10 mm
Z = 2
Data collection top
Oxford Xcalibur Sapphire-3
diffractometer
1736 independent reflections
Radiation source: fine-focus sealed tube1427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.0855 pixels mm-1θmax = 72.7°, θmin = 4.8°
ω scansh = 69
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1110
Tmin = 0.345, Tmax = 1.000l = 1414
3124 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.214 w = 1/[σ2(Fo2) + (0.1333P)2 + 0.2886P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1736 reflectionsΔρmax = 0.41 e Å3
120 parametersΔρmin = 0.66 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.077 (7)
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H18N3S2+·ClO4V = 891.28 (12) Å3
Mr = 391.88Z = 2
Monoclinic, P2/nCu Kα radiation
a = 8.1265 (6) ŵ = 4.31 mm1
b = 9.2291 (7) ÅT = 293 K
c = 11.9872 (9) Å0.15 × 0.15 × 0.10 mm
β = 97.534 (7)°
Data collection top
Oxford Xcalibur Sapphire-3
diffractometer
1736 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1427 reflections with I > 2σ(I)
Tmin = 0.345, Tmax = 1.000Rint = 0.020
3124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0719 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.11Δρmax = 0.41 e Å3
1736 reflectionsΔρmin = 0.66 e Å3
120 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.75000.07951 (11)0.75000.0585 (5)
S10.15849 (15)0.6905 (2)0.51373 (9)0.1143 (7)
O10.7006 (6)0.1628 (4)0.8355 (3)0.1259 (15)
O20.6180 (11)0.001 (2)0.6944 (18)0.231 (14)0.50
O2'0.8847 (16)0.0079 (15)0.7855 (10)0.184 (11)0.50
N10.4045 (4)0.6093 (3)0.6688 (2)0.0637 (8)
N20.25000.8558 (5)0.75000.0789 (13)
H20.33450.80070.74630.095*
C10.2997 (4)0.5641 (5)0.5824 (3)0.0703 (10)
C20.2947 (7)0.4216 (6)0.5433 (4)0.0947 (16)
H2A0.21970.39380.48170.114*
C30.4023 (10)0.3248 (6)0.5977 (6)0.108 (2)
H30.40220.22900.57360.130*
C40.5080 (8)0.3672 (5)0.6857 (5)0.1001 (16)
H40.58150.30160.72440.120*
C50.5067 (6)0.5111 (5)0.7187 (3)0.0844 (12)
H50.58230.54010.77960.101*
C60.2658 (7)0.8617 (6)0.5449 (5)0.115 (2)
H6A0.38430.84320.55660.137*
H6B0.24330.92420.47960.137*
C70.2201 (7)0.9415 (5)0.6454 (6)0.114 (2)
H7A0.28411.03040.65510.137*
H7B0.10360.96770.63180.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0546 (7)0.0504 (6)0.0705 (7)0.0000.0085 (4)0.000
S10.0748 (8)0.1960 (17)0.0662 (7)0.0179 (8)0.0137 (5)0.0078 (7)
O10.178 (4)0.106 (2)0.101 (3)0.005 (3)0.046 (3)0.039 (2)
O20.107 (12)0.31 (3)0.29 (2)0.088 (14)0.074 (13)0.21 (2)
O2'0.185 (18)0.188 (15)0.198 (14)0.139 (14)0.098 (13)0.118 (12)
N10.0638 (17)0.0756 (18)0.0492 (14)0.0023 (13)0.0020 (12)0.0074 (12)
N20.077 (3)0.061 (2)0.103 (4)0.0000.030 (3)0.000
C10.0612 (19)0.104 (3)0.0463 (16)0.0205 (18)0.0108 (13)0.0068 (17)
C20.100 (3)0.119 (4)0.069 (2)0.050 (3)0.025 (2)0.036 (3)
C30.155 (5)0.076 (3)0.108 (4)0.032 (3)0.071 (4)0.020 (3)
C40.143 (5)0.076 (3)0.089 (3)0.022 (3)0.043 (3)0.008 (2)
C50.098 (3)0.090 (3)0.062 (2)0.016 (2)0.0026 (19)0.005 (2)
C60.100 (3)0.137 (4)0.113 (4)0.027 (3)0.037 (3)0.071 (4)
C70.095 (3)0.082 (3)0.174 (5)0.024 (3)0.052 (4)0.054 (3)
Geometric parameters (Å, º) top
Cl1—O2'1.381 (4)C2—C31.357 (8)
Cl1—O1i1.383 (3)C2—H2A0.9300
Cl1—O11.383 (3)C3—C41.329 (10)
Cl1—O21.391 (4)C3—H30.9300
S1—C11.763 (4)C4—C51.387 (7)
S1—C61.820 (7)C4—H40.9300
N1—C11.319 (4)C5—H50.9300
N1—C51.319 (5)C6—C71.500 (9)
N2—C71.475 (6)C6—H6A0.9700
N2—C7ii1.475 (6)C6—H6B0.9700
N2—H20.8600C7—H7A0.9700
C1—C21.395 (7)C7—H7B0.9700
O2'—Cl1—O1i104.9 (8)C2—C3—H3120.1
O2'—Cl1—O1113.1 (4)C3—C4—C5118.7 (5)
O1i—Cl1—O1112.4 (3)C3—C4—H4120.6
O2'—Cl1—O2111.9 (4)C5—C4—H4120.6
O1i—Cl1—O2102.5 (12)N1—C5—C4123.8 (5)
O1—Cl1—O2111.4 (4)N1—C5—H5118.1
O2i—Cl1—O2117 (2)C4—C5—H5118.1
C1—S1—C6102.3 (2)C7—C6—S1115.4 (3)
C1—N1—C5116.3 (4)C7—C6—H6A108.4
C7—N2—C7ii115.2 (6)S1—C6—H6A108.4
C7—N2—H2108.5C7—C6—H6B108.4
C7ii—N2—H2108.5S1—C6—H6B108.4
N1—C1—C2123.3 (4)H6A—C6—H6B107.5
N1—C1—S1118.1 (3)N2—C7—C6112.9 (4)
C2—C1—S1118.6 (3)N2—C7—H7A109.0
C3—C2—C1118.1 (4)C6—C7—H7A109.0
C3—C2—H2A121.0N2—C7—H7B109.0
C1—C2—H2A121.0C6—C7—H7B109.0
C4—C3—C2119.8 (5)H7A—C7—H7B107.8
C4—C3—H3120.1
C5—N1—C1—C20.5 (5)C2—C3—C4—C50.9 (8)
C5—N1—C1—S1179.2 (3)C1—N1—C5—C40.3 (6)
C6—S1—C1—N125.3 (3)C3—C4—C5—N11.0 (8)
C6—S1—C1—C2155.0 (3)C1—S1—C6—C794.7 (4)
N1—C1—C2—C30.6 (6)C7ii—N2—C7—C6154.1 (5)
S1—C1—C2—C3179.1 (3)S1—C6—C7—N258.4 (5)
C1—C2—C3—C40.1 (7)
Symmetry codes: (i) x+3/2, y, z+3/2; (ii) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.112.832 (5)141

Experimental details

Crystal data
Chemical formulaC14H18N3S2+·ClO4
Mr391.88
Crystal system, space groupMonoclinic, P2/n
Temperature (K)293
a, b, c (Å)8.1265 (6), 9.2291 (7), 11.9872 (9)
β (°) 97.534 (7)
V3)891.28 (12)
Z2
Radiation typeCu Kα
µ (mm1)4.31
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerOxford Xcalibur Sapphire-3
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.345, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3124, 1736, 1427
Rint0.020
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.214, 1.11
No. of reflections1736
No. of parameters120
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.66

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.112.832 (5)141
 

Acknowledgements

The authors thank the Special Foundation for Nanotechnology of the Shanghai Committee for Science and Technology (grant No. 1052nm00600), the Foundation of the Science and Technology Programme of Shanghai Maritime University (grant No. 20100128), the State Key Laboratory of Pollution Control and Resource Reuse Foundation (grant No. PCRRF09001) and the University of Malaya for supporting this study.

References

First citationAn, Y., Li, X.-F., Chen, H.-G. & Dong, L.-H. (2010). Acta Cryst. E66, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds