metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetato­chlorido[2,2′-(ethane-1,2-di­yl)di-1H-benzimidazole]­copper(II) monohydrate

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: yanghuaixia888@163.com

(Received 12 August 2010; accepted 18 August 2010; online 21 August 2010)

In the title complex, [Cu(CH3COO)Cl(C16H14N4)]·H2O, the CuII ion is five-coordinated by two N atoms from a 2,2′-(ethane-1,2-di­yl)di-1H-benzimidazole ligand, two O atoms from a chelating acetate ligand and one terminal monodentate Cl atom in a distorted square-pyramidal geometry. In the crystal, adjacent mol­ecules are linked through O—H⋯Cl, N—H⋯Cl, N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

1,2-Bis(2,2′-1H-benzimidazol)ethane (bbe) has been extensively used in the construction of complexes since it has multiple nitro­gen donors which show strong coordination ability, see: Yang et al. (2010[Yang, H.-X., Zhang, J., Ding, Y.-N. & Meng, X.-R. (2010). Acta Cryst. E66, m578.]); van Albada et al. (2000[Albada, G. A. van, Smeets, W. J. J., Spek, A. L. & Reedijk, J. (2000). Inorg. Chim. Acta, 299, 35-40.]). For the potential applications of copper complexes, see: Mirica et al. (2004[Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. (2004). Chem. Rev. 104, 1013-1046.]); Zhang et al. (2008[Zhang, E.-P., Hou, H.-W., Han, H.-Y. & Fan, Y.-T. (2008). J. Organomet. Chem. 693, 1927-1937.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3O2)Cl(C16H14N4)]·H2O

  • Mr = 438.36

  • Monoclinic, P 21 /c

  • a = 14.796 (3) Å

  • b = 8.5844 (17) Å

  • c = 15.162 (3) Å

  • β = 108.04 (3)°

  • V = 1831.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.753, Tmax = 0.781

  • 12276 measured reflections

  • 3573 independent reflections

  • 3135 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.07

  • 3573 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1W⋯Cl1 0.82 2.32 3.132 (2) 173
N2—H2A⋯Cl1i 0.86 2.44 3.203 (2) 149
N4—H4A⋯O3ii 0.86 1.93 2.786 (3) 172
O3—H2W⋯O1iii 0.82 2.00 2.822 (3) 176
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2-Bis(2,2'-1H-benzimidazol)ethane (bbe) has been extensively used in the construction of complexes since it has multiple nitrogen donors which show strong coordination ability (Yang et al., 2010; Albada et al., 2000). In addition, copper complexes have received much more attention owing to their potential applications in catalysis, magnetism, electrical conductivity, optical materials and so on. (Mirica et al., 2004; Zhang et al., 2008). In this work, through the reaction of 1,2-bis(2,2'-1H-benzimidazol)ethane hydrochloride with copper acetate at room temperature, we obtained the title complex [Cu(bbe) (C H3C O O) (Cl)]H2O, which is reported here.

In the title complex, each CuII ion is five coordinated by two oxygen atoms from a chelating acetate ligand, two nitrogen atoms from a bbe ligand and one terminal monodentate Cl atom. Atoms N1, N3, O1, O2 and Cu1 are nearly co-planar (the mean deviation from plane is 0.1042 Å). Cl1 atom is located in the apical position. So the local environment around the central CuII ion can be best described as a distorted square pyramidal geometry.(Fig.1). In addition, there are four kinds of hydrogen bonds in the solid state. (a) O—H···Cl hydrogen bond between uncoordinated water and Cl atom, (b) N—H···Cl hydrogen bond between bbe ligand and Cl atom, (c) N—H···O hydrogen bond between bbe ligand and uncoordinated water, (d) O—H···O hydrogen bond between uncoordinated water and acetate group. [Cu(bbe) (C H3C O O) (Cl)] H2O units are linked through these hydrogen bonds resulting in a three-dimensional packing structure in solid state.

Related literature top

1,2-Bis(2,2'-1H-benzimidazol)ethane (bbe) has been extensively used in the construction of complexes since it has multiple nitrogen donors which show strong coordination ability, see: Yang et al. (2010); van Albada et al. (2000). For the potential applications of copper complexes, see: Mirica et al. (2004); Zhang et al. (2008).

Experimental top

The ligand 1,2-bis(2,2'-1H-benzimidazol)ethane hydrochloride (0.1 mmol) in methanol (5 ml) was added dropwise to an aqueous solution (2 ml) of copper acetate (0.1 mmol). The resulting solution was allowed to stand at room temperature. After two weeks green crystals with good quality were obtained from the filtrate and dried in air.

Refinement top

H atoms are positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic), 0.97 (CH2) and 0.96 (CH3) Å and O-H = 0.82 Å, and with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C,O).

Structure description top

1,2-Bis(2,2'-1H-benzimidazol)ethane (bbe) has been extensively used in the construction of complexes since it has multiple nitrogen donors which show strong coordination ability (Yang et al., 2010; Albada et al., 2000). In addition, copper complexes have received much more attention owing to their potential applications in catalysis, magnetism, electrical conductivity, optical materials and so on. (Mirica et al., 2004; Zhang et al., 2008). In this work, through the reaction of 1,2-bis(2,2'-1H-benzimidazol)ethane hydrochloride with copper acetate at room temperature, we obtained the title complex [Cu(bbe) (C H3C O O) (Cl)]H2O, which is reported here.

In the title complex, each CuII ion is five coordinated by two oxygen atoms from a chelating acetate ligand, two nitrogen atoms from a bbe ligand and one terminal monodentate Cl atom. Atoms N1, N3, O1, O2 and Cu1 are nearly co-planar (the mean deviation from plane is 0.1042 Å). Cl1 atom is located in the apical position. So the local environment around the central CuII ion can be best described as a distorted square pyramidal geometry.(Fig.1). In addition, there are four kinds of hydrogen bonds in the solid state. (a) O—H···Cl hydrogen bond between uncoordinated water and Cl atom, (b) N—H···Cl hydrogen bond between bbe ligand and Cl atom, (c) N—H···O hydrogen bond between bbe ligand and uncoordinated water, (d) O—H···O hydrogen bond between uncoordinated water and acetate group. [Cu(bbe) (C H3C O O) (Cl)] H2O units are linked through these hydrogen bonds resulting in a three-dimensional packing structure in solid state.

1,2-Bis(2,2'-1H-benzimidazol)ethane (bbe) has been extensively used in the construction of complexes since it has multiple nitrogen donors which show strong coordination ability, see: Yang et al. (2010); van Albada et al. (2000). For the potential applications of copper complexes, see: Mirica et al. (2004); Zhang et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labeling of the 30% probability ellipsoids. H atoms are omitted for clarity.
Acetatochlorido[2,2'-(ethane-1,2-diyl)di-1H-benzimidazole]copper(II) monohydrate top
Crystal data top
[Cu(C2H3O2)Cl(C16H14N4)]·H2OF(000) = 900
Mr = 438.36Dx = 1.590 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4685 reflections
a = 14.796 (3) Åθ = 2.3–27.9°
b = 8.5844 (17) ŵ = 1.37 mm1
c = 15.162 (3) ÅT = 293 K
β = 108.04 (3)°Prism, green
V = 1831.2 (6) Å30.22 × 0.20 × 0.19 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
3573 independent reflections
Radiation source: fine-focus sealed tube3135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 2.8°
ω scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 1010
Tmin = 0.753, Tmax = 0.781l = 1815
12276 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.5788P]
where P = (Fo2 + 2Fc2)/3
3573 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(C2H3O2)Cl(C16H14N4)]·H2OV = 1831.2 (6) Å3
Mr = 438.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.796 (3) ŵ = 1.37 mm1
b = 8.5844 (17) ÅT = 293 K
c = 15.162 (3) Å0.22 × 0.20 × 0.19 mm
β = 108.04 (3)°
Data collection top
Rigaku Saturn
diffractometer
3573 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
3135 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.781Rint = 0.029
12276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
3573 reflectionsΔρmin = 0.33 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23644 (2)0.50951 (3)0.26280 (2)0.03006 (13)
N10.19690 (16)0.3120 (2)0.19598 (15)0.0313 (5)
N20.19221 (17)0.0579 (3)0.17476 (17)0.0390 (6)
H2A0.20080.03980.18710.047*
N30.37363 (16)0.4577 (3)0.32508 (16)0.0338 (5)
N40.51000 (17)0.3474 (3)0.40310 (16)0.0398 (6)
H4A0.54990.27660.43060.048*
O10.22960 (14)0.6870 (2)0.35141 (14)0.0436 (5)
O20.10300 (14)0.5737 (2)0.26343 (13)0.0402 (5)
O30.34911 (15)0.6401 (2)0.00045 (14)0.0475 (5)
H1W0.32080.64780.03900.057*
H2W0.31630.69330.04250.057*
Cl10.23462 (6)0.70125 (8)0.13960 (5)0.0456 (2)
C10.15038 (18)0.2829 (3)0.10261 (18)0.0297 (6)
C20.1067 (2)0.3812 (3)0.02902 (19)0.0371 (7)
H2B0.10590.48850.03700.044*
C30.0645 (2)0.3135 (4)0.0563 (2)0.0472 (8)
H3A0.03360.37670.10640.057*
C40.0669 (2)0.1537 (4)0.0695 (2)0.0505 (8)
H4B0.03950.11280.12860.061*
C50.1084 (2)0.0554 (4)0.0021 (2)0.0475 (8)
H5A0.10950.05170.00670.057*
C60.14879 (19)0.1216 (3)0.08851 (19)0.0341 (6)
C70.2186 (2)0.1743 (3)0.23568 (19)0.0347 (6)
C80.2706 (2)0.1519 (3)0.3365 (2)0.0422 (7)
H8A0.25540.04980.35550.051*
H8B0.24900.22920.37210.051*
C90.3775 (2)0.1656 (3)0.3583 (2)0.0443 (8)
H9A0.40720.11640.41790.053*
H9B0.39600.10650.31210.053*
C100.4171 (2)0.3257 (3)0.36158 (19)0.0350 (6)
C110.44533 (19)0.5716 (3)0.34521 (19)0.0341 (6)
C120.4432 (2)0.7294 (3)0.3244 (2)0.0425 (7)
H12A0.38690.77880.29160.051*
C130.5285 (2)0.8104 (4)0.3544 (2)0.0510 (8)
H13A0.52900.91620.34120.061*
C140.6132 (2)0.7376 (4)0.4037 (2)0.0531 (9)
H14A0.66880.79610.42290.064*
C150.6167 (2)0.5823 (4)0.4248 (2)0.0477 (8)
H15A0.67330.53340.45740.057*
C160.5313 (2)0.5015 (3)0.3947 (2)0.0373 (7)
C170.0792 (2)0.7964 (4)0.3494 (3)0.0570 (9)
H17A0.06320.75700.40200.086*
H17B0.02210.81470.29920.086*
H17C0.11370.89230.36590.086*
C180.1398 (2)0.6794 (3)0.32005 (19)0.0370 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0287 (2)0.0265 (2)0.0330 (2)0.00279 (13)0.00674 (14)0.00318 (13)
N10.0321 (12)0.0269 (12)0.0326 (12)0.0002 (10)0.0068 (10)0.0016 (9)
N20.0431 (15)0.0224 (12)0.0477 (15)0.0004 (11)0.0084 (12)0.0008 (11)
N30.0293 (13)0.0349 (13)0.0367 (13)0.0051 (10)0.0094 (10)0.0012 (10)
N40.0310 (13)0.0421 (14)0.0404 (14)0.0097 (11)0.0026 (10)0.0034 (11)
O10.0339 (12)0.0483 (13)0.0463 (12)0.0038 (9)0.0093 (9)0.0152 (10)
O20.0349 (11)0.0407 (11)0.0425 (11)0.0016 (9)0.0083 (9)0.0051 (10)
O30.0454 (13)0.0499 (13)0.0435 (12)0.0003 (10)0.0083 (10)0.0003 (10)
Cl10.0658 (5)0.0305 (4)0.0414 (4)0.0017 (3)0.0180 (4)0.0043 (3)
C10.0261 (14)0.0266 (13)0.0374 (14)0.0026 (11)0.0111 (11)0.0025 (11)
C20.0356 (16)0.0307 (15)0.0403 (16)0.0019 (12)0.0050 (12)0.0024 (12)
C30.0442 (19)0.0492 (19)0.0420 (17)0.0032 (15)0.0044 (14)0.0054 (14)
C40.051 (2)0.056 (2)0.0385 (17)0.0067 (16)0.0050 (14)0.0139 (15)
C50.0467 (19)0.0378 (17)0.055 (2)0.0022 (15)0.0107 (15)0.0136 (15)
C60.0318 (15)0.0290 (14)0.0405 (15)0.0011 (12)0.0096 (12)0.0041 (12)
C70.0343 (16)0.0301 (15)0.0381 (15)0.0011 (12)0.0088 (12)0.0032 (12)
C80.0473 (19)0.0364 (16)0.0405 (16)0.0020 (14)0.0098 (14)0.0107 (13)
C90.0460 (19)0.0359 (16)0.0437 (17)0.0075 (14)0.0031 (14)0.0076 (13)
C100.0330 (15)0.0387 (16)0.0319 (14)0.0058 (12)0.0081 (12)0.0003 (12)
C110.0264 (14)0.0387 (16)0.0363 (15)0.0014 (12)0.0082 (11)0.0053 (12)
C120.0344 (16)0.0404 (17)0.0521 (18)0.0016 (13)0.0125 (14)0.0040 (14)
C130.0449 (19)0.0432 (19)0.068 (2)0.0056 (15)0.0222 (17)0.0068 (16)
C140.0349 (18)0.063 (2)0.064 (2)0.0098 (16)0.0190 (16)0.0125 (18)
C150.0281 (16)0.059 (2)0.0528 (19)0.0062 (15)0.0073 (13)0.0038 (16)
C160.0311 (15)0.0444 (18)0.0364 (15)0.0049 (13)0.0107 (12)0.0034 (13)
C170.053 (2)0.056 (2)0.067 (2)0.0192 (17)0.0255 (18)0.0051 (18)
C180.0407 (17)0.0375 (16)0.0349 (15)0.0069 (13)0.0150 (13)0.0021 (13)
Geometric parameters (Å, º) top
Cu1—N11.969 (2)C4—C51.362 (4)
Cu1—N32.006 (2)C4—H4B0.9300
Cu1—O22.053 (2)C5—C61.382 (4)
Cu1—O12.0546 (19)C5—H5A0.9300
Cu1—C182.387 (3)C7—C81.496 (4)
Cu1—Cl12.4836 (8)C8—C91.517 (4)
N1—C71.320 (3)C8—H8A0.9700
N1—C11.392 (3)C8—H8B0.9700
N2—C71.335 (4)C9—C101.489 (4)
N2—C61.379 (3)C9—H9A0.9700
N2—H2A0.8600C9—H9B0.9700
N3—C101.336 (3)C11—C121.389 (4)
N3—C111.405 (4)C11—C161.397 (4)
N4—C101.336 (4)C12—C131.387 (4)
N4—C161.375 (4)C12—H12A0.9300
N4—H4A0.8600C13—C141.393 (5)
O1—C181.267 (3)C13—H13A0.9300
O2—C181.252 (3)C14—C151.368 (5)
O3—H1W0.8200C14—H14A0.9300
O3—H2W0.8199C15—C161.389 (4)
C1—C21.389 (4)C15—H15A0.9300
C1—C61.400 (4)C17—C181.502 (4)
C2—C31.378 (4)C17—H17A0.9600
C2—H2B0.9300C17—H17B0.9600
C3—C41.389 (4)C17—H17C0.9600
C3—H3A0.9300
N1—Cu1—N398.48 (9)N1—C7—N2112.2 (2)
N1—Cu1—O295.78 (9)N1—C7—C8123.8 (2)
N3—Cu1—O2153.13 (9)N2—C7—C8123.9 (2)
N1—Cu1—O1155.25 (9)C7—C8—C9112.6 (3)
N3—Cu1—O195.98 (9)C7—C8—H8A109.1
O2—Cu1—O163.62 (8)C9—C8—H8A109.1
N1—Cu1—C18126.68 (10)C7—C8—H8B109.1
N3—Cu1—C18126.69 (10)C9—C8—H8B109.1
O2—Cu1—C1831.63 (9)H8A—C8—H8B107.8
O1—Cu1—C1832.06 (9)C10—C9—C8116.9 (2)
N1—Cu1—Cl1104.57 (7)C10—C9—H9A108.1
N3—Cu1—Cl1105.94 (7)C8—C9—H9A108.1
O2—Cu1—Cl192.25 (6)C10—C9—H9B108.1
O1—Cu1—Cl190.52 (7)C8—C9—H9B108.1
C18—Cu1—Cl190.03 (7)H9A—C9—H9B107.3
C7—N1—C1106.1 (2)N4—C10—N3111.7 (3)
C7—N1—Cu1123.01 (18)N4—C10—C9118.8 (2)
C1—N1—Cu1130.73 (17)N3—C10—C9129.4 (3)
C7—N2—C6108.1 (2)C12—C11—C16119.6 (3)
C7—N2—H2A126.0C12—C11—N3131.8 (3)
C6—N2—H2A126.0C16—C11—N3108.5 (2)
C10—N3—C11105.4 (2)C13—C12—C11117.4 (3)
C10—N3—Cu1132.1 (2)C13—C12—H12A121.3
C11—N3—Cu1122.28 (18)C11—C12—H12A121.3
C10—N4—C16108.8 (2)C12—C13—C14121.8 (3)
C10—N4—H4A125.6C12—C13—H13A119.1
C16—N4—H4A125.6C14—C13—H13A119.1
C18—O1—Cu188.55 (16)C15—C14—C13121.7 (3)
C18—O2—Cu189.06 (17)C15—C14—H14A119.2
H1W—O3—H2W102.3C13—C14—H14A119.2
C2—C1—N1132.0 (2)C14—C15—C16116.4 (3)
C2—C1—C6119.8 (2)C14—C15—H15A121.8
N1—C1—C6108.2 (2)C16—C15—H15A121.8
C3—C2—C1117.5 (3)N4—C16—C15131.4 (3)
C3—C2—H2B121.3N4—C16—C11105.5 (3)
C1—C2—H2B121.3C15—C16—C11123.1 (3)
C2—C3—C4121.8 (3)C18—C17—H17A109.5
C2—C3—H3A119.1C18—C17—H17B109.5
C4—C3—H3A119.1H17A—C17—H17B109.5
C5—C4—C3121.5 (3)C18—C17—H17C109.5
C5—C4—H4B119.3H17A—C17—H17C109.5
C3—C4—H4B119.3H17B—C17—H17C109.5
C4—C5—C6117.2 (3)O2—C18—O1118.5 (3)
C4—C5—H5A121.4O2—C18—C17121.1 (3)
C6—C5—H5A121.4O1—C18—C17120.4 (3)
N2—C6—C5132.4 (3)O2—C18—Cu159.32 (14)
N2—C6—C1105.5 (2)O1—C18—Cu159.39 (14)
C5—C6—C1122.2 (3)C17—C18—Cu1174.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···Cl10.822.323.132 (2)173
N2—H2A···Cl1i0.862.443.203 (2)149
N4—H4A···O3ii0.861.932.786 (3)172
O3—H2W···O1iii0.822.002.822 (3)176
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O2)Cl(C16H14N4)]·H2O
Mr438.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.796 (3), 8.5844 (17), 15.162 (3)
β (°) 108.04 (3)
V3)1831.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.753, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
12276, 3573, 3135
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.07
No. of reflections3573
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.33

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008, SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···Cl10.822.323.132 (2)172.6
N2—H2A···Cl1i0.862.443.203 (2)148.8
N4—H4A···O3ii0.861.932.786 (3)172.4
O3—H2W···O1iii0.822.002.822 (3)176.3
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The study was supported by the Science and Technology Department of Henan Province (082102330003).

References

First citationAlbada, G. A. van, Smeets, W. J. J., Spek, A. L. & Reedijk, J. (2000). Inorg. Chim. Acta, 299, 35–40.  Web of Science CSD CrossRef Google Scholar
First citationMirica, L. M., Ottenwaelder, X. & Stack, T. D. P. (2004). Chem. Rev. 104, 1013–1046.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H.-X., Zhang, J., Ding, Y.-N. & Meng, X.-R. (2010). Acta Cryst. E66, m578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, E.-P., Hou, H.-W., Han, H.-Y. & Fan, Y.-T. (2008). J. Organomet. Chem. 693, 1927–1937.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds