organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(tert-but­­oxy­carbonyl­amino)-1,3-thia­zole-5-carboxyl­ate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China, and bDepartment of Synthesis, Nanjing Cavendish Bioengineering Technology Co. Ltd, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 5 August 2010; accepted 11 August 2010; online 18 August 2010)

The title compound, C10H14N2O4S, was synthesized by the reaction of methyl 2-amino­thia­zole-5-carboxyl­ate and di-tert-butyl carbonate. In this structure, the thia­zole ring is planar (mean deviation = 0.0011 Å). Two weak intra­molecular C—H⋯O hydrogen bonds are formed between two of the methyl groups and one carbonyl O atom, resulting in the formation of two twisted six-membered rings. Inter­molecular N—H⋯N hydrogen bonds link the mol­ecules to form centrosymmetric dimeric units, and the hydrogen-bond scheme is completed by inter­molecular C—H⋯O contacts.

Related literature

For information on the use of the title compound in the synthesis of dasatinib [systematic name: N-(2-chloro-6-methyl­phenyl)-2-({6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methyl­pyrimidin-4-yl}amino)-5-thiazolecarboxamide], see: Lombardo et al. (2004[Lombardo, L. J. et al. (2004). J. Med. Chem. 47, 6658-6661.]). For information on the effectiveness of dasatinib in imatinib-resistant Bcr–Abl kinase domain mutants, see: Shah et al. (2004[Shah, N. P., Tran, C., Lee, F. Y., Chen, P., Norris, D. & Sawyers, C. L. (2004). Science, 305, 399-402.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N2O4S

  • Mr = 258.29

  • Triclinic, [P \overline 1]

  • a = 7.0700 (14) Å

  • b = 9.2580 (19) Å

  • c = 10.708 (2) Å

  • α = 70.10 (3)°

  • β = 79.67 (3)°

  • γ = 79.08 (3)°

  • V = 642.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.927, Tmax = 0.975

  • 2543 measured reflections

  • 2338 independent reflections

  • 1975 reflections with I > 2σ(I)

  • Rint = 0.014

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.142

  • S = 1.01

  • 2338 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3 0.96 2.47 3.030 (4) 117
C10—H10A⋯O3 0.96 2.45 3.010 (4) 117
N2—H2A⋯N1i 0.86 2.02 2.879 (3) 174
C9—H9C⋯O2ii 0.96 2.60 3.440 (4) 146
C10—H10C⋯O2ii 0.96 2.57 3.436 (4) 150
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x-1, y-1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). CAD-4 EXPRESS. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Methyl 2-((tert-butoxycarbonyl)amino)thiazole-5-carboxylate is an important intermediate compound in research on synthesizing Dasatinib (Lombardo et al., 2004). Dasatinib is a high affinity dual Src/Abl and c-Kit inhibitor that has been recently approved for all categories of imatinib-refractory chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL). Dasatinib is also effective in many imatinib resistant Bcr–Abl kinase domain mutants (Shah et al., 2004).

We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1. Ring A (S/C5/N1/C4/C3) is a planar five-membered ring with a r.m.s. deviation of 0.0011 Å. In this plane, atoms S, C5, N1, C4 and C3 deviate from the mean plane by less than 0.002 Å. The intramolecular C—H···O hydrogen bonds (Table 1) result in the formation of two twisty six-membered rings B (O3/C6/O4/C7/C8/H8A) and C (O3/C6/O4/C7/C10/H10A). In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules to form dimeric units (Fig. 2), stabilizing the crystal structure. The hydrogen bonds scheme is completed by intermolecular C—H···O contacts.

Related literature top

For information on the use of the title compound in the synthesis of dasatinib, see: Lombardo et al. (2004). For information on the effectiveness of dasatinib in imatinib-resistant Bcr–Abl kinase domain mutants, see: Shah et al. (2004).

Experimental top

Methyl 2-aminothiazole-5-carboxylate (10 mmol), di-tert-butyl carbonate (12 mmol) and 4-dimethylamino pyridine (0.66 mmol) were added in THF (30 ml), stirred and refluxed under a nitrogen atmosphere for 10 h. The reaction mixture was left to cool to room temperature, precipitated, filtered, and the filter cake was crystallized from ethanol to give pure compound (I). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.96 and 0.93 Å for methyl and aromatic H atoms, respectively, and N—H = 0.86 Å. All H atoms were constrained to ride on their parent atoms, with Uiso(H) = xUeq(carrier atom), where x = 1.5 for methyl H atoms and x = 1.2 for all other H atoms.

Structure description top

Methyl 2-((tert-butoxycarbonyl)amino)thiazole-5-carboxylate is an important intermediate compound in research on synthesizing Dasatinib (Lombardo et al., 2004). Dasatinib is a high affinity dual Src/Abl and c-Kit inhibitor that has been recently approved for all categories of imatinib-refractory chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL). Dasatinib is also effective in many imatinib resistant Bcr–Abl kinase domain mutants (Shah et al., 2004).

We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1. Ring A (S/C5/N1/C4/C3) is a planar five-membered ring with a r.m.s. deviation of 0.0011 Å. In this plane, atoms S, C5, N1, C4 and C3 deviate from the mean plane by less than 0.002 Å. The intramolecular C—H···O hydrogen bonds (Table 1) result in the formation of two twisty six-membered rings B (O3/C6/O4/C7/C8/H8A) and C (O3/C6/O4/C7/C10/H10A). In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules to form dimeric units (Fig. 2), stabilizing the crystal structure. The hydrogen bonds scheme is completed by intermolecular C—H···O contacts.

For information on the use of the title compound in the synthesis of dasatinib, see: Lombardo et al. (2004). For information on the effectiveness of dasatinib in imatinib-resistant Bcr–Abl kinase domain mutants, see: Shah et al. (2004).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular C—H···O hydrogen bonds.
[Figure 2] Fig. 2. A packing diagram for (I). Dashed lines indicate C—H···N and C—H···O hydrogen bonds.
Methyl 2-(tert-butoxycarbonylamino)-1,3-thiazole-5-carboxylate top
Crystal data top
C10H14N2O4SZ = 2
Mr = 258.29F(000) = 272
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0700 (14) ÅCell parameters from 25 reflections
b = 9.2580 (19) Åθ = 10–13°
c = 10.708 (2) ŵ = 0.26 mm1
α = 70.10 (3)°T = 293 K
β = 79.67 (3)°Block, colourless
γ = 79.08 (3)°0.30 × 0.10 × 0.10 mm
V = 642.1 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1975 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 1011
Tmin = 0.927, Tmax = 0.975l = 1212
2543 measured reflections3 standard reflections every 200 reflections
2338 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.077P]
where P = (Fo2 + 2Fc2)/3
2338 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.36 e Å3
0 constraints
Crystal data top
C10H14N2O4Sγ = 79.08 (3)°
Mr = 258.29V = 642.1 (2) Å3
Triclinic, P1Z = 2
a = 7.0700 (14) ÅMo Kα radiation
b = 9.2580 (19) ŵ = 0.26 mm1
c = 10.708 (2) ÅT = 293 K
α = 70.10 (3)°0.30 × 0.10 × 0.10 mm
β = 79.67 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1975 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.927, Tmax = 0.9753 standard reflections every 200 reflections
2543 measured reflections intensity decay: 1%
2338 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
2338 reflectionsΔρmin = 0.36 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.31065 (8)0.77835 (6)0.78035 (6)0.0496 (2)
N10.1959 (3)1.0086 (2)0.58090 (19)0.0477 (5)
O10.6194 (3)0.8268 (2)0.89511 (19)0.0668 (5)
C10.7656 (4)0.8233 (4)0.9752 (3)0.0845 (10)
H1B0.78150.72391.04300.127*
H1C0.72580.90291.01680.127*
H1D0.88660.84060.91900.127*
N20.0259 (3)0.7987 (2)0.63197 (18)0.0476 (5)
H2A0.04540.85110.56980.057*
O20.6587 (4)1.0667 (2)0.7674 (3)0.1004 (8)
C20.5780 (3)0.9562 (3)0.7965 (3)0.0538 (6)
O30.0857 (3)0.56934 (19)0.79484 (18)0.0637 (5)
C30.4211 (3)0.9438 (2)0.7294 (2)0.0466 (5)
O40.1471 (2)0.61245 (16)0.65983 (15)0.0486 (4)
C40.3422 (3)1.0503 (2)0.6244 (2)0.0504 (6)
H4A0.38451.14670.58350.061*
C50.1664 (3)0.8678 (2)0.6549 (2)0.0413 (5)
C60.0051 (3)0.6494 (2)0.7045 (2)0.0462 (5)
C70.2028 (3)0.4528 (2)0.7162 (2)0.0471 (5)
C80.2827 (4)0.4215 (3)0.8624 (2)0.0627 (7)
H8A0.18060.41650.91260.094*
H8B0.33380.32460.89540.094*
H8C0.38420.50350.87180.094*
C90.3586 (4)0.4627 (3)0.6324 (3)0.0622 (7)
H9A0.30350.48300.54040.093*
H9B0.46040.54510.64030.093*
H9C0.41070.36630.66330.093*
C100.0294 (4)0.3355 (3)0.6947 (3)0.0594 (6)
H10A0.06730.33130.74890.089*
H10B0.02410.36570.60210.089*
H10C0.06990.23510.71970.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0506 (4)0.0442 (3)0.0525 (4)0.0135 (2)0.0243 (3)0.0006 (2)
N10.0485 (10)0.0378 (9)0.0545 (10)0.0097 (8)0.0187 (8)0.0035 (8)
O10.0607 (11)0.0730 (12)0.0673 (11)0.0191 (9)0.0341 (9)0.0046 (9)
C10.0636 (17)0.120 (3)0.081 (2)0.0089 (17)0.0399 (16)0.0318 (19)
N20.0527 (11)0.0383 (9)0.0512 (10)0.0130 (8)0.0265 (9)0.0002 (8)
O20.0982 (16)0.0674 (13)0.144 (2)0.0372 (12)0.0668 (16)0.0038 (13)
C20.0439 (12)0.0543 (14)0.0684 (15)0.0107 (10)0.0157 (11)0.0196 (12)
O30.0749 (11)0.0483 (9)0.0655 (10)0.0212 (8)0.0409 (9)0.0079 (8)
C30.0406 (11)0.0447 (12)0.0558 (13)0.0098 (9)0.0144 (10)0.0114 (10)
O40.0564 (9)0.0403 (8)0.0488 (9)0.0159 (7)0.0232 (7)0.0005 (6)
C40.0496 (12)0.0383 (11)0.0628 (14)0.0130 (9)0.0154 (11)0.0074 (10)
C50.0424 (11)0.0377 (10)0.0426 (11)0.0066 (8)0.0124 (9)0.0069 (8)
C60.0519 (12)0.0406 (11)0.0466 (11)0.0122 (9)0.0198 (10)0.0046 (9)
C70.0482 (12)0.0409 (11)0.0506 (12)0.0162 (9)0.0134 (10)0.0035 (9)
C80.0643 (15)0.0627 (15)0.0529 (14)0.0171 (12)0.0054 (12)0.0043 (12)
C90.0623 (15)0.0575 (14)0.0714 (16)0.0204 (12)0.0261 (13)0.0107 (12)
C100.0605 (14)0.0496 (13)0.0689 (16)0.0116 (11)0.0141 (12)0.0146 (11)
Geometric parameters (Å, º) top
S—C51.716 (2)O4—C61.329 (3)
S—C31.728 (2)O4—C71.494 (2)
N1—C51.309 (3)C4—H4A0.9300
N1—C41.372 (3)C7—C91.512 (3)
O1—C21.324 (3)C7—C81.513 (3)
O1—C11.446 (3)C7—C101.517 (3)
C1—H1B0.9600C8—H8A0.9600
C1—H1C0.9600C8—H8B0.9600
C1—H1D0.9600C8—H8C0.9600
N2—C61.373 (3)C9—H9A0.9600
N2—C51.375 (3)C9—H9B0.9600
N2—H2A0.8600C9—H9C0.9600
O2—C21.187 (3)C10—H10A0.9600
C2—C31.466 (3)C10—H10B0.9600
O3—C61.205 (3)C10—H10C0.9600
C3—C41.345 (3)
C5—S—C388.29 (10)O3—C6—N2122.9 (2)
C5—N1—C4109.33 (19)O4—C6—N2109.62 (17)
C2—O1—C1117.7 (2)O4—C7—C9102.10 (17)
O1—C1—H1B109.5O4—C7—C8109.55 (19)
O1—C1—H1C109.5C9—C7—C8111.5 (2)
H1B—C1—H1C109.5O4—C7—C10109.70 (18)
O1—C1—H1D109.5C9—C7—C10111.0 (2)
H1B—C1—H1D109.5C8—C7—C10112.4 (2)
H1C—C1—H1D109.5C7—C8—H8A109.5
C6—N2—C5122.54 (18)C7—C8—H8B109.5
C6—N2—H2A118.7H8A—C8—H8B109.5
C5—N2—H2A118.7C7—C8—H8C109.5
O2—C2—O1123.7 (2)H8A—C8—H8C109.5
O2—C2—C3125.2 (2)H8B—C8—H8C109.5
O1—C2—C3111.0 (2)C7—C9—H9A109.5
C4—C3—C2128.1 (2)C7—C9—H9B109.5
C4—C3—S110.13 (16)H9A—C9—H9B109.5
C2—C3—S121.78 (17)C7—C9—H9C109.5
C6—O4—C7120.74 (16)H9A—C9—H9C109.5
C3—C4—N1116.2 (2)H9B—C9—H9C109.5
C3—C4—H4A121.9C7—C10—H10A109.5
N1—C4—H4A121.9C7—C10—H10B109.5
N1—C5—N2120.82 (19)H10A—C10—H10B109.5
N1—C5—S116.08 (16)C7—C10—H10C109.5
N2—C5—S123.10 (15)H10A—C10—H10C109.5
O3—C6—O4127.5 (2)H10B—C10—H10C109.5
C1—O1—C2—O22.8 (4)C4—N1—C5—S0.3 (3)
C1—O1—C2—C3177.2 (2)C6—N2—C5—N1177.8 (2)
O2—C2—C3—C41.0 (5)C6—N2—C5—S2.8 (3)
O1—C2—C3—C4178.9 (2)C3—S—C5—N10.13 (18)
O2—C2—C3—S179.3 (2)C3—S—C5—N2179.6 (2)
O1—C2—C3—S0.7 (3)C7—O4—C6—O34.2 (4)
C5—S—C3—C40.09 (18)C7—O4—C6—N2176.44 (18)
C5—S—C3—C2179.8 (2)C5—N2—C6—O31.5 (4)
C2—C3—C4—N1180.0 (2)C5—N2—C6—O4179.13 (19)
S—C3—C4—N10.3 (3)C6—O4—C7—C9177.3 (2)
C5—N1—C4—C30.4 (3)C6—O4—C7—C864.4 (3)
C4—N1—C5—N2179.8 (2)C6—O4—C7—C1059.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O30.962.473.030 (4)117
C10—H10A···O30.962.453.010 (4)117
N2—H2A···N1i0.862.022.879 (3)174
C9—H9C···O2ii0.962.603.440 (4)146
C10—H10C···O2ii0.962.573.436 (4)150
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC10H14N2O4S
Mr258.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0700 (14), 9.2580 (19), 10.708 (2)
α, β, γ (°)70.10 (3), 79.67 (3), 79.08 (3)
V3)642.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.927, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
2543, 2338, 1975
Rint0.014
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.142, 1.01
No. of reflections2338
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.36

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O30.96002.47003.030 (4)117.00
C10—H10A···O30.96002.45003.010 (4)117.00
N2—H2A···N1i0.86002.02002.879 (3)174.00
C9—H9C···O2ii0.96002.60003.440 (4)146.00
C10—H10C···O2ii0.96002.57003.436 (4)150.00
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y1, z.
 

Acknowledgements

The authors thank Professor Hua-qin Wang (Nanjing University) for carrying out the X-ray crystallographic analysis.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). CAD-4 EXPRESS. University of Marburg, Germany.  Google Scholar
First citationLombardo, L. J. et al. (2004). J. Med. Chem. 47, 6658–6661.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationShah, N. P., Tran, C., Lee, F. Y., Chen, P., Norris, D. & Sawyers, C. L. (2004). Science, 305, 399–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds