organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2,5-Di­methyl-3-thien­yl)-3-(2-hy­dr­oxy­phen­yl)prop-2-en-1-one

aThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 4 August 2010; accepted 4 August 2010; online 11 August 2010)

In the title compound, C15H14O2S, the dihedral angle between the aromatic rings is 8.46 –(8)°. The central enone group is planar (r.m.s. deviation = 0.0267 Å) and is oriented at a dihedral angle of 1.20 (9)° with respect to the benzene ring and at 8.27 (9)° with respect to the thio­phene group. In the crystal, the mol­ecules are linked into polymeric chains extending along the b axis due to inter­molecular O—H⋯O hydrogen bonding. An S(6) ring motif is formed due to a short intra­molecular C—H⋯O contact. C—H⋯π inter­actions involving a methyl group of the 2,5-dimethyl­thienyl group and the benzene ring are present. ππ inter­actions between the centroids of the benzene and heterocyclic rings [3.7691 (9) Å] also occur.

Related literature

For background to chalcones and their biological activity, see: Bandgar & Gawande (2010[Bandgar, B. P. & Gawande, S. S. (2010). Bioorg. Med. Chem. 18, 2060-2065.]); Domínguez et al. (2001[Domínguez, J. N., Charris, J. E., Lobo, G., de Domínguez, N. G., Moreno, M. M., Riggione, F., Sanchez, E., Olson, J. & Rosenthal, P. J. (2001). Eur. J. Med. Chem. 36, 555-560.]); Hans et al. (2010[Hans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942-944.]); Kayser & Kiderlen (2001[Kayser, O. & Kiderlen, A. F. (2001). Phytother. Res. 15, 148-152.]); Mojzis et al. (2008[Mojzis, J., Varinska, L., Mojzisova, G., Kostova, I. & Mirossay, L. (2008). Pharmacol. Res. 57, 259-265.]); Vogel et al. (2010[Vogel, S., Barbic, M., Jürgenliemk, G. & Heilmann, J. (2010). Eur. J. Med. Chem. 45, 2206-2213.]). For related structures, see: Asiri et al. (2010a[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2099.],b[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2133.]); For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O2S

  • Mr = 258.32

  • Triclinic, [P \overline 1]

  • a = 7.6095 (3) Å

  • b = 7.7900 (3) Å

  • c = 12.3109 (7) Å

  • α = 98.527 (2)°

  • β = 91.943 (2)°

  • γ = 115.551 (1)°

  • V = 647.19 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.30 × 0.24 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.985

  • 11156 measured reflections

  • 3174 independent reflections

  • 2720 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.112

  • S = 1.05

  • 3174 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.8900 2.7067 (14) 174
C8—H8⋯O1 0.93 2.2400 2.8416 (17) 122
C15—H15ACg2ii 0.96 2.79 3.652 (2) 150
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

An enone system between two aromatic rings is generally known as a chalcones. It is an important class of natural products which serve as precursors for the preparation of various flavonoids and exhibit interesting pharmacological activities (Mojzis et al., 2008). Natural and synthetic chalcones have shown broad spectrum of biological activities such as anti-inflammatory (Vogel et al., 2010), antituberculosis (Hans et al., 2010), antifungal (Bandgar & Gawande, 2010), antimalarial (Domínguez et al., 2001) and antileish-manicidal (Kayser & Kiderlen 2001). Due to wide application of chalcons in the present communication, we report the synthesis and crystal structure of title compound I (Fig. 1).

Recently we have reported the crystal structures of (II) i.e. (E)-1-(2,5-dimethyl-3-thienyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (Asiri et al., 2010a) and (III) i.e. (2E)-3-(3,4-dimethoxyphenyl)-1-(2,5-dimethylthiophen-3-yl)prop-2-en-1-one (Asiri et al., 2010b) which are related to the title compound and differ from (I) due to substitutions at the phenyl ring.

In (I), the group A (C1—C6/O1) of salicylaldehyde, the central group B (C7—C9/O2) and group C (C10—C15/S1) of 2,5-dimethylthiophen-3-yl moiety are planar with r. m. s. deviation of 0.0063, 0.0267 and 0.0100 Å, respectively. The dihedral angles between A/B, A/C and B/C are 1.20 (9), 8.46 (8) and 8.27 (9)°, respectively. In the title compound, an S(6) ring motif (Bernstein et al., 1995) is formed due to intramolecular H-bonding of C—H···O type (Table 1, Fig. 2). The title compound is stabilized in the form of polymeric chains extending along the b axis due to O—H···O type of intermolecular H-bonding (Table 1, Fig. 2). The C—H···π (Table 1) and ππ interactions between the centroids of phenyl and heterocyclic rings at a distance of 3.7691 (9) Å [symmetry code: 1 - x, 1 - y, - z] also play important role in stabilizing the molecules.

Related literature top

For background to chalcones and their biological activity, see: Bandgar & Gawande (2010); Domínguez et al. (2001); Hans et al. (2010); Kayser & Kiderlen (2001); Mojzis et al. (2008); Vogel et al. (2010). For related structures, see: Asiri et al. (2010a,b); For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of 3-acetyl-2,5-dimethylthiophene (0.38 g, 2.5 mmol) and salicylaldehyde (0.30 g, 2.5 mmol) in an ethanolic solution of NaOH (3.0 g in 10 ml of ethanol) was stirred for 16 h at room temperature. The solution was poured into ice-cold water of pH = 2 (pH adjusted by HCl). The solid was separated and dissolved in CH2Cl2, this solution was washed with a saturated solution of NaHCO3 and then evaporated to dryness. The residue was recrystallized from methanol/chloroform.Yellow solid: Yield: 78%; m.p. 418–419 K.

Refinement top

The H-atoms were positioned geometrically (O—H = 0.86, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for hydroxy & methyl and x = 1.2 for aryl H-atoms.

Structure description top

An enone system between two aromatic rings is generally known as a chalcones. It is an important class of natural products which serve as precursors for the preparation of various flavonoids and exhibit interesting pharmacological activities (Mojzis et al., 2008). Natural and synthetic chalcones have shown broad spectrum of biological activities such as anti-inflammatory (Vogel et al., 2010), antituberculosis (Hans et al., 2010), antifungal (Bandgar & Gawande, 2010), antimalarial (Domínguez et al., 2001) and antileish-manicidal (Kayser & Kiderlen 2001). Due to wide application of chalcons in the present communication, we report the synthesis and crystal structure of title compound I (Fig. 1).

Recently we have reported the crystal structures of (II) i.e. (E)-1-(2,5-dimethyl-3-thienyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (Asiri et al., 2010a) and (III) i.e. (2E)-3-(3,4-dimethoxyphenyl)-1-(2,5-dimethylthiophen-3-yl)prop-2-en-1-one (Asiri et al., 2010b) which are related to the title compound and differ from (I) due to substitutions at the phenyl ring.

In (I), the group A (C1—C6/O1) of salicylaldehyde, the central group B (C7—C9/O2) and group C (C10—C15/S1) of 2,5-dimethylthiophen-3-yl moiety are planar with r. m. s. deviation of 0.0063, 0.0267 and 0.0100 Å, respectively. The dihedral angles between A/B, A/C and B/C are 1.20 (9), 8.46 (8) and 8.27 (9)°, respectively. In the title compound, an S(6) ring motif (Bernstein et al., 1995) is formed due to intramolecular H-bonding of C—H···O type (Table 1, Fig. 2). The title compound is stabilized in the form of polymeric chains extending along the b axis due to O—H···O type of intermolecular H-bonding (Table 1, Fig. 2). The C—H···π (Table 1) and ππ interactions between the centroids of phenyl and heterocyclic rings at a distance of 3.7691 (9) Å [symmetry code: 1 - x, 1 - y, - z] also play important role in stabilizing the molecules.

For background to chalcones and their biological activity, see: Bandgar & Gawande (2010); Domínguez et al. (2001); Hans et al. (2010); Kayser & Kiderlen (2001); Mojzis et al. (2008); Vogel et al. (2010). For related structures, see: Asiri et al. (2010a,b); For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal displacements are drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains extending along the b axis.
(E)-1-(2,5-Dimethyl-3-thienyl)-3-(2-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C15H14O2SZ = 2
Mr = 258.32F(000) = 272
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6095 (3) ÅCell parameters from 2182 reflections
b = 7.7900 (3) Åθ = 2.5–25.3°
c = 12.3109 (7) ŵ = 0.24 mm1
α = 98.527 (2)°T = 296 K
β = 91.943 (2)°Prism, yellow
γ = 115.551 (1)°0.30 × 0.24 × 0.22 mm
V = 647.19 (5) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3174 independent reflections
Radiation source: fine-focus sealed tube2720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.10 pixels mm-1θmax = 28.6°, θmin = 3.0°
ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 910
Tmin = 0.968, Tmax = 0.985l = 1616
11156 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.1362P]
where P = (Fo2 + 2Fc2)/3
3174 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H14O2Sγ = 115.551 (1)°
Mr = 258.32V = 647.19 (5) Å3
Triclinic, P1Z = 2
a = 7.6095 (3) ÅMo Kα radiation
b = 7.7900 (3) ŵ = 0.24 mm1
c = 12.3109 (7) ÅT = 296 K
α = 98.527 (2)°0.30 × 0.24 × 0.22 mm
β = 91.943 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3174 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2720 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.985Rint = 0.022
11156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
3174 reflectionsΔρmin = 0.23 e Å3
166 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.67628 (6)1.06807 (5)0.38493 (3)0.0475 (1)
O10.75707 (17)0.38399 (14)0.02745 (8)0.0464 (3)
O20.73309 (16)1.04466 (13)0.01642 (8)0.0461 (3)
C10.79715 (18)0.57560 (16)0.16540 (10)0.0329 (3)
C20.78885 (19)0.40687 (17)0.13253 (10)0.0343 (3)
C30.8126 (2)0.26851 (19)0.20796 (12)0.0434 (4)
C40.8396 (3)0.2929 (2)0.31564 (12)0.0504 (5)
C50.8450 (3)0.4557 (2)0.35080 (12)0.0507 (5)
C60.8256 (2)0.5950 (2)0.27561 (11)0.0427 (4)
C70.77922 (19)0.73111 (17)0.09244 (10)0.0343 (3)
C80.7412 (2)0.74553 (17)0.01224 (11)0.0370 (3)
C90.72983 (18)0.92090 (16)0.06888 (10)0.0334 (3)
C100.71496 (18)0.94215 (17)0.18852 (10)0.0337 (3)
C110.7304 (2)0.81420 (19)0.25716 (11)0.0429 (4)
C120.7131 (2)0.8629 (2)0.36472 (12)0.0478 (4)
C130.7182 (3)0.7610 (3)0.45856 (15)0.0714 (7)
C140.68407 (19)1.08881 (17)0.24864 (10)0.0360 (4)
C150.6562 (3)1.2516 (2)0.21248 (12)0.0484 (5)
H10.754950.281060.018160.0696*
H30.810240.158820.185420.0520*
H40.854340.198950.365310.0605*
H50.861440.471020.423840.0609*
H60.831680.705500.298890.0513*
H70.797370.837800.124290.0411*
H80.721600.644840.049960.0445*
H110.750590.707030.229800.0515*
H13A0.735130.647800.431170.1070*
H13B0.597310.723920.491260.1070*
H13C0.825340.846400.513170.1070*
H15A0.778111.343460.193160.0725*
H15B0.613411.314030.271680.0725*
H15C0.559361.201630.149420.0725*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0656 (3)0.0486 (2)0.0318 (2)0.0290 (2)0.0077 (2)0.0051 (1)
O10.0804 (7)0.0384 (5)0.0371 (5)0.0376 (5)0.0187 (5)0.0171 (4)
O20.0761 (7)0.0373 (5)0.0389 (5)0.0353 (5)0.0124 (5)0.0139 (4)
C10.0395 (6)0.0311 (5)0.0311 (6)0.0176 (5)0.0049 (5)0.0075 (4)
C20.0425 (7)0.0312 (5)0.0321 (6)0.0183 (5)0.0060 (5)0.0075 (4)
C30.0581 (8)0.0336 (6)0.0423 (7)0.0244 (6)0.0073 (6)0.0047 (5)
C40.0663 (10)0.0471 (8)0.0384 (7)0.0292 (7)0.0063 (7)0.0037 (6)
C50.0690 (10)0.0560 (8)0.0285 (6)0.0291 (7)0.0091 (6)0.0061 (6)
C60.0581 (8)0.0422 (7)0.0332 (7)0.0250 (6)0.0081 (6)0.0126 (5)
C70.0435 (7)0.0298 (5)0.0353 (6)0.0201 (5)0.0061 (5)0.0101 (4)
C80.0528 (7)0.0299 (5)0.0358 (6)0.0238 (5)0.0077 (5)0.0094 (5)
C90.0413 (6)0.0285 (5)0.0343 (6)0.0185 (5)0.0044 (5)0.0075 (4)
C100.0399 (6)0.0301 (5)0.0335 (6)0.0174 (5)0.0046 (5)0.0065 (4)
C110.0595 (8)0.0399 (6)0.0379 (7)0.0280 (6)0.0075 (6)0.0124 (5)
C120.0636 (9)0.0472 (7)0.0384 (7)0.0276 (7)0.0067 (6)0.0145 (6)
C130.1111 (16)0.0748 (12)0.0457 (9)0.0510 (11)0.0156 (10)0.0288 (8)
C140.0428 (7)0.0336 (6)0.0329 (6)0.0186 (5)0.0030 (5)0.0044 (5)
C150.0726 (10)0.0449 (7)0.0412 (7)0.0395 (7)0.0063 (7)0.0046 (6)
Geometric parameters (Å, º) top
S1—C121.7228 (16)C11—C121.349 (2)
S1—C141.7099 (13)C12—C131.504 (2)
O1—C21.3476 (16)C14—C151.498 (2)
O2—C91.2298 (15)C3—H30.9300
O1—H10.8200C4—H40.9300
C1—C61.4011 (18)C5—H50.9300
C1—C71.4564 (18)C6—H60.9300
C1—C21.4083 (17)C7—H70.9300
C2—C31.393 (2)C8—H80.9300
C3—C41.377 (2)C11—H110.9300
C4—C51.384 (2)C13—H13A0.9600
C5—C61.381 (2)C13—H13B0.9600
C7—C81.3295 (18)C13—H13C0.9600
C8—C91.4777 (18)C15—H15A0.9600
C9—C101.4713 (17)C15—H15B0.9600
C10—C111.4372 (19)C15—H15C0.9600
C10—C141.3788 (19)
S1···C4i3.686 (2)C8···H112.7400
S1···H4ii3.1500C9···H15C3.0600
O1···O2iii2.7067 (14)C9···H1iv3.0800
O1···C82.8416 (17)C11···H82.6800
O1···C15iii3.2790 (18)C15···H1iv2.9800
O1···C9i3.3986 (19)H1···O2iii1.8900
O2···O1iv2.7067 (14)H1···C9iii3.0800
O2···C3iv3.4160 (17)H1···C15iii2.9800
O2···C152.919 (2)H1···H32.2700
O2···C7v3.3745 (19)H1···H15Aiii2.5600
O1···H15Aiii2.7900H1···H15Ciii2.5800
O1···H15Ciii2.8800H3···O2iii2.7600
O1···H82.2400H3···H12.2700
O2···H1iv1.8900H4···S1vii3.1500
O2···H3iv2.7600H6···H72.3200
O2···H15A2.8300H7···O22.4000
O2···H15C2.6200H7···H62.3200
O2···H72.4000H7···H15Cvi2.6000
O2···H15Cvi2.7700H8···O12.2400
C2···C10i3.583 (2)H8···C22.9000
C3···O2iii3.4160 (17)H8···C112.6800
C3···C14i3.559 (2)H8···H112.1800
C4···S1i3.686 (2)H11···C82.7400
C6···C14v3.442 (2)H11···H82.1800
C7···C9v3.5138 (19)H11···H13A2.5900
C7···O2v3.3745 (19)H13A···H112.5900
C8···O12.8416 (17)H15A···O1iv2.7900
C9···O1i3.3986 (19)H15A···O22.8300
C9···C7v3.5138 (19)H15A···H1iv2.5600
C10···C2i3.583 (2)H15A···C1v3.0600
C14···C3i3.559 (2)H15A···C5v3.0500
C14···C6v3.442 (2)H15A···C6v2.9600
C15···O22.919 (2)H15C···O1iv2.8800
C15···O1iv3.2790 (18)H15C···O22.6200
C1···H15Av3.0600H15C···C93.0600
C2···H82.9000H15C···H1iv2.5800
C5···H15Av3.0500H15C···O2vi2.7700
C6···H15Av2.9600H15C···C7vi2.9200
C7···H15Cvi2.9200H15C···H7vi2.6000
C12—S1—C1493.47 (7)C2—C3—H3120.00
C2—O1—H1109.00C4—C3—H3120.00
C2—C1—C7124.39 (11)C3—C4—H4120.00
C6—C1—C7118.02 (11)C5—C4—H4120.00
C2—C1—C6117.59 (12)C4—C5—H5121.00
O1—C2—C3121.65 (12)C6—C5—H5121.00
C1—C2—C3120.04 (12)C1—C6—H6119.00
O1—C2—C1118.31 (12)C5—C6—H6119.00
C2—C3—C4120.50 (13)C1—C7—H7115.00
C3—C4—C5120.73 (15)C8—C7—H7115.00
C4—C5—C6118.88 (14)C7—C8—H8120.00
C1—C6—C5122.23 (13)C9—C8—H8120.00
C1—C7—C8130.57 (12)C10—C11—H11123.00
C7—C8—C9120.25 (11)C12—C11—H11123.00
O2—C9—C10121.58 (12)C12—C13—H13A109.00
C8—C9—C10118.20 (11)C12—C13—H13B109.00
O2—C9—C8120.22 (11)C12—C13—H13C109.00
C9—C10—C14123.69 (11)H13A—C13—H13B109.00
C11—C10—C14111.61 (11)H13A—C13—H13C110.00
C9—C10—C11124.70 (12)H13B—C13—H13C109.00
C10—C11—C12114.24 (13)C14—C15—H15A109.00
S1—C12—C13121.37 (12)C14—C15—H15B109.00
C11—C12—C13128.61 (15)C14—C15—H15C109.00
S1—C12—C11110.00 (11)H15A—C15—H15B109.00
S1—C14—C15118.86 (10)H15A—C15—H15C109.00
C10—C14—C15130.46 (12)H15B—C15—H15C110.00
S1—C14—C10110.68 (10)
C14—S1—C12—C110.02 (16)C4—C5—C6—C11.2 (3)
C14—S1—C12—C13178.73 (15)C1—C7—C8—C9179.80 (15)
C12—S1—C14—C100.21 (12)C7—C8—C9—O28.3 (2)
C12—S1—C14—C15179.18 (14)C7—C8—C9—C10171.60 (14)
C6—C1—C2—O1178.51 (14)O2—C9—C10—C11173.33 (14)
C6—C1—C2—C31.3 (2)O2—C9—C10—C146.7 (2)
C7—C1—C2—O11.8 (2)C8—C9—C10—C116.6 (2)
C7—C1—C2—C3178.36 (14)C8—C9—C10—C14173.36 (14)
C2—C1—C6—C50.1 (2)C9—C10—C11—C12179.67 (14)
C7—C1—C6—C5179.74 (16)C14—C10—C11—C120.37 (19)
C2—C1—C7—C84.6 (3)C9—C10—C14—S1179.69 (11)
C6—C1—C7—C8175.77 (16)C9—C10—C14—C151.0 (3)
O1—C2—C3—C4178.23 (16)C11—C10—C14—S10.36 (16)
C1—C2—C3—C41.6 (2)C11—C10—C14—C15178.95 (16)
C2—C3—C4—C50.4 (3)C10—C11—C12—S10.21 (18)
C3—C4—C5—C60.9 (3)C10—C11—C12—C13178.83 (17)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x+2, y+2, z; (vi) x+1, y+2, z; (vii) x, y1, z1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid ofthe C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2iii0.821.89002.7067 (14)174
C8—H8···O10.932.24002.8416 (17)122
C15—H15A···Cg2v0.962.793.652 (2)150
Symmetry codes: (iii) x, y1, z; (v) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H14O2S
Mr258.32
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.6095 (3), 7.7900 (3), 12.3109 (7)
α, β, γ (°)98.527 (2), 91.943 (2), 115.551 (1)
V3)647.19 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.24 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.968, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11156, 3174, 2720
Rint0.022
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.112, 1.05
No. of reflections3174
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid ofthe C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.89002.7067 (14)174
C8—H8···O10.932.24002.8416 (17)122
C15—H15A···Cg2ii0.962.793.652 (2)150
Symmetry codes: (i) x, y1, z; (ii) x+2, y+2, z.
 

Acknowledgements

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia, for providing the research facilities and for the financial support of this work via grant No. (3–045/430).

References

First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2099.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBandgar, B. P. & Gawande, S. S. (2010). Bioorg. Med. Chem. 18, 2060–2065.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDomínguez, J. N., Charris, J. E., Lobo, G., de Domínguez, N. G., Moreno, M. M., Riggione, F., Sanchez, E., Olson, J. & Rosenthal, P. J. (2001). Eur. J. Med. Chem. 36, 555–560.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942–944.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKayser, O. & Kiderlen, A. F. (2001). Phytother. Res. 15, 148–152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMojzis, J., Varinska, L., Mojzisova, G., Kostova, I. & Mirossay, L. (2008). Pharmacol. Res. 57, 259–265.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogel, S., Barbic, M., Jürgenliemk, G. & Heilmann, J. (2010). Eur. J. Med. Chem. 45, 2206–2213.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds