organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bi­phenyl-4,4′-dicarb­­oxy­lic acid N,N-di­methyl­formamide monosolvate

ainGAP Centre for Research Based Innovation, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
*Correspondence e-mail: david.wragg@smn.uio.no

(Received 24 June 2010; accepted 30 July 2010; online 4 August 2010)

Biphenyl-4,4′-dicarb­oxy­lic acid was recrystallized from N,N-dimethyl­formamide (DMF) yielding the title compound, C14H10O4·2C3H7NO. The acid mol­ecules are located on crystallographic centres of inversion and are hydrogen bonded to DMF mol­ecules. These hydrogen-bonded units form infinite chains although there is no inter­action between the methyl groups of neighboring DMF mol­ecules.

Related literature

The title compound is a popular linker for the synthesis of metal-organic framework materials, for example IRMOF 10 (Eddaoudi et al., 2002[Eddaoudi, M., Kim, J., Rosi, N. L., Vodak, B. T., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]) and UIO-67 (Cavka et al., 2008[Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S. & Lillerud, K. P. (2008). J. Am. Chem. Soc. 130, 13850-13851.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10O4·2C3H7NO

  • Mr = 388.41

  • Triclinic, [P \overline 1]

  • a = 7.666 (7) Å

  • b = 7.774 (7) Å

  • c = 9.099 (8) Å

  • α = 88.549 (10)°

  • β = 73.596 (10)°

  • γ = 65.208 (7)°

  • V = 469.6 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.2 × 0.2 × 0.1 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.990

  • 3968 measured reflections

  • 2136 independent reflections

  • 1635 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.175

  • S = 1.11

  • 2136 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 1.76 2.575 (2) 172
Symmetry code: (i) x, y+1, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The title compound, (I) (Fig. 1), which is a popular linker for the synthesis of metal-organic framework materials, for example IRMOF 10 (Eddaoudi et al., 2002) and UIO-67 (Cavka et al., 2008), comprises units of one biphenyl-4,4'-dicarboxylic acid molecule hydrogen bonded to two DMF molecules via O—H···O links. These units pack as chains (Fig. 2), although there is no interaction between the methyl groups of neighboring DMF molecules. The chains are arranged in layers with no stacking interactions between the benzene rings (Fig. 3).

Related literature top

The title compound is a popular linker for the synthesis of metal-organic framework materials, for example IRMOF 10 (Eddaoudi et al., 2002) and UIO-67 (Cavka et al., 2008).

Experimental top

Biphenyl-4,4'-dicarboxylic acid and N,N-Dimethylformamide (DMF) were purchased from Sigma-Aldrich and used without further purification. 1.0 g Biphenyl-4,4'dicarboxylic acid was suspended in 100 ml DMF and heated to 100°C. DMF was added in small portions until the acid had just dissolved (app. 50 ml) and the solution left in aluminium foil over night for slow cool-down to RT. Filtration of the now 125 ml DMF suspension yielded 0.57 g white powder of Biphenyl-4,4-dicarboxylic acid after drying under vacuum. The mother liquor was placed at 5°C over night which gave a small amount of colourless crystals, which gave the structure presented here.

Refinement top

Hydrogen atoms were placed in ideal positions and refined with a riding model with C-H = 0.93Å and U(H)=1.2Ueq(C) or with C-H = 0.96Å and U(H)=1.5Ueq(Cmethyl).

Structure description top

The title compound, (I) (Fig. 1), which is a popular linker for the synthesis of metal-organic framework materials, for example IRMOF 10 (Eddaoudi et al., 2002) and UIO-67 (Cavka et al., 2008), comprises units of one biphenyl-4,4'-dicarboxylic acid molecule hydrogen bonded to two DMF molecules via O—H···O links. These units pack as chains (Fig. 2), although there is no interaction between the methyl groups of neighboring DMF molecules. The chains are arranged in layers with no stacking interactions between the benzene rings (Fig. 3).

The title compound is a popular linker for the synthesis of metal-organic framework materials, for example IRMOF 10 (Eddaoudi et al., 2002) and UIO-67 (Cavka et al., 2008).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Unlabeled atoms are related to the labeled ones by an inversion centre.
[Figure 2] Fig. 2. The packing of (I), showing the hydrogen bonded chains. Hydrogen atoms are omitted and hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The packing of (I), showing the layers formed by the chains. Hydrogen atoms are omitted and hydrogen bonds are shown as dashed lines.
Biphenyl-4,4'-dicarboxylic acid N,N-dimethylformamide monosolvate top
Crystal data top
C14H10O4·2C3H7NOZ = 1
Mr = 388.41F(000) = 206
Triclinic, P1Dx = 1.374 Mg m3
a = 7.666 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.774 (7) ÅCell parameters from 1412 reflections
c = 9.099 (8) Åθ = 2.4–28.2°
α = 88.549 (10)°µ = 0.10 mm1
β = 73.596 (10)°T = 150 K
γ = 65.208 (7)°Prism, colourless
V = 469.6 (7) Å30.2 × 0.2 × 0.1 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
2136 independent reflections
Radiation source: sealed tube1635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 28.8°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 910
Tmin = 0.980, Tmax = 0.990k = 1010
3968 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1177P)2]
where P = (Fo2 + 2Fc2)/3
2136 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H10O4·2C3H7NOγ = 65.208 (7)°
Mr = 388.41V = 469.6 (7) Å3
Triclinic, P1Z = 1
a = 7.666 (7) ÅMo Kα radiation
b = 7.774 (7) ŵ = 0.10 mm1
c = 9.099 (8) ÅT = 150 K
α = 88.549 (10)°0.2 × 0.2 × 0.1 mm
β = 73.596 (10)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2136 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1635 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.015
3968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.11Δρmax = 0.40 e Å3
2136 reflectionsΔρmin = 0.32 e Å3
129 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1394 (2)0.7816 (2)0.21617 (19)0.0217 (4)
C20.0126 (3)0.8677 (2)0.3535 (2)0.0260 (4)
H20.07950.99990.37110.031*
C30.0653 (3)0.7578 (2)0.4645 (2)0.0265 (4)
H30.16530.81780.55670.032*
C40.0289 (2)0.5590 (2)0.44054 (18)0.0208 (4)
C50.1794 (3)0.4743 (2)0.30105 (19)0.0252 (4)
H50.24420.34210.28160.030*
C60.2336 (2)0.5847 (2)0.1908 (2)0.0251 (4)
H60.33440.52550.09890.030*
C70.1957 (2)0.9059 (2)0.10229 (19)0.0240 (4)
O10.1055 (2)1.07728 (18)0.11935 (16)0.0363 (4)
O20.35493 (18)0.80786 (17)0.01629 (14)0.0282 (3)
H2A0.38040.88140.07530.042*
O30.44518 (19)0.01439 (18)0.77730 (15)0.0333 (4)
N10.3688 (2)0.3198 (2)0.72336 (17)0.0249 (4)
C80.3490 (3)0.1893 (2)0.8138 (2)0.0267 (4)
H80.25660.23120.91160.032*
C90.5089 (3)0.2649 (3)0.5689 (2)0.0292 (4)
H9A0.44320.33790.49760.044*
H9B0.55310.13170.54100.044*
H9C0.62290.28880.56570.044*
C100.2551 (3)0.5215 (2)0.7753 (2)0.0304 (4)
H10A0.17870.58330.70650.046*
H10B0.34610.57630.77650.046*
H10C0.16530.53860.87730.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0211 (8)0.0194 (8)0.0226 (8)0.0075 (6)0.0056 (6)0.0033 (6)
C20.0264 (8)0.0157 (8)0.0281 (9)0.0054 (6)0.0020 (7)0.0009 (6)
C30.0262 (8)0.0204 (8)0.0242 (8)0.0076 (6)0.0015 (6)0.0006 (6)
C40.0199 (8)0.0187 (8)0.0218 (8)0.0066 (6)0.0061 (6)0.0033 (6)
C50.0274 (8)0.0155 (8)0.0243 (8)0.0045 (6)0.0029 (7)0.0016 (6)
C60.0267 (8)0.0178 (8)0.0224 (8)0.0054 (6)0.0012 (6)0.0010 (6)
C70.0244 (8)0.0186 (8)0.0247 (8)0.0069 (6)0.0047 (6)0.0029 (6)
O10.0389 (8)0.0173 (7)0.0360 (8)0.0057 (6)0.0031 (6)0.0042 (5)
O20.0307 (7)0.0185 (6)0.0252 (7)0.0071 (5)0.0006 (5)0.0045 (5)
O30.0358 (7)0.0216 (7)0.0326 (7)0.0083 (5)0.0024 (6)0.0065 (5)
N10.0260 (7)0.0190 (7)0.0265 (7)0.0084 (6)0.0053 (6)0.0036 (6)
C80.0254 (8)0.0238 (9)0.0260 (9)0.0080 (7)0.0047 (7)0.0051 (6)
C90.0308 (9)0.0251 (9)0.0274 (9)0.0108 (7)0.0045 (7)0.0061 (7)
C100.0342 (9)0.0199 (9)0.0342 (9)0.0095 (7)0.0090 (7)0.0001 (7)
Geometric parameters (Å, º) top
C1—C61.383 (3)C7—O21.324 (2)
C1—C21.390 (2)O2—H2A0.8200
C1—C71.497 (2)O3—C81.244 (2)
C2—C31.389 (3)N1—C81.321 (2)
C2—H20.9300N1—C101.449 (2)
C3—C41.396 (3)N1—C91.451 (2)
C3—H30.9300C8—H80.9300
C4—C51.398 (2)C9—H9A0.9600
C4—C4i1.493 (3)C9—H9B0.9600
C5—C61.392 (2)C9—H9C0.9600
C5—H50.9300C10—H10A0.9600
C6—H60.9300C10—H10B0.9600
C7—O11.206 (2)C10—H10C0.9600
C6—C1—C2118.77 (15)O2—C7—C1112.84 (15)
C6—C1—C7122.67 (15)C7—O2—H2A109.5
C2—C1—C7118.56 (16)C8—N1—C10121.51 (15)
C3—C2—C1120.52 (16)C8—N1—C9120.74 (15)
C3—C2—H2119.7C10—N1—C9117.75 (14)
C1—C2—H2119.7O3—C8—N1124.59 (17)
C2—C3—C4121.27 (16)O3—C8—H8117.7
C2—C3—H3119.4N1—C8—H8117.7
C4—C3—H3119.4N1—C9—H9A109.5
C3—C4—C5117.62 (14)N1—C9—H9B109.5
C3—C4—C4i121.26 (18)H9A—C9—H9B109.5
C5—C4—C4i121.12 (18)N1—C9—H9C109.5
C6—C5—C4120.95 (15)H9A—C9—H9C109.5
C6—C5—H5119.5H9B—C9—H9C109.5
C4—C5—H5119.5N1—C10—H10A109.5
C1—C6—C5120.84 (16)N1—C10—H10B109.5
C1—C6—H6119.6H10A—C10—H10B109.5
C5—C6—H6119.6N1—C10—H10C109.5
O1—C7—O2124.29 (16)H10A—C10—H10C109.5
O1—C7—C1122.87 (16)H10B—C10—H10C109.5
C6—C1—C2—C31.5 (3)C7—C1—C6—C5178.71 (15)
C7—C1—C2—C3177.92 (15)C4—C5—C6—C10.2 (3)
C1—C2—C3—C41.4 (3)C6—C1—C7—O1175.06 (16)
C2—C3—C4—C50.4 (3)C2—C1—C7—O15.5 (3)
C2—C3—C4—C4i179.51 (17)C6—C1—C7—O25.8 (2)
C3—C4—C5—C60.4 (3)C2—C1—C7—O2173.65 (15)
C4i—C4—C5—C6179.67 (17)C10—N1—C8—O3178.38 (16)
C2—C1—C6—C50.7 (3)C9—N1—C8—O30.5 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3ii0.821.762.575 (2)172
Symmetry code: (ii) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC14H10O4·2C3H7NO
Mr388.41
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.666 (7), 7.774 (7), 9.099 (8)
α, β, γ (°)88.549 (10), 73.596 (10), 65.208 (7)
V3)469.6 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.2 × 0.2 × 0.1
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3968, 2136, 1635
Rint0.015
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.175, 1.11
No. of reflections2136
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.32

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXL97 (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.762.575 (2)172.0
Symmetry code: (i) x, y+1, z1.
 

Acknowledgements

The authors thank The Research Council of Norway, SMN and inGAP for funding.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S. & Lillerud, K. P. (2008). J. Am. Chem. Soc. 130, 13850–13851.  Web of Science CSD CrossRef PubMed Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N. L., Vodak, B. T., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds