organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Oxoindolin-3-yl­­idene)-4-[2-(tri­fluoro­meth­­oxy)phen­yl]thio­semi­carbazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 5 August 2010; accepted 24 August 2010; online 28 August 2010)

The crystal structure of the title compound, C16H11F3N4O2S, is stabilized in the form of polymeric chains by N—H⋯O inter­actions. In the mol­ecular structure, two S(5) ring motifs are formed by intra­molecular N—H⋯N and N—H⋯O hydrogen bonding and two S(6) rings are present due to N—H⋯O and C—H⋯S inter­actions. ππ inter­actions are present with distances of 3.2735 (17), 3.563 (2) and 3.664 (4)/3.688 (3) Å between the centroids of the heterocyclic rings, between the centroids of the heterocyclic ring and trifluoro­meth­oxy-substituted phenyl ring, and between the centroids of the trifluoro­meth­oxy-substituted phenyl rings, respectively. The trifluoro­meth­oxy­phenyl group is disordered over two sites with an occupancy ratio of 0.642 (10):0.358 (10).

Related literature

For our work on the synthesis of biologically important isatin (systematic name 1H-indole-2,3-dione) derivatives, see: Pervez et al. (2007[Pervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178-1186.], 2008[Pervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I. & Khan, K. M. (2008). J. Enz. Inhib. Med. Chem. 23, 848-854.], 2009[Pervez, H., Chohan, Z. H., Ramzan, M., Nasim, F. H. & Khan, K. M. (2009). J. Enz. Inhib. Med. Chem. 24, 437-446.]). For a related structure, see: Pervez et al. (2010[Pervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010). Acta Cryst. E66, o1018.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11F3N4O2S

  • Mr = 380.35

  • Tetragonal, P 42 /n

  • a = 13.4746 (8) Å

  • c = 18.1073 (10) Å

  • V = 3287.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.951

  • 15673 measured reflections

  • 4051 independent reflections

  • 2321 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.202

  • S = 1.04

  • 4051 reflections

  • 242 parameters

  • 46 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.99 2.841 (3) 173
N3—H3⋯O1 0.86 2.07 2.748 (3) 136
N4—H4A⋯O2A 0.86 2.20 2.607 (8) 109
N4—H4A⋯N2 0.86 2.13 2.583 (4) 112
C11A—H11A⋯S1 0.93 2.40 3.096 (4) 132
Symmetry code: (i) [y, -x+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of our work on the synthesis of biologically important isatin derivatives (Pervez et al., 2007, 2008, 2009, 2010), we report herein the structure and preparation of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene) thiosemicarbazide has been published (Pervez et al., 2010). The title compound (I) differs from (II) due to the presence of trifluoromethyl instead of fluoro function at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety.

In (I), the 2-oxoindolin A (C1–C8/N1/O1) and thiosemicarbazide B (N2/N3/C9/S1/N4) groups are planar with r. m. s. deviations of 0.0081 Å and 0.0058 Å, respectively. The dihedral angle between A/B is 3.19 (1)°. The disordered phenyl rings C (C10A—C15A) and D (C10B—C15B) of the disordered trifluoromethoxyphenyl substituant are oriented at a dihedral angle of 9.42 (17)° with each other. The dihedral angle between A/C, B/C, A/D and B/D is 3.24 (3), 3.82 (3), 12.59 (14) and 12.59 (14)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), two S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules form polymeric chains (Fig. 2) due to intermolecular H-bonding of N—H···O type. There exist ππ interactions at a distance of 3.2735 (17), 3.563 (2) and [3.664 (4), 3.688 (3)] Å between the centroids of the heterocyclic rings [symmetry code: 1/2 - x, 1/2 - y, - z], the heterocyclic and majority phenyl ring containing trifluoromethoxy [symmetry code: - x, - y, - z] and phenyl rings containing trifluoromethoxy [symmetry code: 1/2 - x, - 1/2 - y, - z], respectively. The trifluoromethoxyphenyl is disordered over two set of sites with occupancy ratio 0.642 (10):0.358 (10).

Related literature top

For our work on the synthesis of biologically important isatin derivatives, see: Pervez et al. (2007, 2008, 2009). For a related structure, see: Pervez et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a hot solution of isatin (0.74 g, 5.0 mmol) in ethanol (10 ml) containing a few drops of glacial acetic acid was added 4-o-trifluoromethoxyphenylthiosemicarbazide (1.26 g, 5.0 mmol) dissolved in ethanol (10 ml) under stirring. The reaction mixture was then heated under reflux for 2 h. The yellow crystalline solid formed during heating was collected by suction filtration. Thorough washing with hot ethanol followed by ether provided the title compound (I) in pure form (1.51 g, 80%), m.p. 517 K (d). The single crystals of (I) were grown in ethyl acetate by slow evaporation at room temperature.

Refinement top

The trifluoromethoxyphenyl is highly disordered. The present refinement is the best one with acceptable bond lengths and refinement parameters. However, the thermal ellipsoids of O2A, F2A and F2B cannot be reduced. The disordered phenyl rings of trifluoromethoxyphenyl are treated as regular hexagones with equal anisotropic thermal parameters. The thermal parameters of disordered C-atoms of trifluoromethoxy are also treated to be equal.

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Structure description top

In continuation of our work on the synthesis of biologically important isatin derivatives (Pervez et al., 2007, 2008, 2009, 2010), we report herein the structure and preparation of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene) thiosemicarbazide has been published (Pervez et al., 2010). The title compound (I) differs from (II) due to the presence of trifluoromethyl instead of fluoro function at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety.

In (I), the 2-oxoindolin A (C1–C8/N1/O1) and thiosemicarbazide B (N2/N3/C9/S1/N4) groups are planar with r. m. s. deviations of 0.0081 Å and 0.0058 Å, respectively. The dihedral angle between A/B is 3.19 (1)°. The disordered phenyl rings C (C10A—C15A) and D (C10B—C15B) of the disordered trifluoromethoxyphenyl substituant are oriented at a dihedral angle of 9.42 (17)° with each other. The dihedral angle between A/C, B/C, A/D and B/D is 3.24 (3), 3.82 (3), 12.59 (14) and 12.59 (14)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), two S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules form polymeric chains (Fig. 2) due to intermolecular H-bonding of N—H···O type. There exist ππ interactions at a distance of 3.2735 (17), 3.563 (2) and [3.664 (4), 3.688 (3)] Å between the centroids of the heterocyclic rings [symmetry code: 1/2 - x, 1/2 - y, - z], the heterocyclic and majority phenyl ring containing trifluoromethoxy [symmetry code: - x, - y, - z] and phenyl rings containing trifluoromethoxy [symmetry code: 1/2 - x, - 1/2 - y, - z], respectively. The trifluoromethoxyphenyl is disordered over two set of sites with occupancy ratio 0.642 (10):0.358 (10).

For our work on the synthesis of biologically important isatin derivatives, see: Pervez et al. (2007, 2008, 2009). For a related structure, see: Pervez et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal displacements are drawn at the 30% probability level. The dotted lines indicate the intra-molecular H-bondings. Only the majority group of disordered atoms are shown for clarity.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains with different ring motifs.
1-(2-Oxoindolin-3-ylidene)-4-[2-(trifluoromethoxy)phenyl]thiosemicarbazide top
Crystal data top
C16H11F3N4O2SDx = 1.537 Mg m3
Mr = 380.35Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 2321 reflections
Hall symbol: -P 4bcθ = 3.1–28.3°
a = 13.4746 (8) ŵ = 0.25 mm1
c = 18.1073 (10) ÅT = 296 K
V = 3287.7 (3) Å3Prism, yellow
Z = 80.32 × 0.24 × 0.22 mm
F(000) = 1552
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4051 independent reflections
Radiation source: fine-focus sealed tube2321 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 3.1°
ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1613
Tmin = 0.937, Tmax = 0.951l = 2418
15673 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0768P)2 + 2.277P]
where P = (Fo2 + 2Fc2)/3
4051 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.62 e Å3
46 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H11F3N4O2SZ = 8
Mr = 380.35Mo Kα radiation
Tetragonal, P42/nµ = 0.25 mm1
a = 13.4746 (8) ÅT = 296 K
c = 18.1073 (10) Å0.32 × 0.24 × 0.22 mm
V = 3287.7 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4051 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2321 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.951Rint = 0.030
15673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06946 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.04Δρmax = 0.62 e Å3
4051 reflectionsΔρmin = 0.39 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.12312 (12)0.17880 (9)0.07998 (6)0.1023 (5)
O10.13028 (17)0.12230 (19)0.19341 (11)0.0617 (6)
O2A0.1645 (8)0.0082 (5)0.1781 (4)0.098 (3)0.642 (10)
C16A0.1209 (8)0.0557 (10)0.2175 (6)0.110 (3)0.642 (10)
F1A0.1590 (10)0.1485 (9)0.2063 (6)0.142 (4)0.642 (10)
F2A0.0226 (6)0.0520 (8)0.2108 (9)0.256 (8)0.642 (10)
F3A0.1494 (6)0.0461 (6)0.2903 (2)0.143 (3)0.642 (10)
O2B0.1302 (18)0.0168 (10)0.1743 (8)0.146 (9)0.358 (10)
C16B0.1390 (16)0.0527 (18)0.2389 (9)0.110 (3)0.358 (10)
F1B0.1175 (18)0.1457 (16)0.2154 (13)0.155 (9)0.358 (10)
F2B0.230 (2)0.0142 (14)0.246 (2)0.42 (2)0.358 (10)
F3B0.0538 (17)0.0320 (11)0.2705 (9)0.184 (9)0.358 (10)
C10.1288 (2)0.1907 (3)0.14785 (15)0.0506 (7)
C20.1252 (2)0.1801 (2)0.06543 (13)0.0452 (7)
C30.1269 (2)0.2802 (2)0.03581 (15)0.0471 (7)
C40.1262 (2)0.3187 (3)0.03511 (17)0.0596 (8)
H40.12390.27710.07610.071*
C50.1289 (3)0.4203 (3)0.0433 (2)0.0715 (10)
H50.12880.44740.09050.086*
C60.1319 (3)0.4826 (3)0.0170 (2)0.0729 (10)
H60.13320.55090.00950.087*
C70.1330 (3)0.4460 (3)0.0883 (2)0.0639 (9)
H70.13510.48810.12900.077*
C80.1307 (2)0.3447 (3)0.09654 (16)0.0516 (7)
C90.1229 (2)0.0776 (2)0.02940 (17)0.0537 (7)
C10A0.1224 (4)0.1399 (3)0.0985 (2)0.0673 (11)0.642 (10)
C11A0.1162 (5)0.2412 (3)0.0844 (2)0.0673 (11)0.642 (10)
H11A0.11360.26400.03600.081*0.642 (10)
C12A0.1139 (4)0.3082 (3)0.1428 (3)0.0673 (11)0.642 (10)
H12A0.10980.37590.13330.081*0.642 (10)
C13A0.1178 (3)0.2740 (4)0.2151 (2)0.0673 (11)0.642 (10)
H13A0.11630.31890.25410.081*0.642 (10)
C14A0.1240 (4)0.1728 (4)0.22919 (19)0.0673 (11)0.642 (10)
H14A0.12660.15000.27760.081*0.642 (10)
C15A0.1263 (4)0.1058 (3)0.1709 (3)0.0673 (11)0.642 (10)
C10B0.1284 (4)0.1331 (4)0.1078 (3)0.0557 (16)0.358 (10)
C11B0.1090 (6)0.2343 (4)0.1039 (4)0.0557 (16)0.358 (10)
H11B0.09570.26370.05850.067*0.358 (10)
C12B0.1096 (6)0.2914 (5)0.1678 (5)0.0557 (16)0.358 (10)
H12B0.09670.35910.16520.067*0.358 (10)
C13B0.1296 (5)0.2474 (6)0.2356 (4)0.0557 (16)0.358 (10)
H13B0.13000.28560.27840.067*0.358 (10)
C14B0.1490 (6)0.1462 (6)0.2395 (3)0.0557 (16)0.358 (10)
H14B0.16230.11670.28490.067*0.358 (10)
C15B0.1484 (5)0.0890 (5)0.1756 (3)0.0557 (16)0.358 (10)
N10.13202 (18)0.2883 (2)0.16207 (12)0.0553 (7)
H10.13450.31340.20570.066*
N20.12204 (17)0.09849 (19)0.02780 (12)0.0475 (6)
N30.12066 (19)0.0127 (2)0.06555 (13)0.0528 (7)
H30.11840.01400.11300.063*
N40.12473 (19)0.0670 (2)0.04415 (13)0.0553 (7)
H4A0.12780.00690.05990.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1630 (13)0.0717 (7)0.0722 (7)0.0081 (7)0.0368 (7)0.0177 (5)
O10.0676 (15)0.0853 (16)0.0323 (10)0.0031 (12)0.0074 (9)0.0023 (10)
O2A0.190 (8)0.054 (4)0.051 (3)0.024 (4)0.019 (4)0.005 (3)
C16A0.151 (8)0.120 (6)0.060 (6)0.030 (5)0.059 (5)0.016 (5)
F1A0.180 (11)0.123 (6)0.123 (7)0.011 (6)0.038 (7)0.019 (4)
F2A0.109 (5)0.203 (10)0.457 (19)0.043 (5)0.092 (9)0.163 (12)
F3A0.179 (7)0.215 (7)0.034 (2)0.028 (6)0.003 (3)0.027 (3)
O2B0.33 (2)0.069 (7)0.044 (5)0.121 (10)0.026 (8)0.004 (4)
C16B0.151 (8)0.120 (6)0.060 (6)0.030 (5)0.059 (5)0.016 (5)
F1B0.19 (2)0.112 (10)0.159 (12)0.054 (10)0.060 (12)0.080 (9)
F2B0.42 (4)0.170 (16)0.69 (5)0.075 (19)0.42 (4)0.02 (2)
F3B0.25 (2)0.151 (10)0.152 (13)0.005 (14)0.136 (15)0.024 (10)
C10.0423 (16)0.078 (2)0.0314 (13)0.0001 (14)0.0041 (11)0.0070 (14)
C20.0400 (15)0.0660 (19)0.0296 (12)0.0008 (13)0.0025 (10)0.0047 (12)
C30.0425 (15)0.0615 (18)0.0374 (14)0.0019 (13)0.0042 (11)0.0062 (12)
C40.068 (2)0.069 (2)0.0415 (16)0.0017 (17)0.0063 (14)0.0006 (14)
C50.085 (3)0.071 (2)0.059 (2)0.0015 (19)0.0102 (18)0.0106 (17)
C60.073 (2)0.064 (2)0.082 (3)0.0055 (18)0.0098 (19)0.0010 (19)
C70.059 (2)0.063 (2)0.070 (2)0.0048 (16)0.0044 (16)0.0183 (17)
C80.0412 (16)0.071 (2)0.0429 (15)0.0018 (14)0.0043 (12)0.0121 (13)
C90.0481 (17)0.064 (2)0.0486 (16)0.0024 (14)0.0112 (13)0.0015 (14)
C10A0.0693 (19)0.073 (2)0.0594 (17)0.0060 (14)0.0037 (13)0.0070 (12)
C11A0.0693 (19)0.073 (2)0.0594 (17)0.0060 (14)0.0037 (13)0.0070 (12)
C12A0.0693 (19)0.073 (2)0.0594 (17)0.0060 (14)0.0037 (13)0.0070 (12)
C13A0.0693 (19)0.073 (2)0.0594 (17)0.0060 (14)0.0037 (13)0.0070 (12)
C14A0.0693 (19)0.073 (2)0.0594 (17)0.0060 (14)0.0037 (13)0.0070 (12)
C15A0.0693 (19)0.073 (2)0.0594 (17)0.0060 (14)0.0037 (13)0.0070 (12)
C10B0.050 (3)0.072 (3)0.045 (2)0.003 (2)0.0068 (18)0.020 (2)
C11B0.050 (3)0.072 (3)0.045 (2)0.003 (2)0.0068 (18)0.020 (2)
C12B0.050 (3)0.072 (3)0.045 (2)0.003 (2)0.0068 (18)0.020 (2)
C13B0.050 (3)0.072 (3)0.045 (2)0.003 (2)0.0068 (18)0.020 (2)
C14B0.050 (3)0.072 (3)0.045 (2)0.003 (2)0.0068 (18)0.020 (2)
C15B0.050 (3)0.072 (3)0.045 (2)0.003 (2)0.0068 (18)0.020 (2)
N10.0531 (15)0.0783 (19)0.0344 (12)0.0027 (13)0.0047 (10)0.0154 (12)
N20.0452 (13)0.0629 (16)0.0345 (12)0.0010 (11)0.0049 (9)0.0009 (11)
N30.0606 (16)0.0635 (17)0.0342 (12)0.0020 (12)0.0057 (10)0.0019 (11)
N40.0656 (17)0.0577 (16)0.0427 (13)0.0005 (13)0.0059 (11)0.0042 (11)
Geometric parameters (Å, º) top
S1—C91.643 (3)C9—N31.382 (4)
O1—C11.237 (4)C10A—C11A1.3900
O2A—C16A1.263 (12)C10A—C15A1.3900
O2A—C15A1.418 (8)C10A—N41.391 (4)
C16A—F2A1.331 (12)C11A—C12A1.3900
C16A—F1A1.367 (13)C11A—H11A0.9300
C16A—F3A1.380 (9)C12A—C13A1.3900
O2B—C16B1.271 (17)C12A—H12A0.9300
O2B—C15B1.448 (11)C13A—C14A1.3900
C16B—F3B1.314 (19)C13A—H13A0.9300
C16B—F2B1.337 (19)C14A—C15A1.3900
C16B—F1B1.35 (2)C14A—H14A0.9300
C1—N11.342 (4)C10B—C11B1.3900
C1—C21.500 (4)C10B—C15B1.3900
C2—N21.295 (4)C10B—N41.457 (4)
C2—C31.452 (4)C11B—C12B1.3900
C3—C41.385 (4)C11B—H11B0.9300
C3—C81.403 (4)C12B—C13B1.3900
C4—C51.377 (5)C12B—H12B0.9300
C4—H40.9300C13B—C14B1.3900
C5—C61.378 (5)C13B—H13B0.9300
C5—H50.9300C14B—C15B1.3900
C6—C71.383 (5)C14B—H14B0.9300
C6—H60.9300N1—H10.8600
C7—C81.373 (5)N2—N31.342 (3)
C7—H70.9300N3—H30.8600
C8—N11.409 (4)N4—H4A0.8600
C9—N41.340 (4)
C16A—O2A—C15A121.0 (9)C10A—C11A—H11A120.0
O2A—C16A—F2A112.7 (9)C12A—C11A—H11A120.0
O2A—C16A—F1A111.4 (11)C13A—C12A—C11A120.0
F2A—C16A—F1A113.3 (11)C13A—C12A—H12A120.0
O2A—C16A—F3A110.2 (10)C11A—C12A—H12A120.0
F2A—C16A—F3A111.1 (10)C12A—C13A—C14A120.0
F1A—C16A—F3A97.1 (9)C12A—C13A—H13A120.0
C16B—O2B—C15B110.1 (16)C14A—C13A—H13A120.0
O2B—C16B—F3B103.8 (18)C13A—C14A—C15A120.0
O2B—C16B—F2B91.6 (18)C13A—C14A—H14A120.0
F3B—C16B—F2B133 (3)C15A—C14A—H14A120.0
O2B—C16B—F1B92.5 (15)C14A—C15A—C10A120.0
F3B—C16B—F1B98 (2)C14A—C15A—O2A122.7 (4)
F2B—C16B—F1B126 (2)C10A—C15A—O2A114.1 (5)
O1—C1—N1127.0 (3)C11B—C10B—C15B120.0
O1—C1—C2126.4 (3)C11B—C10B—N4123.6 (3)
N1—C1—C2106.5 (3)C15B—C10B—N4116.4 (3)
N2—C2—C3126.5 (2)C12B—C11B—C10B120.0
N2—C2—C1127.2 (3)C12B—C11B—H11B120.0
C3—C2—C1106.2 (2)C10B—C11B—H11B120.0
C4—C3—C8119.7 (3)C13B—C12B—C11B120.0
C4—C3—C2133.7 (3)C13B—C12B—H12B120.0
C8—C3—C2106.6 (2)C11B—C12B—H12B120.0
C5—C4—C3118.2 (3)C12B—C13B—C14B120.0
C5—C4—H4120.9C12B—C13B—H13B120.0
C3—C4—H4120.9C14B—C13B—H13B120.0
C4—C5—C6121.4 (3)C13B—C14B—C15B120.0
C4—C5—H5119.3C13B—C14B—H14B120.0
C6—C5—H5119.3C15B—C14B—H14B120.0
C5—C6—C7121.6 (4)C14B—C15B—C10B120.0
C5—C6—H6119.2C14B—C15B—O2B124.1 (6)
C7—C6—H6119.2C10B—C15B—O2B111.9 (7)
C8—C7—C6117.1 (3)C1—N1—C8111.5 (2)
C8—C7—H7121.5C1—N1—H1124.2
C6—C7—H7121.5C8—N1—H1124.2
C7—C8—C3122.1 (3)C2—N2—N3117.6 (2)
C7—C8—N1128.8 (3)N2—N3—C9121.1 (2)
C3—C8—N1109.1 (3)N2—N3—H3119.5
N4—C9—N3112.2 (3)C9—N3—H3119.5
N4—C9—S1130.0 (3)C9—N4—C10A128.9 (3)
N3—C9—S1117.8 (2)C9—N4—C10B136.2 (4)
C11A—C10A—C15A120.0C10A—N4—C10B8.0 (4)
C11A—C10A—N4124.4 (3)C9—N4—H4A115.6
C15A—C10A—N4115.6 (3)C10A—N4—H4A115.6
C10A—C11A—C12A120.0C10B—N4—H4A108.1
C15A—O2A—C16A—F2A40.2 (14)C16A—O2A—C15A—C14A67.6 (12)
C15A—O2A—C16A—F1A168.9 (7)C16A—O2A—C15A—C10A132.6 (8)
C15A—O2A—C16A—F3A84.6 (12)C15B—C10B—C11B—C12B0.0
C15B—O2B—C16B—F3B80 (2)N4—C10B—C11B—C12B177.1 (2)
C15B—O2B—C16B—F2B54 (2)C10B—C11B—C12B—C13B0.0
C15B—O2B—C16B—F1B179.8 (18)C11B—C12B—C13B—C14B0.0
O1—C1—C2—N20.7 (5)C12B—C13B—C14B—C15B0.0
N1—C1—C2—N2179.6 (3)C13B—C14B—C15B—C10B0.0
O1—C1—C2—C3178.8 (3)C13B—C14B—C15B—O2B155.7 (14)
N1—C1—C2—C30.1 (3)C11B—C10B—C15B—C14B0.0
N2—C2—C3—C40.4 (5)N4—C10B—C15B—C14B177.3 (2)
C1—C2—C3—C4179.2 (3)C11B—C10B—C15B—O2B158.5 (12)
N2—C2—C3—C8179.8 (3)N4—C10B—C15B—O2B18.8 (12)
C1—C2—C3—C80.2 (3)C16B—O2B—C15B—C14B16 (3)
C8—C3—C4—C50.3 (5)C16B—O2B—C15B—C10B173.1 (16)
C2—C3—C4—C5179.6 (3)O1—C1—N1—C8179.0 (3)
C3—C4—C5—C60.3 (5)C2—C1—N1—C80.1 (3)
C4—C5—C6—C70.5 (6)C7—C8—N1—C1179.9 (3)
C5—C6—C7—C80.2 (5)C3—C8—N1—C10.3 (3)
C6—C7—C8—C30.4 (5)C3—C2—N2—N3179.8 (3)
C6—C7—C8—N1179.4 (3)C1—C2—N2—N30.8 (4)
C4—C3—C8—C70.6 (4)C2—N2—N3—C9176.3 (3)
C2—C3—C8—C7179.9 (3)N4—C9—N3—N21.1 (4)
C4—C3—C8—N1179.2 (3)S1—C9—N3—N2178.9 (2)
C2—C3—C8—N10.3 (3)N3—C9—N4—C10A176.6 (3)
C15A—C10A—C11A—C12A0.0S1—C9—N4—C10A3.5 (5)
N4—C10A—C11A—C12A179.7 (4)N3—C9—N4—C10B179.2 (4)
C10A—C11A—C12A—C13A0.0S1—C9—N4—C10B0.7 (6)
C11A—C12A—C13A—C14A0.0C11A—C10A—N4—C90.9 (5)
C12A—C13A—C14A—C15A0.0C15A—C10A—N4—C9179.4 (3)
C13A—C14A—C15A—C10A0.0C11A—C10A—N4—C10B159 (3)
C13A—C14A—C15A—O2A158.6 (7)C15A—C10A—N4—C10B21 (2)
C11A—C10A—C15A—C14A0.0C11B—C10B—N4—C914.8 (5)
N4—C10A—C15A—C14A179.8 (4)C15B—C10B—N4—C9168.0 (4)
C11A—C10A—C15A—O2A160.3 (6)C11B—C10B—N4—C10A10 (2)
N4—C10A—C15A—O2A19.9 (6)C15B—C10B—N4—C10A168 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.992.841 (3)173
N3—H3···O10.862.072.748 (3)136
N4—H4A···O2A0.862.202.607 (8)109
N4—H4A···N20.862.132.583 (4)112
C11A—H11A···S10.932.403.096 (4)132
Symmetry code: (i) y, x+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H11F3N4O2S
Mr380.35
Crystal system, space groupTetragonal, P42/n
Temperature (K)296
a, c (Å)13.4746 (8), 18.1073 (10)
V3)3287.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.937, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
15673, 4051, 2321
Rint0.030
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.202, 1.04
No. of reflections4051
No. of parameters242
No. of restraints46
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.992.841 (3)173
N3—H3···O10.862.072.748 (3)136
N4—H4A···O2A0.862.202.607 (8)109
N4—H4A···N20.862.132.583 (4)112
C11A—H11A···S10.932.403.096 (4)132
Symmetry code: (i) y, x+1/2, z1/2.
 

Acknowledgements

HP, MY and MR thank the Ministry of Science & Technology (MoST), Government of Pakistan, for partial financial assistance under Projects for the Strengthening of S & T Education in Universities (project No. P&D/S&T/2001/231).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPervez, H., Chohan, Z. H., Ramzan, M., Nasim, F. H. & Khan, K. M. (2009). J. Enz. Inhib. Med. Chem. 24, 437–446.  Web of Science CrossRef CAS Google Scholar
First citationPervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178–1186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I. & Khan, K. M. (2008). J. Enz. Inhib. Med. Chem. 23, 848–854.  Web of Science CrossRef CAS Google Scholar
First citationPervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010). Acta Cryst. E66, o1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds