organic compounds
(E)-4-Bromo-N-(2,3-dimethoxybenzylidene)aniline
aInstitute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic, bFaculty of Applied Sciences, University of West Bohemia, Husova 11, 30611 Pilsen, Czech Republic, and cDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
*Correspondence e-mail: fejfarov@fzu.cz
The title Schiff base compound, C15H14BrNO2, was prepared by the condensation of 2,3-dimethoxybenzaldehyde with 4-bromoaniline. It adopts an E configuration with respect to the C=N bond. The dihedral angle between the two aromatic rings is 56.79 (8)°. Weak C—H⋯O and C—-H⋯π bonds can be found in the crystal structure.
Related literature
For applications of Schiff-base compounds, see: Yildiz et al. (2008); Hijji et al. (2009); Karakas et al. (2008). For related structures, see: Khalaji et al. (2007, 2009); Khalaji & Harrison (2008); Khalaji & Simpson (2009). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.
Supporting information
https://doi.org/10.1107/S1600536810029880/bt5308sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810029880/bt5308Isup2.hkl
The title compound was prepared in 88% yield from 2,3-dimethoxybenzaldehyde and 4-bromoaniline as reported elsewhere (Khalaji & Harrison, 2008) and recrystallized from chloroform. Anal. Calc. for C15H14BrNO2: C, 56.27; H, 4.41; N, 4.38%. Found: C, 56.45; H, 4.58; N, 4.62%. IR (KBr pellet, cm-1): 2910–2997 (m, C—H aromatic and aliphatic), 2836 (s, –CH=N–); 1605 (s, C=N), 1417–1578 (C=C aromatic).
All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice they were nevertheless kept in ideal positions with C–H distance 0.96 Å during the
The methyl H atoms were allowed to rotate freely about the adjacent C—O bonds. The isotropic atomic displacement parameters of hydrogen atoms were set to 1.5×Ueq (methyl groups) and 1.2×Ueq of the parent atom.The condensation reactions of
with have been extensively used for preparation of the Schiff-base compounds (Yildiz et al., 2008; Hijji et al., 2009; Karakas et al., 2008) which have an importance in diverse fields of chemistry due to their antimicrobial activity (Yildiz et al., 2008), anion sensor properties (Hijji et al., 2009) and applications in nonlinear optic (Karakas et al., 2008). As a continuation of our work on the synthesis and structural characterization of Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji & Simpson, 2009; Khalaji et al., 2009), herein, we report the synthesis and of (E)-4-bromo-N-(2,3-dimethoxybenzylidene)aniline (1).An ORTEP plot, with the atomic numbering scheme is depicted in Fig. 1. Bond lengths in the title compound are in normal range (Allen et al., 1987). The C1—N1 and C10—N1 bond lengths of 1.279 (3), 1.416 (3) Å, respectively, conform to the value for a double and single bonds and they are comparable with the corresponding bond lengths in similar Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji & Simpson, 2009; Khalaji et al., 2009).
The dihedral angle between the two aromatic rings is 56.79 (8)°, while the plane through the central C10—N1—C1—C2 system is inclined at 8.06 (18)° to the dimethoxyphenyl ring and 48.83 (18)° to the bromobenzene ring.
The methoxy group attached at C3 is twisted away from the C2—C7 benzene ring, with corresponding torsion angles C8—O1—C3—C2 113.2 (2)°, while the methoxy group attached at C4 is coplanar with the C2—C7 ring, as shown by the torsion angle C9—O2—C4—C5 of 0.5 (3)°.
In the crystal, molecules are connected by weak C—H···O and C—H···π interactions into layers stacked along c (Fig. 2). The layers are further stabilized by aromatic π-π stacking interactions with centroid-centroid distance of 3.8162 (13) Å.
For applications of Schiff-base compounds, see: Yildiz et al. (2008); Hijji et al. (2009); Karakas et al. (2008). For related structures, see: Khalaji et al. (2007, 2009); Khalaji & Harrison (2008); Khalaji & Simpson (2009). For bond-length data, see: Allen et al. (1987).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).C15H14BrNO2 | F(000) = 1296 |
Mr = 320.2 | Dx = 1.573 Mg m−3 |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 17724 reflections |
a = 13.9978 (2) Å | θ = 3.2–66.7° |
b = 7.0557 (1) Å | µ = 4.13 mm−1 |
c = 27.3758 (4) Å | T = 120 K |
V = 2703.75 (7) Å3 | Prism, colourless |
Z = 8 | 0.55 × 0.33 × 0.23 mm |
Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 2365 independent reflections |
Radiation source: X-ray tube | 2178 reflections with I > 3σ(I) |
Mirror monochromator | Rint = 0.041 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 66.8°, θmin = 4.5° |
Rotation method data acquisition using ω scans | h = −16→16 |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | k = −8→8 |
Tmin = 0.365, Tmax = 0.698 | l = −32→32 |
24799 measured reflections |
Refinement on F2 | 56 constraints |
R[F > 3σ(F)] = 0.030 | H-atom parameters constrained |
wR(F) = 0.123 | Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0035999999I2] |
S = 1.82 | (Δ/σ)max = 0.004 |
2365 reflections | Δρmax = 0.28 e Å−3 |
172 parameters | Δρmin = −0.31 e Å−3 |
0 restraints |
C15H14BrNO2 | V = 2703.75 (7) Å3 |
Mr = 320.2 | Z = 8 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 13.9978 (2) Å | µ = 4.13 mm−1 |
b = 7.0557 (1) Å | T = 120 K |
c = 27.3758 (4) Å | 0.55 × 0.33 × 0.23 mm |
Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 2365 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | 2178 reflections with I > 3σ(I) |
Tmin = 0.365, Tmax = 0.698 | Rint = 0.041 |
24799 measured reflections |
R[F > 3σ(F)] = 0.030 | 0 restraints |
wR(F) = 0.123 | H-atom parameters constrained |
S = 1.82 | Δρmax = 0.28 e Å−3 |
2365 reflections | Δρmin = −0.31 e Å−3 |
172 parameters |
Experimental. CrysAlisPro, Oxford Diffraction (2009), Analytical numeric absorption correction using a multifaceted crystal model. |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.301516 (18) | 0.35856 (4) | 0.297810 (9) | 0.03286 (15) | |
O1 | 0.46379 (10) | 0.9683 (2) | 0.56018 (5) | 0.0238 (5) | |
O2 | 0.48573 (11) | 1.0730 (2) | 0.65342 (6) | 0.0293 (5) | |
N1 | 0.30118 (11) | 0.5268 (3) | 0.51592 (7) | 0.0204 (6) | |
C1 | 0.35592 (14) | 0.6587 (3) | 0.53157 (8) | 0.0212 (6) | |
C2 | 0.36519 (14) | 0.7060 (3) | 0.58364 (8) | 0.0210 (6) | |
C3 | 0.41859 (14) | 0.8666 (3) | 0.59624 (8) | 0.0208 (6) | |
C4 | 0.42987 (14) | 0.9178 (3) | 0.64562 (8) | 0.0245 (7) | |
C5 | 0.38574 (16) | 0.8110 (4) | 0.68186 (8) | 0.0278 (7) | |
C6 | 0.33284 (18) | 0.6502 (3) | 0.66869 (9) | 0.0285 (7) | |
C7 | 0.32263 (16) | 0.5970 (3) | 0.62059 (9) | 0.0248 (7) | |
C8 | 0.42620 (16) | 1.1557 (3) | 0.55295 (9) | 0.0279 (7) | |
C9 | 0.5018 (3) | 1.1323 (5) | 0.70222 (9) | 0.0479 (11) | |
C10 | 0.30271 (13) | 0.4922 (3) | 0.46499 (9) | 0.0217 (7) | |
C11 | 0.21645 (16) | 0.4759 (3) | 0.43955 (8) | 0.0215 (7) | |
C12 | 0.21516 (16) | 0.4411 (3) | 0.38997 (9) | 0.0239 (7) | |
C13 | 0.30115 (14) | 0.4180 (4) | 0.36557 (9) | 0.0235 (7) | |
C14 | 0.38827 (15) | 0.4325 (3) | 0.38971 (8) | 0.0248 (7) | |
C15 | 0.38811 (15) | 0.4684 (3) | 0.43928 (8) | 0.0228 (7) | |
H1 | 0.392541 | 0.729923 | 0.50828 | 0.0255* | |
H5 | 0.391454 | 0.846917 | 0.715555 | 0.0334* | |
H6 | 0.30309 | 0.575572 | 0.693754 | 0.0342* | |
H7 | 0.286533 | 0.485819 | 0.612357 | 0.0298* | |
H8a | 0.445019 | 1.201521 | 0.521356 | 0.0419* | |
H8b | 0.357749 | 1.152148 | 0.554914 | 0.0419* | |
H8c | 0.450723 | 1.238776 | 0.577735 | 0.0419* | |
H9a | 0.553271 | 1.222056 | 0.702951 | 0.0718* | |
H9b | 0.444871 | 1.190439 | 0.714812 | 0.0718* | |
H9c | 0.518004 | 1.024448 | 0.721929 | 0.0718* | |
H11 | 0.157197 | 0.489141 | 0.456874 | 0.0259* | |
H12 | 0.155673 | 0.433057 | 0.37264 | 0.0287* | |
H14 | 0.447304 | 0.417836 | 0.372267 | 0.0298* | |
H15 | 0.447782 | 0.477042 | 0.45641 | 0.0273* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0370 (3) | 0.0382 (3) | 0.0233 (3) | 0.00213 (10) | 0.00027 (8) | −0.00306 (9) |
O1 | 0.0186 (7) | 0.0251 (8) | 0.0277 (8) | −0.0003 (6) | 0.0057 (6) | −0.0002 (6) |
O2 | 0.0230 (8) | 0.0386 (10) | 0.0263 (8) | −0.0067 (7) | 0.0009 (6) | −0.0076 (7) |
N1 | 0.0158 (9) | 0.0199 (10) | 0.0256 (11) | 0.0023 (6) | −0.0014 (6) | −0.0015 (8) |
C1 | 0.0139 (10) | 0.0246 (12) | 0.0252 (11) | 0.0035 (8) | 0.0010 (8) | 0.0020 (8) |
C2 | 0.0135 (9) | 0.0233 (11) | 0.0261 (11) | 0.0043 (8) | −0.0008 (8) | 0.0001 (9) |
C3 | 0.0135 (9) | 0.0245 (12) | 0.0243 (11) | 0.0041 (8) | 0.0011 (8) | 0.0004 (8) |
C4 | 0.0165 (10) | 0.0283 (12) | 0.0289 (12) | 0.0034 (9) | −0.0012 (9) | −0.0024 (9) |
C5 | 0.0233 (11) | 0.0359 (13) | 0.0242 (12) | 0.0024 (10) | −0.0008 (9) | −0.0027 (10) |
C6 | 0.0251 (11) | 0.0347 (14) | 0.0259 (13) | 0.0005 (9) | 0.0025 (10) | 0.0057 (9) |
C7 | 0.0187 (9) | 0.0256 (12) | 0.0302 (13) | 0.0007 (9) | −0.0009 (9) | 0.0017 (10) |
C8 | 0.0245 (11) | 0.0276 (13) | 0.0316 (13) | −0.0026 (9) | 0.0002 (10) | 0.0026 (9) |
C9 | 0.0532 (19) | 0.061 (2) | 0.0292 (16) | −0.0202 (15) | 0.0065 (11) | −0.0175 (11) |
C10 | 0.0199 (11) | 0.0188 (12) | 0.0265 (13) | −0.0005 (8) | −0.0002 (7) | 0.0029 (9) |
C11 | 0.0160 (10) | 0.0212 (12) | 0.0274 (13) | 0.0005 (8) | 0.0003 (8) | 0.0024 (9) |
C12 | 0.0187 (10) | 0.0238 (13) | 0.0291 (13) | −0.0022 (9) | −0.0054 (9) | 0.0012 (9) |
C13 | 0.0258 (12) | 0.0222 (12) | 0.0225 (12) | 0.0004 (8) | −0.0002 (8) | 0.0043 (9) |
C14 | 0.0182 (11) | 0.0266 (13) | 0.0296 (12) | 0.0041 (9) | 0.0043 (9) | 0.0012 (9) |
C15 | 0.0159 (10) | 0.0222 (12) | 0.0302 (12) | 0.0001 (8) | −0.0028 (8) | 0.0011 (9) |
Br1—C13 | 1.902 (2) | C7—H7 | 0.96 |
O1—C3 | 1.375 (3) | C8—H8a | 0.96 |
O1—C8 | 1.437 (3) | C8—H8b | 0.96 |
O2—C4 | 1.362 (3) | C8—H8c | 0.96 |
O2—C9 | 1.418 (3) | C9—H9a | 0.96 |
N1—C1 | 1.279 (3) | C9—H9b | 0.96 |
N1—C10 | 1.416 (3) | C9—H9c | 0.96 |
C1—C2 | 1.470 (3) | C10—C11 | 1.399 (3) |
C1—H1 | 0.96 | C10—C15 | 1.397 (3) |
C2—C3 | 1.401 (3) | C11—C12 | 1.380 (3) |
C2—C7 | 1.403 (3) | C11—H11 | 0.96 |
C3—C4 | 1.408 (3) | C12—C13 | 1.386 (3) |
C4—C5 | 1.391 (3) | C12—H12 | 0.96 |
C5—C6 | 1.402 (3) | C13—C14 | 1.391 (3) |
C5—H5 | 0.96 | C14—C15 | 1.380 (3) |
C6—C7 | 1.377 (3) | C14—H14 | 0.96 |
C6—H6 | 0.96 | C15—H15 | 0.96 |
C3—O1—C8 | 114.26 (16) | H8a—C8—H8b | 109.4709 |
C4—O2—C9 | 118.40 (19) | H8a—C8—H8c | 109.4712 |
C1—N1—C10 | 116.48 (19) | H8b—C8—H8c | 109.4719 |
N1—C1—C2 | 122.9 (2) | O2—C9—H9a | 109.4702 |
N1—C1—H1 | 118.5696 | O2—C9—H9b | 109.4705 |
C2—C1—H1 | 118.5683 | O2—C9—H9c | 109.4702 |
C1—C2—C3 | 118.01 (19) | H9a—C9—H9b | 109.4713 |
C1—C2—C7 | 122.51 (19) | H9a—C9—H9c | 109.472 |
C3—C2—C7 | 119.5 (2) | H9b—C9—H9c | 109.473 |
O1—C3—C2 | 119.40 (19) | N1—C10—C11 | 119.44 (18) |
O1—C3—C4 | 120.25 (18) | N1—C10—C15 | 121.99 (18) |
C2—C3—C4 | 120.3 (2) | C11—C10—C15 | 118.5 (2) |
O2—C4—C3 | 114.91 (19) | C10—C11—C12 | 121.1 (2) |
O2—C4—C5 | 125.4 (2) | C10—C11—H11 | 119.4722 |
C3—C4—C5 | 119.7 (2) | C12—C11—H11 | 119.4722 |
C4—C5—C6 | 119.3 (2) | C11—C12—C13 | 118.9 (2) |
C4—C5—H5 | 120.337 | C11—C12—H12 | 120.5379 |
C6—C5—H5 | 120.3378 | C13—C12—H12 | 120.5366 |
C5—C6—C7 | 121.4 (2) | Br1—C13—C12 | 119.89 (16) |
C5—C6—H6 | 119.2822 | Br1—C13—C14 | 118.51 (16) |
C7—C6—H6 | 119.2822 | C12—C13—C14 | 121.6 (2) |
C2—C7—C6 | 119.7 (2) | C13—C14—C15 | 118.6 (2) |
C2—C7—H7 | 120.1302 | C13—C14—H14 | 120.6854 |
C6—C7—H7 | 120.13 | C15—C14—H14 | 120.6846 |
O1—C8—H8a | 109.4703 | C10—C15—C14 | 121.2 (2) |
O1—C8—H8b | 109.4718 | C10—C15—H15 | 119.378 |
O1—C8—H8c | 109.4712 | C14—C15—H15 | 119.3768 |
C8—O1—C3—C2 | 113.2 (2) | C10—N1—C1—C2 | −177.41 (18) |
C8—O1—C3—C4 | −70.0 (2) | C1—N1—C10—C11 | −132.3 (2) |
C9—O2—C4—C3 | −179.1 (2) | C1—N1—C10—C15 | 49.5 (3) |
C9—O2—C4—C5 | 0.5 (3) |
Cg1 is the centroid of the dimethoxy-substituted aromatic ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O2i | 0.96 | 2.48 | 3.425 (3) | 167 |
C7—H7···Cg1ii | 0.96 | 2.84 | 3.680 (2) | 147 |
C14—H14···Cg1iii | 0.96 | 2.77 | 3.618 (2) | 147 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x, −y−1/2, z+1/2; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C15H14BrNO2 |
Mr | 320.2 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 120 |
a, b, c (Å) | 13.9978 (2), 7.0557 (1), 27.3758 (4) |
V (Å3) | 2703.75 (7) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 4.13 |
Crystal size (mm) | 0.55 × 0.33 × 0.23 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector |
Absorption correction | Analytical (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.365, 0.698 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 24799, 2365, 2178 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F > 3σ(F)], wR(F), S | 0.030, 0.123, 1.82 |
No. of reflections | 2365 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.31 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).
Cg1 is the centroid of the dimethoxy-substituted aromatic ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O2i | 0.96 | 2.48 | 3.425 (3) | 167 |
C7—H7···Cg1ii | 0.96 | 2.84 | 3.680 (2) | 147 |
C14—H14···Cg1iii | 0.96 | 2.77 | 3.618 (2) | 147 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x, −y−1/2, z+1/2; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
We acknowledge Golestan University (GU), the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Czech Ministry of Education, Youth and Sports, Project MSM 4977751303.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Hijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2009). Sens. Actuators B, 136, 297–302. Web of Science CrossRef CAS Google Scholar
Karakas, A., Univer, H. & Elmali, A. (2008). J. Mol. Struct. 877, 152–157. Web of Science CSD CrossRef CAS Google Scholar
Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3–x4. CAS Google Scholar
Khalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o553. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o436. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. Google Scholar
Yildiz, M., Unver, H., Dulger, B., Erdener, D., Ocak, N., Erdonmez, A. & Durlu, T. N. (2008). J. Mol. Struct. 738, 253–260. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The condensation reactions of carbonyl compounds with amines have been extensively used for preparation of the Schiff-base compounds (Yildiz et al., 2008; Hijji et al., 2009; Karakas et al., 2008) which have an importance in diverse fields of chemistry due to their antimicrobial activity (Yildiz et al., 2008), anion sensor properties (Hijji et al., 2009) and applications in nonlinear optic (Karakas et al., 2008). As a continuation of our work on the synthesis and structural characterization of Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji & Simpson, 2009; Khalaji et al., 2009), herein, we report the synthesis and crystal structure of (E)-4-bromo-N-(2,3-dimethoxybenzylidene)aniline (1).
An ORTEP plot, with the atomic numbering scheme is depicted in Fig. 1. Bond lengths in the title compound are in normal range (Allen et al., 1987). The C1—N1 and C10—N1 bond lengths of 1.279 (3), 1.416 (3) Å, respectively, conform to the value for a double and single bonds and they are comparable with the corresponding bond lengths in similar Schiff-base compounds (Khalaji et al., 2007; Khalaji & Harrison, 2008; Khalaji & Simpson, 2009; Khalaji et al., 2009).
The dihedral angle between the two aromatic rings is 56.79 (8)°, while the plane through the central C10—N1—C1—C2 system is inclined at 8.06 (18)° to the dimethoxyphenyl ring and 48.83 (18)° to the bromobenzene ring.
The methoxy group attached at C3 is twisted away from the C2—C7 benzene ring, with corresponding torsion angles C8—O1—C3—C2 113.2 (2)°, while the methoxy group attached at C4 is coplanar with the C2—C7 ring, as shown by the torsion angle C9—O2—C4—C5 of 0.5 (3)°.
In the crystal, molecules are connected by weak C—H···O and C—H···π interactions into layers stacked along c (Fig. 2). The layers are further stabilized by aromatic π-π stacking interactions with centroid-centroid distance of 3.8162 (13) Å.