organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(2,3-Di­methyl­phen­yl)imino­meth­yl]phenol

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and cInstitute of Chemical and Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 August 2010; accepted 18 August 2010; online 28 August 2010)

In the title compound, C15H15NO, the almost planar 2,3-dimethyl­aniline unit and the salicyl­aldehyde group (r.m.s. deviations of 0.0156 and 0.0109 Å, respectively) are oriented at a dihedral angle of 43.69 (9)° with respect to each other. An S(6) ring motif is formed due to intra­molecular O—H⋯N hydrogen bonding. In the crystal, C—H⋯π inter­actions occur between the 2,3-dimethyl­aniline unit and the salicyl­aldehyde group, where the CH is from the o-methyl group.

Related literature

For background to Schiff bases synthesized from 2,3-dimethyl­aniline and for related structures, see: Tahir et al. (2010a[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, o1562.],b[Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010b). Acta Cryst. E66, o1817.]); Tariq et al. (2010[Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Orthorhombic, P 21 21 21

  • a = 7.5641 (7) Å

  • b = 12.5889 (13) Å

  • c = 13.0643 (14) Å

  • V = 1244.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.32 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.985

  • 9729 measured reflections

  • 1316 independent reflections

  • 687 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.157

  • S = 1.11

  • 1316 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.582 (6) 148
C7—H7ACg1i 0.96 2.92 3.782 (6) 150
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported crystal structures of Schiff bases synthesized from 2,3-dimethylaniline (Tahir et al., 2010a, 2010b), (Tariq et al., 2010) and in continuation of this work, we report herein the structure and synthesis of the title compound (I, Fig. 1). The title compound has been synthesized for the preparation of different organometallic compounds.

In (I), the 2,3-dimethylaniline moiety A (C1–C8/N1) and the group B (C9—C15/O1) of salicylaldehyde are planar with r.m.s. deviations of 0.0156 and 0.0109 Å, respectively. The dihedral angle between A/B is 43.69 (9)°. The title molecule essentially consists of monomers. In the title molecule an S(6) ring motif (Bernstein et al., 1995) is formed due to intramolecular H-bonding of O—H···N type (Table 1, Fig. 1). There exist C—H···π interaction (Table 1) which plays important role in stabilizing the molecules.

Related literature top

For background to Schiff bases synthesized from

2,3-dimethylaniline and for related structures, see: Tahir et al. (2010a,b); Tariq et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 2,3-dimethylaniline and salicylaldehyde were refluxed in methanol for 45 min. The resulting solution was kept at room temperature which afforded colorless needles of (I) after 72 h.

Refinement top

The H-atoms were positioned geometrically (O–H = 0.82, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H-atoms. In the absence of significant anomalous scattering factor, Friedal pairs were merged.

Structure description top

We have reported crystal structures of Schiff bases synthesized from 2,3-dimethylaniline (Tahir et al., 2010a, 2010b), (Tariq et al., 2010) and in continuation of this work, we report herein the structure and synthesis of the title compound (I, Fig. 1). The title compound has been synthesized for the preparation of different organometallic compounds.

In (I), the 2,3-dimethylaniline moiety A (C1–C8/N1) and the group B (C9—C15/O1) of salicylaldehyde are planar with r.m.s. deviations of 0.0156 and 0.0109 Å, respectively. The dihedral angle between A/B is 43.69 (9)°. The title molecule essentially consists of monomers. In the title molecule an S(6) ring motif (Bernstein et al., 1995) is formed due to intramolecular H-bonding of O—H···N type (Table 1, Fig. 1). There exist C—H···π interaction (Table 1) which plays important role in stabilizing the molecules.

For background to Schiff bases synthesized from

2,3-dimethylaniline and for related structures, see: Tahir et al. (2010a,b); Tariq et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. The dotted line represents the intramolecular H-bonding.
2-[(E)-(2,3-Dimethylphenyl)iminomethyl]phenol top
Crystal data top
C15H15NOF(000) = 480
Mr = 225.28Dx = 1.203 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 687 reflections
a = 7.5641 (7) Åθ = 2.3–25.2°
b = 12.5889 (13) ŵ = 0.08 mm1
c = 13.0643 (14) ÅT = 296 K
V = 1244.0 (2) Å3Needle, colorless
Z = 40.32 × 0.12 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1316 independent reflections
Radiation source: fine-focus sealed tube687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 8.1 pixels mm-1θmax = 25.2°, θmin = 2.3°
ω scansh = 98
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.980, Tmax = 0.985l = 1515
9729 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0624P)2]
where P = (Fo2 + 2Fc2)/3
1316 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C15H15NOV = 1244.0 (2) Å3
Mr = 225.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5641 (7) ŵ = 0.08 mm1
b = 12.5889 (13) ÅT = 296 K
c = 13.0643 (14) Å0.32 × 0.12 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1316 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
687 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.085
9729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.11Δρmax = 0.11 e Å3
1316 reflectionsΔρmin = 0.13 e Å3
157 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1515 (5)0.5069 (3)0.2310 (3)0.0897 (19)
N10.0156 (5)0.3687 (4)0.1080 (3)0.0627 (17)
C10.0128 (6)0.3279 (4)0.0080 (4)0.056 (2)
C20.0758 (6)0.3945 (5)0.0690 (5)0.059 (2)
C30.0952 (6)0.3556 (5)0.1668 (4)0.065 (2)
C40.0551 (7)0.2503 (6)0.1881 (5)0.077 (3)
C50.0066 (7)0.1849 (5)0.1113 (5)0.083 (3)
C60.0298 (7)0.2231 (5)0.0142 (5)0.072 (2)
C70.1219 (8)0.5080 (4)0.0424 (5)0.088 (3)
C80.1642 (9)0.4236 (5)0.2532 (4)0.106 (3)
C90.0214 (6)0.3121 (4)0.1866 (4)0.064 (2)
C100.0210 (7)0.3453 (4)0.2888 (4)0.061 (2)
C110.0197 (8)0.2804 (5)0.3715 (4)0.081 (2)
C120.0244 (10)0.3084 (6)0.4696 (5)0.095 (3)
C130.1103 (10)0.4022 (7)0.4868 (6)0.097 (3)
C140.1526 (7)0.4687 (5)0.4063 (6)0.088 (3)
C150.1088 (7)0.4403 (5)0.3083 (5)0.068 (3)
H10.117670.481680.176550.1075*
H40.069810.223900.254060.0926*
H50.032540.114250.125640.0997*
H60.074060.178950.036780.0859*
H7A0.248020.516220.041570.1311*
H7B0.074920.525070.023870.1311*
H7C0.071870.554920.092620.1311*
H8A0.088680.484280.261790.1586*
H8B0.165810.382900.315280.1586*
H8C0.281870.446990.237370.1586*
H90.077670.247160.177150.0767*
H110.078170.216540.360110.0969*
H120.003980.263970.523980.1147*
H130.140670.421360.553280.1166*
H140.210520.532610.418620.1054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.084 (3)0.075 (3)0.110 (4)0.023 (3)0.003 (3)0.009 (3)
N10.049 (3)0.061 (3)0.078 (3)0.008 (2)0.003 (3)0.001 (3)
C10.038 (3)0.050 (4)0.081 (4)0.001 (3)0.005 (3)0.001 (3)
C20.045 (3)0.057 (4)0.075 (4)0.002 (3)0.009 (3)0.010 (4)
C30.052 (3)0.071 (5)0.073 (4)0.001 (3)0.015 (3)0.018 (4)
C40.071 (4)0.083 (5)0.077 (4)0.005 (3)0.009 (3)0.015 (4)
C50.078 (4)0.071 (5)0.101 (5)0.011 (4)0.004 (4)0.010 (4)
C60.071 (4)0.063 (4)0.081 (4)0.012 (3)0.009 (3)0.005 (3)
C70.084 (4)0.057 (4)0.122 (5)0.011 (4)0.007 (4)0.015 (4)
C80.118 (6)0.113 (6)0.086 (5)0.006 (5)0.005 (4)0.019 (4)
C90.049 (3)0.056 (4)0.087 (4)0.001 (3)0.005 (3)0.003 (4)
C100.055 (3)0.057 (4)0.071 (4)0.003 (3)0.004 (3)0.005 (3)
C110.090 (4)0.066 (4)0.086 (4)0.004 (4)0.002 (4)0.007 (4)
C120.114 (6)0.089 (6)0.083 (5)0.024 (5)0.003 (4)0.003 (4)
C130.084 (5)0.112 (7)0.096 (5)0.030 (5)0.019 (4)0.031 (5)
C140.067 (4)0.078 (5)0.118 (6)0.001 (3)0.003 (4)0.018 (5)
C150.054 (3)0.065 (5)0.085 (5)0.003 (3)0.005 (3)0.006 (4)
Geometric parameters (Å, º) top
O1—C151.352 (7)C13—C141.382 (11)
O1—H10.8200C14—C151.370 (10)
N1—C11.420 (7)C4—H40.9300
N1—C91.281 (7)C5—H50.9300
C1—C61.389 (8)C6—H60.9300
C1—C21.394 (8)C7—H7A0.9600
C2—C71.511 (8)C7—H7B0.9600
C2—C31.376 (8)C7—H7C0.9600
C3—C41.388 (10)C8—H8A0.9600
C3—C81.510 (8)C8—H8B0.9600
C4—C51.379 (9)C8—H8C0.9600
C5—C61.368 (9)C9—H90.9300
C9—C101.435 (7)C11—H110.9300
C10—C151.392 (8)C12—H120.9300
C10—C111.389 (8)C13—H130.9300
C11—C121.370 (9)C14—H140.9300
C12—C131.366 (11)
O1···N12.582 (6)H1···H7B2.5300
O1···H8Ci2.8900H4···H8B2.2700
N1···O12.582 (6)H5···C8v3.0400
N1···H11.8500H5···H8Av2.2400
N1···H7B2.3600H6···C92.6800
C1···C6ii3.520 (7)H6···H92.3300
C2···C6ii3.503 (8)H6···C2iii2.8400
C6···C2iii3.503 (8)H6···C3iii3.0600
C6···C1iii3.520 (7)H7A···C83.0700
C1···H13.0900H7A···C12vii3.0400
C2···H6ii2.8400H7A···C13vii2.9500
C2···H14iv2.9200H7B···N12.3600
C3···H6ii3.0600H7B···H12.5300
C5···H8Av3.0800H7C···C82.7600
C6···H92.6500H7C···H8A2.3900
C7···H8A2.8900H8A···C72.8900
C7···H8C2.9200H8A···H7C2.3900
C8···H7A3.0700H8A···C5vi3.0800
C8···H7C2.7600H8A···H5vi2.2400
C8···H5vi3.0400H8B···H42.2700
C9···H12.3800H8C···C72.9200
C9···H62.6800H8C···O1vii2.8900
C12···H7Ai3.0400H8C···C15vii2.9100
C13···H7Ai2.9500H9···C62.6500
C15···H8Ci2.9100H9···H62.3300
H1···N11.8500H9···H112.4200
H1···C13.0900H11···H92.4200
H1···C92.3800H14···C2viii2.9200
C15—O1—H1109.00C4—C5—H5120.00
C1—N1—C9120.2 (5)C6—C5—H5120.00
N1—C1—C2119.9 (5)C1—C6—H6120.00
C2—C1—C6120.0 (5)C5—C6—H6120.00
N1—C1—C6120.0 (5)C2—C7—H7A110.00
C1—C2—C3119.5 (6)C2—C7—H7B109.00
C1—C2—C7118.8 (5)C2—C7—H7C109.00
C3—C2—C7121.7 (6)H7A—C7—H7B109.00
C2—C3—C4120.2 (5)H7A—C7—H7C109.00
C2—C3—C8122.0 (5)H7B—C7—H7C109.00
C4—C3—C8117.9 (5)C3—C8—H8A109.00
C3—C4—C5119.9 (6)C3—C8—H8B109.00
C4—C5—C6120.5 (6)C3—C8—H8C109.00
C1—C6—C5119.9 (6)H8A—C8—H8B109.00
N1—C9—C10122.3 (5)H8A—C8—H8C109.00
C9—C10—C15121.8 (5)H8B—C8—H8C110.00
C11—C10—C15118.0 (5)N1—C9—H9119.00
C9—C10—C11120.2 (5)C10—C9—H9119.00
C10—C11—C12121.5 (6)C10—C11—H11119.00
C11—C12—C13119.5 (7)C12—C11—H11119.00
C12—C13—C14120.6 (7)C11—C12—H12120.00
C13—C14—C15119.8 (6)C13—C12—H12120.00
O1—C15—C14118.6 (5)C12—C13—H13120.00
C10—C15—C14120.7 (6)C14—C13—H13120.00
O1—C15—C10120.7 (5)C13—C14—H14120.00
C3—C4—H4120.00C15—C14—H14120.00
C5—C4—H4120.00
C9—N1—C1—C2141.7 (5)C3—C4—C5—C60.4 (8)
C9—N1—C1—C641.3 (7)C4—C5—C6—C11.5 (8)
C1—N1—C9—C10173.7 (4)N1—C9—C10—C11179.1 (5)
N1—C1—C2—C73.3 (7)N1—C9—C10—C151.5 (8)
C6—C1—C2—C30.0 (7)C9—C10—C11—C12177.8 (6)
C6—C1—C2—C7179.7 (5)C15—C10—C11—C120.1 (9)
N1—C1—C6—C5178.3 (5)C9—C10—C15—O12.5 (8)
C2—C1—C6—C51.2 (8)C9—C10—C15—C14178.0 (5)
N1—C1—C2—C3177.0 (4)C11—C10—C15—O1179.8 (5)
C1—C2—C3—C41.1 (7)C11—C10—C15—C140.3 (8)
C7—C2—C3—C4178.7 (5)C10—C11—C12—C130.0 (10)
C7—C2—C3—C80.2 (8)C11—C12—C13—C140.1 (11)
C1—C2—C3—C8179.5 (5)C12—C13—C14—C150.3 (10)
C2—C3—C4—C50.9 (8)C13—C14—C15—O1179.9 (6)
C8—C3—C4—C5179.3 (5)C13—C14—C15—C100.4 (9)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y+1, z1/2; (v) x, y1/2, z1/2; (vi) x, y+1/2, z1/2; (vii) x+1/2, y+1, z1/2; (viii) x1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.582 (6)148
C7—H7A···Cg1vii0.962.923.782 (6)150
Symmetry code: (vii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.5641 (7), 12.5889 (13), 13.0643 (14)
V3)1244.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
9729, 1316, 687
Rint0.085
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.157, 1.11
No. of reflections1316
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.13

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.582 (6)148
C7—H7A···Cg1i0.962.923.782 (6)150
Symmetry code: (i) x+1/2, y+1, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010a). Acta Cryst. E66, o1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010b). Acta Cryst. E66, o1817.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds