metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ3-chlorido-bis­(μ2-thio­urea-κS)disilver(I)] nitrate]

aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: saeed_a786@hotmail.com, muhammad.altaf@unine.ch

(Received 23 July 2010; accepted 3 August 2010; online 11 August 2010)

The mol­ecular structure of the title polymeric complex, {[Ag2Cl(CH4N2S)2]NO3}n, consists of a binuclear cationic complex and a nitrate counter-ion. The cationic complex contains two bridging thio­urea (Tu) ligands and a triply bridging μ3-Cl anion. The latter is probably released from 2-amino­ethane­thiol hydro­chloride during the synthesis. The coordination environment around the two AgI atoms is different; one is trigonal planar, being coordinated by two thio­urea ligands through the S atoms and to one Cl ion, while in the other the AgI atom is tetra­hedrally coordinated by two thio­urea ligands through the S atoms and to two Cl ions. These units aggregate through the Cl anion and the Tu S atoms, forming a chain propagating in [100]. In the crystal structure, the polymeric chains are linked via N—H⋯O and N—H⋯Cl hydrogen bonds, forming a double layer two-dimensional network propagating in (011).

Related literature

For silver(I) complexes with sulfur-containing ligands with applications in medicine and analytical chemistry, see: Raper (1996[Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.]); Akrivos (2001[Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.]). For silver(I) complexes containing thio­nes, see: Stocker et al. (2000[Stocker, F. B., Britton, D. & Young, V. G. Jr (2000). Inorg. Chem. 39, 3479-3483.]); Pakawatchai et al. (1996[Pakawatchai, C., Sivakumar, K. & Fun, H.-K. (1996). Acta Cryst. C52, 1954-1957.]); Casas et al. (1996[Casas, J. S., Martinez, E. G., Sánchez, A., González, A. S., Sordo, J., Casellato, U. & Graziani, R. (1996). Inorg. Chim. Acta, 241, 117-123.]); Aslandis et al. (2005[Aslandis, P., Divanidis, S., Cox, P. J. & Karagiannidis, P. (2005). Polyhedron, 24, 853-863.]); Ashraf et al. (2004[Ashraf, W., Ahmad, S. & Isab, A. A. (2004). Transition Met. Chem. 29, 400-404.]); Isab et al. (2002[Isab, A. A., Ahmad, S. & Arab, M. (2002). Polyhedron, 21, 1267-1271.]). For silver(I) complexes containing thiol­ates, see: Nomiya et al. (2000[Nomiya, K., Takahashi, S. & Noguchi, R. (2000). J. Chem. Soc. Dalton Trans. pp. 2091-2098.]); Zachariadis et al. (2003[Zachariadis, P. C., Hadjikakou, S. K., Hadjiliadis, N., Michaelides, A., Skoulika, S., Ming, Y. & Xiaolin, Y. (2003). Inorg. Chim. Acta, 343, 361-365.]); Tsyba et al. (2003[Tsyba, I., Mui, B.-K., Bau, R., Noguchi, R. & Nomiya, K. (2003). Inorg. Chem. 42, 8028-8032.]). For argentophilic inter­actions, see: Nomiya et al. (2000[Nomiya, K., Takahashi, S. & Noguchi, R. (2000). J. Chem. Soc. Dalton Trans. pp. 2091-2098.]); Zachariadis et al. (2003[Zachariadis, P. C., Hadjikakou, S. K., Hadjiliadis, N., Michaelides, A., Skoulika, S., Ming, Y. & Xiaolin, Y. (2003). Inorg. Chim. Acta, 343, 361-365.]); Tsyba et al. (2003[Tsyba, I., Mui, B.-K., Bau, R., Noguchi, R. & Nomiya, K. (2003). Inorg. Chem. 42, 8028-8032.]). For the structures of some silver(I) complexes of thio­urea, see: Udupa et al. (1976[Udupa, R. M., Henke, G. & Krebs, B. (1976). Inorg. Chim. Acta, 18, 173-177.]); Hanif et al. (2007[Hanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2Cl(CH4N2S)2]NO3

  • Mr = 465.44

  • Triclinic, [P \overline 1]

  • a = 6.3981 (8) Å

  • b = 7.7060 (9) Å

  • c = 11.8478 (14) Å

  • α = 83.041 (14)°

  • β = 82.868 (14)°

  • γ = 77.312 (14)°

  • V = 562.80 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.08 mm−1

  • T = 173 K

  • 0.34 × 0.23 × 0.12 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.771, Tmax = 1.353

  • 4473 measured reflections

  • 2055 independent reflections

  • 1682 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 0.98

  • 2055 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 1.49 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.88 2.28 3.153 (8) 170
N2—H2A⋯O1i 0.88 1.95 2.831 (7) 177
N2—H2B⋯O3 0.88 2.11 2.932 (7) 155
N3—H3A⋯O1ii 0.88 2.00 2.881 (7) 174
N3—H3B⋯O2iii 0.88 2.08 2.930 (7) 163
N4—H4A⋯O2ii 0.88 2.22 3.095 (8) 173
N1—H1B⋯Cl1iv 0.88 2.56 3.372 (6) 155
N4—H4B⋯Cl1v 0.88 2.62 3.396 (6) 147
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+2, -z; (v) x-1, y, z.

Data collection: EXPOSE (Stoe & Cie, 2004[Stoe & Cie (2004). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL (Stoe & Cie, 2004[Stoe & Cie (2004). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: INTEGRATE (Stoe & Cie, 2004[Stoe & Cie (2004). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON and SHELXL97.

Supporting information


Comment top

The study of the coordination and structural chemistry of silver(I) complexes with sulfur containing ligands has been a matter of interest over the last decades due to their wide range of applications in medicine and in analytical chemistry (Raper, 1996; Akrivos, 2001), and also due to their ability to adopt geometries with variable nuclearities and structural diversity. Consequently, several silver(I) complexes containing thiones (Stocker et al., 2000; Pakawatchai et al., 1996; Casas et al., 1996; Aslandis et al., 2005; Ashraf et al., 2004; Isab et al., 2002) and thiolates (Nomiya et al., 2000; Zachariadis et al., 2003; Tsyba et al., 2003) have been prepared and structurally characterized. Silver(I) complexes with thiolates like thiomalic acid, thiosalisalic acid and 2-mercaptonicotinic acid [Nomiya et al., 2000; Zachariadis et al., 2003] also have remarkable antimicrobial activities for bacteria, yeast, and mold. The present report describes the structure of the new title silver(I) cluster of thiourea (Tu).

The molecular structure of the title complex is shown in Fig. 1. The asymmetric unit consists of a binuclear cationic complex and a nitrate counter ion. The cationic complex contains two silver(I) atoms, Ag1 and Ag2, two Tu ligands which bridge the silver(I) atoms via the S-atoms, and a triply bridging (µ3)Cl- anion. The latter is probably released from 2-aminoethanethiol hydrochloride during the synthesis. The coordination environments around the two silver atoms are different. Atom Ag1 possesses a tetrahedral geometry, being coordinated to two thiourea ligands through the S-atoms, and two Cl- anions. Atom Ag2 has a trigonal planar geometry, being coordinated to two thiourea ligands through S-atoms and to one Cl- anion. These units aggregate through the Cl- anion, and the Tu sulfur atoms, to form a one-dimensional chain which propagates in [100], as shown in Fig. 1.

The Ag—S distances around the trigonally coordinated Ag2 center [Ag2—S1 = 2.4827 (15) Å, Ag2—S2 = 2.4913 (16) Å] are somewhat longer than those around tetrahedrally coordinated Ag1 center [Ag1—S1 = 2.4305 (15) Å, Ag1—S2 = 2.4278 (15) Å]. In contrast the Ag—Cl bond distances are lengthened. The Ag1—Cl1 and Ag1—Cl1c [symmetry code: (c) 1 - x, 2 - y, 1 - z] distances are 2.8393 (15) and 2.9280 (16) Å, respectively, compared to distance Ag2—Cl1 which is 2.5477 (14) Å. The individual distances and angles within the Tu ligand are comparable to those reported for other Ag-thiourea complexes [Udupa et al., 1976; Hanif et al., 2007].

The shortest silver(I)···silver(I) distance of 3.2889 (8) Å [Ag1—Ag2a; symmetry code: (a) -1 + x, y, z] indicates that the complex is stabilized by significant argentophilic interactions. This distance is comparable to values reported previously [Nomiya et al., 2000; Zachariadis et al., 2003; Tsyba et al., 2003]. The other short Ag···Ag distances include Ag2···Ag2d and Ag1···Ag2d of 3.5169 (8) and 3.5753 (8) Å, respectively [symmetry code: (d) 2 - x, 2 - y, -z], see Fig. 1.

In the crystal the polymeric chains are linked via N—H···O hydrogen bonds, involving the thiourea NH2 H-atoms and the nitrate O-atoms, and N—H···Cl contacts (Fig. 2, Table 1), to form a double layer two-dimensional network propagating in plane (011).

Related literature top

For silver(I) complexes with sulfur-containing ligands with applications in medicine and analytical chemistry, see: Raper (1996); Akrivos (2001). For silver(I) complexes containing thiones, see: Stocker et al. (2000); Pakawatchai et al. (1996); Casas et al. (1996); Aslandis et al. (2005); Ashraf et al. (2004); Isab et al. (2002). For silver(I) complexes containing thiolates, see: Nomiya et al. (2000); Zachariadis et al. (2003); Tsyba et al. (2003). For argentophilic interactions, see: Nomiya et al. (2000); Zachariadis et al. (2003); Tsyba et al. (2003). For the structures of some silver(I) complexes of thiourea, see: Udupa et al. (1976); Hanif et al. (2007).

Experimental top

The title complex was prepared by adding 1 mmol (0.113 g) of 2-aminoethanethiol hydrochloride, dissolved in 10 ml of distilled water, to 1 mmol (0.170 g) of AgNO3, dissolved in 30 ml of distilled water. The mixture was stirred for 15–20 min giving a clear solution. 1 mmol (0.076 g) of thiourea, dissolved in 10 ml of methanol, was then added and the mixture was stirred for a further 15 min. The solution was then filtered and the filtrate kept at RT for slow evaporation of the solvent. After 2–3 days colourless crystals, suitable for X-ray diffraction analysis, were obtained.

Refinement top

The NH2 H-atoms could be located in difference electron-density maps. In the final cycles of least-squares refinement they were included in calculated positions and treated as riding atoms: N—H = 0.88 Å, with Uiso(H) = 1.2Ueq(N).

Structure description top

The study of the coordination and structural chemistry of silver(I) complexes with sulfur containing ligands has been a matter of interest over the last decades due to their wide range of applications in medicine and in analytical chemistry (Raper, 1996; Akrivos, 2001), and also due to their ability to adopt geometries with variable nuclearities and structural diversity. Consequently, several silver(I) complexes containing thiones (Stocker et al., 2000; Pakawatchai et al., 1996; Casas et al., 1996; Aslandis et al., 2005; Ashraf et al., 2004; Isab et al., 2002) and thiolates (Nomiya et al., 2000; Zachariadis et al., 2003; Tsyba et al., 2003) have been prepared and structurally characterized. Silver(I) complexes with thiolates like thiomalic acid, thiosalisalic acid and 2-mercaptonicotinic acid [Nomiya et al., 2000; Zachariadis et al., 2003] also have remarkable antimicrobial activities for bacteria, yeast, and mold. The present report describes the structure of the new title silver(I) cluster of thiourea (Tu).

The molecular structure of the title complex is shown in Fig. 1. The asymmetric unit consists of a binuclear cationic complex and a nitrate counter ion. The cationic complex contains two silver(I) atoms, Ag1 and Ag2, two Tu ligands which bridge the silver(I) atoms via the S-atoms, and a triply bridging (µ3)Cl- anion. The latter is probably released from 2-aminoethanethiol hydrochloride during the synthesis. The coordination environments around the two silver atoms are different. Atom Ag1 possesses a tetrahedral geometry, being coordinated to two thiourea ligands through the S-atoms, and two Cl- anions. Atom Ag2 has a trigonal planar geometry, being coordinated to two thiourea ligands through S-atoms and to one Cl- anion. These units aggregate through the Cl- anion, and the Tu sulfur atoms, to form a one-dimensional chain which propagates in [100], as shown in Fig. 1.

The Ag—S distances around the trigonally coordinated Ag2 center [Ag2—S1 = 2.4827 (15) Å, Ag2—S2 = 2.4913 (16) Å] are somewhat longer than those around tetrahedrally coordinated Ag1 center [Ag1—S1 = 2.4305 (15) Å, Ag1—S2 = 2.4278 (15) Å]. In contrast the Ag—Cl bond distances are lengthened. The Ag1—Cl1 and Ag1—Cl1c [symmetry code: (c) 1 - x, 2 - y, 1 - z] distances are 2.8393 (15) and 2.9280 (16) Å, respectively, compared to distance Ag2—Cl1 which is 2.5477 (14) Å. The individual distances and angles within the Tu ligand are comparable to those reported for other Ag-thiourea complexes [Udupa et al., 1976; Hanif et al., 2007].

The shortest silver(I)···silver(I) distance of 3.2889 (8) Å [Ag1—Ag2a; symmetry code: (a) -1 + x, y, z] indicates that the complex is stabilized by significant argentophilic interactions. This distance is comparable to values reported previously [Nomiya et al., 2000; Zachariadis et al., 2003; Tsyba et al., 2003]. The other short Ag···Ag distances include Ag2···Ag2d and Ag1···Ag2d of 3.5169 (8) and 3.5753 (8) Å, respectively [symmetry code: (d) 2 - x, 2 - y, -z], see Fig. 1.

In the crystal the polymeric chains are linked via N—H···O hydrogen bonds, involving the thiourea NH2 H-atoms and the nitrate O-atoms, and N—H···Cl contacts (Fig. 2, Table 1), to form a double layer two-dimensional network propagating in plane (011).

For silver(I) complexes with sulfur-containing ligands with applications in medicine and analytical chemistry, see: Raper (1996); Akrivos (2001). For silver(I) complexes containing thiones, see: Stocker et al. (2000); Pakawatchai et al. (1996); Casas et al. (1996); Aslandis et al. (2005); Ashraf et al. (2004); Isab et al. (2002). For silver(I) complexes containing thiolates, see: Nomiya et al. (2000); Zachariadis et al. (2003); Tsyba et al. (2003). For argentophilic interactions, see: Nomiya et al. (2000); Zachariadis et al. (2003); Tsyba et al. (2003). For the structures of some silver(I) complexes of thiourea, see: Udupa et al. (1976); Hanif et al. (2007).

Computing details top

Data collection: EXPOSE (Stoe & Cie, 2004); cell refinement: CELL (Stoe & Cie, 2004); data reduction: INTEGRATE (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex with displacement ellipoids drawn at the 50% proability level [Symmetry codes: (a) = -1 + x, y, z; (b) = 1 + x, y, z; (c) = 1 - x, 2 - y, 1 - z; (d) = 2 - x, 2 - y, -z].
[Figure 2] Fig. 2. A view along the a-axis of the crystal packing of the title complex showing the N—H···O and N—H···Cl hydrogen bonds [dotted lines; see Table 1 for details].
Poly[[µ3-chlorido-bis(µ2-thiourea-κS)disilver(I)] nitrate] top
Crystal data top
[Ag2Cl(CH4N2S)2]NO3Z = 2
Mr = 465.44F(000) = 444
Triclinic, P1Dx = 2.747 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3981 (8) ÅCell parameters from 5310 reflections
b = 7.7060 (9) Åθ = 2.7–26.0°
c = 11.8478 (14) ŵ = 4.08 mm1
α = 83.041 (14)°T = 173 K
β = 82.868 (14)°Plate, colourless
γ = 77.312 (14)°0.34 × 0.23 × 0.12 mm
V = 562.80 (12) Å3
Data collection top
Stoe IPDS
diffractometer
2055 independent reflections
Radiation source: fine-focus sealed tube1682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 77
Tmin = 0.771, Tmax = 1.353k = 98
4473 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0795P)2]
where P = (Fo2 + 2Fc2)/3
2055 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 1.49 e Å3
0 restraintsΔρmin = 1.27 e Å3
Crystal data top
[Ag2Cl(CH4N2S)2]NO3γ = 77.312 (14)°
Mr = 465.44V = 562.80 (12) Å3
Triclinic, P1Z = 2
a = 6.3981 (8) ÅMo Kα radiation
b = 7.7060 (9) ŵ = 4.08 mm1
c = 11.8478 (14) ÅT = 173 K
α = 83.041 (14)°0.34 × 0.23 × 0.12 mm
β = 82.868 (14)°
Data collection top
Stoe IPDS
diffractometer
2055 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
1682 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 1.353Rint = 0.056
4473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.98Δρmax = 1.49 e Å3
2055 reflectionsΔρmin = 1.27 e Å3
136 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. The NH2H-atoms were included in calculated positions and treated as riding atoms: N—H 0.88 Å with Uiso(H) = 1.2Ueq(parent N-atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.48799 (7)0.87109 (6)0.15613 (4)0.0303 (2)
Ag21.07497 (7)1.16730 (7)0.06513 (4)0.0327 (2)
Cl10.6808 (2)1.16001 (19)0.05756 (13)0.0245 (4)
S10.7764 (2)0.63258 (18)0.08944 (12)0.0197 (4)
S20.2032 (2)1.07487 (18)0.25782 (13)0.0201 (4)
N11.1617 (8)0.5710 (7)0.1682 (5)0.0264 (16)
N20.8858 (7)0.5149 (7)0.2959 (5)0.0271 (16)
N30.0979 (8)0.8245 (7)0.4138 (5)0.0319 (16)
N40.1790 (8)0.9882 (7)0.3218 (5)0.0276 (16)
C10.9560 (8)0.5703 (7)0.1930 (5)0.0179 (14)
C20.0266 (8)0.9512 (7)0.3359 (5)0.0183 (17)
O10.1853 (6)0.3896 (6)0.4594 (4)0.0303 (15)
O20.4735 (7)0.2157 (7)0.5106 (5)0.0440 (16)
O30.4800 (8)0.3913 (8)0.3521 (5)0.0481 (18)
N50.3826 (7)0.3331 (7)0.4412 (5)0.0268 (16)
H1A1.251100.534100.221100.0320*
H1B1.210100.608400.098800.0320*
H2A0.976000.478100.348400.0330*
H2B0.748200.514100.313100.0330*
H3A0.008300.765300.455900.0380*
H3B0.235600.798300.424200.0380*
H4A0.266800.927900.364600.0330*
H4B0.229301.073300.269600.0330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0177 (3)0.0356 (3)0.0341 (3)0.0027 (2)0.0032 (2)0.0001 (2)
Ag20.0266 (3)0.0465 (3)0.0235 (3)0.0128 (2)0.0058 (2)0.0155 (2)
Cl10.0214 (6)0.0313 (7)0.0219 (8)0.0123 (5)0.0056 (5)0.0089 (6)
S10.0155 (6)0.0263 (7)0.0163 (8)0.0040 (5)0.0036 (5)0.0038 (6)
S20.0160 (6)0.0234 (7)0.0198 (8)0.0062 (5)0.0013 (5)0.0057 (6)
N10.024 (2)0.036 (3)0.019 (3)0.010 (2)0.0043 (19)0.007 (2)
N20.014 (2)0.043 (3)0.022 (3)0.007 (2)0.0018 (19)0.008 (2)
N30.019 (2)0.042 (3)0.029 (3)0.005 (2)0.005 (2)0.019 (3)
N40.018 (2)0.041 (3)0.022 (3)0.011 (2)0.0029 (19)0.014 (2)
C10.018 (2)0.016 (2)0.019 (3)0.0056 (19)0.002 (2)0.005 (2)
C20.019 (3)0.022 (3)0.012 (3)0.001 (2)0.001 (2)0.001 (2)
O10.0158 (18)0.044 (3)0.024 (3)0.0012 (17)0.0020 (16)0.011 (2)
O20.022 (2)0.056 (3)0.047 (3)0.001 (2)0.013 (2)0.019 (3)
O30.028 (2)0.071 (4)0.041 (3)0.020 (2)0.010 (2)0.016 (3)
N50.016 (2)0.035 (3)0.028 (3)0.008 (2)0.002 (2)0.007 (2)
Geometric parameters (Å, º) top
Ag1—Cl12.8393 (15)N1—C11.314 (8)
Ag1—S12.4305 (15)N2—C11.301 (8)
Ag1—S22.4278 (15)N3—C21.305 (8)
Ag1—Cl1i2.9280 (16)N4—C21.311 (8)
Ag2—Cl12.5477 (14)N1—H1A0.8800
Ag2—S2ii2.4913 (16)N1—H1B0.8800
Ag2—S1iii2.4827 (15)N2—H2B0.8800
S1—C11.738 (6)N2—H2A0.8800
S2—C21.744 (6)N3—H3A0.8800
O1—N51.242 (6)N3—H3B0.8800
O2—N51.241 (8)N4—H4A0.8800
O3—N51.244 (8)N4—H4B0.8800
Cl1—Ag1—S196.91 (5)C1—N1—H1A120.00
Cl1—Ag1—S290.60 (5)C1—N2—H2A120.00
Cl1—Ag1—Cl1i92.64 (5)H2A—N2—H2B120.00
S1—Ag1—S2169.00 (5)C1—N2—H2B120.00
Cl1i—Ag1—S182.74 (5)C2—N3—H3A120.00
Cl1i—Ag1—S2105.01 (5)H3A—N3—H3B120.00
Cl1—Ag2—S2ii114.00 (5)C2—N3—H3B120.00
Cl1—Ag2—S1iii114.55 (5)C2—N4—H4B120.00
S1iii—Ag2—S2ii126.77 (5)H4A—N4—H4B120.00
Ag1—Cl1—Ag2123.99 (6)C2—N4—H4A120.00
Ag1—Cl1—Ag1i87.36 (4)O2—N5—O3122.5 (5)
Ag1i—Cl1—Ag2121.83 (6)O1—N5—O2118.6 (5)
Ag1—S1—C1108.15 (19)O1—N5—O3118.8 (5)
Ag1—S1—Ag2iii93.38 (5)S1—C1—N1121.4 (5)
Ag2iii—S1—C1108.74 (19)S1—C1—N2119.0 (4)
Ag1—S2—C2108.27 (19)N1—C1—N2119.6 (5)
Ag1—S2—Ag2iv83.91 (5)S2—C2—N3119.6 (4)
Ag2iv—S2—C2107.4 (2)S2—C2—N4121.3 (4)
C1—N1—H1B120.00N3—C2—N4119.0 (5)
H1A—N1—H1B120.00
S1—Ag1—Cl1—Ag244.29 (8)S2—Ag1—Cl1i—Ag1i91.33 (5)
S1—Ag1—Cl1—Ag1i83.00 (5)S2—Ag1—Cl1i—Ag2i37.73 (8)
S2—Ag1—Cl1—Ag2127.66 (7)S2ii—Ag2—Cl1—Ag146.44 (8)
S2—Ag1—Cl1—Ag1i105.06 (5)S2ii—Ag2—Cl1—Ag1i157.13 (6)
Cl1i—Ag1—Cl1—Ag2127.29 (7)S1iii—Ag2—Cl1—Ag1156.10 (6)
Cl1i—Ag1—Cl1—Ag1i0.02 (9)S1iii—Ag2—Cl1—Ag1i45.41 (8)
Cl1—Ag1—S1—C190.6 (2)Cl1—Ag2—S2ii—Ag1ii127.70 (5)
Cl1—Ag1—S1—Ag2iii20.40 (5)Cl1—Ag2—S2ii—C2ii20.4 (2)
Cl1i—Ag1—S1—C1177.6 (2)Cl1—Ag2—S1iii—Ag1iii123.22 (5)
Cl1i—Ag1—S1—Ag2iii71.40 (5)Cl1—Ag2—S1iii—C1iii12.8 (2)
Cl1—Ag1—S2—C2179.2 (2)Ag1—S1—C1—N1124.7 (4)
Cl1—Ag1—S2—Ag2iv72.83 (5)Ag1—S1—C1—N258.3 (5)
Cl1i—Ag1—S2—C286.3 (2)Ag2iii—S1—C1—N124.5 (5)
Cl1i—Ag1—S2—Ag2iv20.06 (5)Ag2iii—S1—C1—N2158.4 (4)
Cl1—Ag1—Cl1i—Ag1i0.02 (10)Ag1—S2—C2—N360.2 (5)
Cl1—Ag1—Cl1i—Ag2i129.06 (7)Ag1—S2—C2—N4123.1 (5)
S1—Ag1—Cl1i—Ag1i96.64 (5)Ag2iv—S2—C2—N3149.4 (4)
S1—Ag1—Cl1i—Ag2i134.30 (7)Ag2iv—S2—C2—N433.8 (5)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z; (iii) x+2, y+2, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3ii0.882.283.153 (8)170
N2—H2A···O1ii0.881.952.831 (7)177
N2—H2B···O30.882.112.932 (7)155
N3—H3A···O1v0.882.002.881 (7)174
N3—H3B···O2vi0.882.082.930 (7)163
N4—H4A···O2v0.882.223.095 (8)173
N1—H1B···Cl1iii0.882.563.372 (6)155
N4—H4B···Cl1iv0.882.623.396 (6)147
Symmetry codes: (ii) x+1, y, z; (iii) x+2, y+2, z; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag2Cl(CH4N2S)2]NO3
Mr465.44
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.3981 (8), 7.7060 (9), 11.8478 (14)
α, β, γ (°)83.041 (14), 82.868 (14), 77.312 (14)
V3)562.80 (12)
Z2
Radiation typeMo Kα
µ (mm1)4.08
Crystal size (mm)0.34 × 0.23 × 0.12
Data collection
DiffractometerStoe IPDS
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.771, 1.353
No. of measured, independent and
observed [I > 2σ(I)] reflections
4473, 2055, 1682
Rint0.056
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 0.98
No. of reflections2055
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.49, 1.27

Computer programs: EXPOSE (Stoe & Cie, 2004), CELL (Stoe & Cie, 2004), INTEGRATE (Stoe & Cie, 2004), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.882.283.153 (8)170
N2—H2A···O1i0.881.952.831 (7)177
N2—H2B···O30.882.112.932 (7)155
N3—H3A···O1ii0.882.002.881 (7)174
N3—H3B···O2iii0.882.082.930 (7)163
N4—H4A···O2ii0.882.223.095 (8)173
N1—H1B···Cl1iv0.882.563.372 (6)155
N4—H4B···Cl1v0.882.623.396 (6)147
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y+2, z; (v) x1, y, z.
 

Acknowledgements

MA and HSE thank the staff of the X-ray Application Lab, CSEM, Neuchâtel, for access to the X-ray diffractometer.

References

First citationAkrivos, P. D. (2001). Coord. Chem. Rev. 213, 181–210.  Web of Science CrossRef CAS Google Scholar
First citationAshraf, W., Ahmad, S. & Isab, A. A. (2004). Transition Met. Chem. 29, 400–404.  Web of Science CrossRef CAS Google Scholar
First citationAslandis, P., Divanidis, S., Cox, P. J. & Karagiannidis, P. (2005). Polyhedron, 24, 853–863.  Google Scholar
First citationCasas, J. S., Martinez, E. G., Sánchez, A., González, A. S., Sordo, J., Casellato, U. & Graziani, R. (1996). Inorg. Chim. Acta, 241, 117–123.  CAS Google Scholar
First citationHanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIsab, A. A., Ahmad, S. & Arab, M. (2002). Polyhedron, 21, 1267–1271.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNomiya, K., Takahashi, S. & Noguchi, R. (2000). J. Chem. Soc. Dalton Trans. pp. 2091–2098.  Web of Science CSD CrossRef Google Scholar
First citationPakawatchai, C., Sivakumar, K. & Fun, H.-K. (1996). Acta Cryst. C52, 1954–1957.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaper, E. S. (1996). Coord. Chem. Rev. 153, 199–255.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStocker, F. B., Britton, D. & Young, V. G. Jr (2000). Inorg. Chem. 39, 3479–3483.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2004). EXPOSE, CELL and INTEGRATE in IPDSI Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTsyba, I., Mui, B.-K., Bau, R., Noguchi, R. & Nomiya, K. (2003). Inorg. Chem. 42, 8028–8032.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationUdupa, R. M., Henke, G. & Krebs, B. (1976). Inorg. Chim. Acta, 18, 173–177.  CSD CrossRef CAS Web of Science Google Scholar
First citationZachariadis, P. C., Hadjikakou, S. K., Hadjiliadis, N., Michaelides, A., Skoulika, S., Ming, Y. & Xiaolin, Y. (2003). Inorg. Chim. Acta, 343, 361–365.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds