organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-5-bromo­pyridinium) fumarate dihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 26 July 2010; accepted 3 August 2010; online 11 August 2010)

In the title compound, 2C5H6BrN2+·C4H2O42−·2H2O, the complete fumarate dianion is generated by crystallographic inversion symmetry. The cation is approximately planar, with a maximum deviation of 0.036 (1) Å. In the anion, the carboxyl­ate group is twisted slightly away from the attached plane; the dihedral angle between carboxyl­ate and (E)-but-2-ene planes is 6.11 (14)°. In the crystal, the carboxyl­ate O atoms form bifurcated (N—H⋯O and C—H⋯O) and N—H⋯O hydrogen bonds with the cations. The crystal packing is stabilized by R22(8) ring motifs which are generated by pairs of N—H⋯O hydrogen bonds. The crystal structure is further consolidated by water mol­ecules via O(water)—H⋯O and N—H⋯O(water) hydrogen bonds. The components are linked by these inter­actions into three-dimensional network.

Related literature

For details of hydrogen bonding, see: Goswami & Ghosh (1997[Goswami, S. P. & Ghosh, K. (1997). Tetrahedron Lett. 38, 4503-4506.]); Goswami et al. (1998[Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1998). Acta Cryst. C54, 1301-1302.]). For applications of fumaric acid, see: Batchelor et al. (2000[Batchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839-848.]). For related structures, see: Büyükgüngör et al. (2004[Büyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. & Lönnecke, P. (2004). Acta Cryst. C60, o470-o472.]); Büyükgüngör & Odabąsoğlu (20065); Hemamalini & Fun, (2010a,b); Quah et al. (2008[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878-o1879.]; 2010a,b). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H6BrN2+·C4H2O42−·H2O

  • Mr = 498.14

  • Monoclinic, P 21 /c

  • a = 8.3717 (1) Å

  • b = 16.5354 (2) Å

  • c = 6.7846 (1) Å

  • β = 108.336 (1)°

  • V = 891.50 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.59 mm−1

  • T = 100 K

  • 0.39 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.271, Tmax = 0.618

  • 15040 measured reflections

  • 3942 independent reflections

  • 3252 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.059

  • S = 1.03

  • 3942 reflections

  • 138 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.902 (18) 1.815 (18) 2.7136 (14) 174.1 (19)
N2—H2N2⋯O1Wi 0.82 (2) 2.11 (2) 2.9143 (16) 169.7 (19)
N2—H1N2⋯O2 0.893 (19) 1.946 (19) 2.8348 (15) 173.2 (19)
O1W—H2W1⋯O1ii 0.77 (2) 2.07 (2) 2.8213 (15) 169 (2)
O1W—H1W1⋯O1iii 0.82 (3) 1.99 (3) 2.7865 (14) 167 (3)
C3—H3A⋯O2iv 0.93 2.41 3.3089 (17) 162
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrogen bonding plays a key role in molecular recognition (Goswami & Ghosh, 1997) and crystal engineering research (Goswami et al., 1998). Fumaric acid, the E isomer of butenedioic acid, is of interest since it is known to form supramolecular assemblies with N-aromatic compounds (Batchelor et al., 2000). It tends to form infinite chains arranged in a nearly coplanar manner via pairs of strong O—H···O hydrogen bonds. The crystal structures of 2-aminopyridinium-fumarate-fumaric acid (2/1/1) (Büyükgüngör et al., 2004) and 2,6-diamino pyridinium hydrogen fumarate (Büyükgüngör & Odabąsoǧlu, 2006) have been reported in the literature. We have recently reported the crystal structures of 2-amino-5-chloropyridine-fumaric acid (1/2) (Hemamalini & Fun, 2010a) and 2-amino-4-methylpyridinium (E)-3-carboxyprop-2-enoate (Hemamalini & Fun, 2010b) from our laboratory. In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit of title compound (Fig. 1), consist of a protonated 2-amino-5-bromopyridinium cation, a half molecule of fumarate anion and a water molecule. The fumarate anion is lying about an inversion center (symmetry code: -x + 1, -y + 1, -z). In the 2-amino-5-bromopyridinium cation, protonatation of N1 atom has lead to a slight increase in the C1–N1–C5 angle to 122.64 (11)°. The 2-amino-5-bromopyridinium cation is approximately planar, with a maximum deviation of 0.036 (1) Å for atom N2. In fumarate anion, C6/C7/C6A/C7A plane is planar with an r.m.s deviation of <0.001 (1) Å. This plane makes a dihedral angle of 6.90 (6)° with 2-amino-5-bromopyridinium cation. In the anion, the carboxylate group is twisted slightly away from the attached plane; the dihedral angle between C6/C7/C6A/C7A and O1/O2/C6/C7 planes is 6.11 (14)°.

In the crystal packing (Fig. 2), the carboxylate oxygen atoms, O2 and O3 form bifurcated (N2–H1N2···O2 and C3–H3A···O2) and N1–H1N1···O1 hydrogen bonds, respectively, with cations. The crystal packing is stabilized by R22(8) ring motifs (Bernstein et al., 1995) which are generated by pairs of N–H···O hydrogen bonds (Table 1). The crystal structure is further consolidated by water molecules via O1W–H1W1···O1, O1W–H2W1···O1 and N2–H2N2···O1W hydrogen bonds. The anions, cations and water molecules are linked by these interactions into three-dimensional network.

Related literature top

For details of hydrogen bonding, see: Goswami & Ghosh (1997); Goswami et al. (1998). For applications of fumaric acid, see: Batchelor et al. (2000). For related structures, see: Büyükgüngör et al. (2004); Büyükgüngör & Odabąsoǧlu (20065); Hemamalini & Fun, (2010a,b); Quah et al. (2008; 2010a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (86 mg, Aldrich) and fumaric acid (58 mg, Merck) was mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

O– and N– bound H atoms were located in a difference Fourier map and allowed to refined freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 0.66 Å from C6 and the deepest hole is located at 1.19 Å from Br1.

Structure description top

Hydrogen bonding plays a key role in molecular recognition (Goswami & Ghosh, 1997) and crystal engineering research (Goswami et al., 1998). Fumaric acid, the E isomer of butenedioic acid, is of interest since it is known to form supramolecular assemblies with N-aromatic compounds (Batchelor et al., 2000). It tends to form infinite chains arranged in a nearly coplanar manner via pairs of strong O—H···O hydrogen bonds. The crystal structures of 2-aminopyridinium-fumarate-fumaric acid (2/1/1) (Büyükgüngör et al., 2004) and 2,6-diamino pyridinium hydrogen fumarate (Büyükgüngör & Odabąsoǧlu, 2006) have been reported in the literature. We have recently reported the crystal structures of 2-amino-5-chloropyridine-fumaric acid (1/2) (Hemamalini & Fun, 2010a) and 2-amino-4-methylpyridinium (E)-3-carboxyprop-2-enoate (Hemamalini & Fun, 2010b) from our laboratory. In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit of title compound (Fig. 1), consist of a protonated 2-amino-5-bromopyridinium cation, a half molecule of fumarate anion and a water molecule. The fumarate anion is lying about an inversion center (symmetry code: -x + 1, -y + 1, -z). In the 2-amino-5-bromopyridinium cation, protonatation of N1 atom has lead to a slight increase in the C1–N1–C5 angle to 122.64 (11)°. The 2-amino-5-bromopyridinium cation is approximately planar, with a maximum deviation of 0.036 (1) Å for atom N2. In fumarate anion, C6/C7/C6A/C7A plane is planar with an r.m.s deviation of <0.001 (1) Å. This plane makes a dihedral angle of 6.90 (6)° with 2-amino-5-bromopyridinium cation. In the anion, the carboxylate group is twisted slightly away from the attached plane; the dihedral angle between C6/C7/C6A/C7A and O1/O2/C6/C7 planes is 6.11 (14)°.

In the crystal packing (Fig. 2), the carboxylate oxygen atoms, O2 and O3 form bifurcated (N2–H1N2···O2 and C3–H3A···O2) and N1–H1N1···O1 hydrogen bonds, respectively, with cations. The crystal packing is stabilized by R22(8) ring motifs (Bernstein et al., 1995) which are generated by pairs of N–H···O hydrogen bonds (Table 1). The crystal structure is further consolidated by water molecules via O1W–H1W1···O1, O1W–H2W1···O1 and N2–H2N2···O1W hydrogen bonds. The anions, cations and water molecules are linked by these interactions into three-dimensional network.

For details of hydrogen bonding, see: Goswami & Ghosh (1997); Goswami et al. (1998). For applications of fumaric acid, see: Batchelor et al. (2000). For related structures, see: Büyükgüngör et al. (2004); Büyükgüngör & Odabąsoǧlu (20065); Hemamalini & Fun, (2010a,b); Quah et al. (2008; 2010a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Symmetry code: ($) -x + 1, -y + 1, -z. Intramolecular interactions are shown as dashed lines.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the a axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
Bis(2-amino-5-bromopyridinium) fumarate dihydrate top
Crystal data top
2C5H6BrN2+·C4H2O42·2H2OF(000) = 496
Mr = 498.14Dx = 1.856 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5779 reflections
a = 8.3717 (1) Åθ = 2.6–34.6°
b = 16.5354 (2) ŵ = 4.59 mm1
c = 6.7846 (1) ÅT = 100 K
β = 108.336 (1)°Block, colourless
V = 891.50 (2) Å30.39 × 0.15 × 0.12 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3942 independent reflections
Radiation source: fine-focus sealed tube3252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 35.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1312
Tmin = 0.271, Tmax = 0.618k = 2623
15040 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0265P)2 + 0.2048P]
where P = (Fo2 + 2Fc2)/3
3942 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
2C5H6BrN2+·C4H2O42·2H2OV = 891.50 (2) Å3
Mr = 498.14Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3717 (1) ŵ = 4.59 mm1
b = 16.5354 (2) ÅT = 100 K
c = 6.7846 (1) Å0.39 × 0.15 × 0.12 mm
β = 108.336 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3942 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3252 reflections with I > 2σ(I)
Tmin = 0.271, Tmax = 0.618Rint = 0.028
15040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.54 e Å3
3942 reflectionsΔρmin = 0.39 e Å3
138 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.741696 (15)1.042853 (7)0.08809 (2)0.01677 (4)
N10.78272 (13)0.79718 (7)0.17705 (16)0.01325 (19)
H1N10.712 (2)0.7551 (11)0.133 (3)0.022 (4)*
N20.99471 (14)0.70859 (7)0.34946 (18)0.0152 (2)
H2N21.091 (3)0.7028 (12)0.426 (3)0.031 (5)*
H1N20.926 (2)0.6673 (12)0.296 (3)0.036 (5)*
C10.72188 (15)0.87250 (8)0.11482 (19)0.0142 (2)
H1A0.61120.87900.03010.017*
C20.82285 (16)0.93842 (8)0.1764 (2)0.0139 (2)
C30.99045 (15)0.92827 (8)0.3065 (2)0.0148 (2)
H3A1.06060.97290.34860.018*
C41.04836 (15)0.85246 (8)0.36957 (19)0.0144 (2)
H4A1.15750.84550.45850.017*
C50.94285 (15)0.78397 (8)0.30010 (18)0.0127 (2)
O1W0.34331 (12)0.71054 (7)0.61811 (17)0.0206 (2)
H2W10.392 (3)0.6972 (13)0.729 (3)0.038 (6)*
H1W10.396 (3)0.7487 (15)0.594 (4)0.043 (6)*
O10.55652 (11)0.67725 (5)0.02333 (15)0.01630 (18)
O20.75988 (11)0.58655 (6)0.15601 (16)0.01766 (18)
C60.48381 (16)0.53893 (7)0.0202 (2)0.0139 (2)
H6AA0.37630.55370.10260.017*
C70.61164 (15)0.60438 (7)0.06033 (19)0.0127 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01516 (6)0.01024 (6)0.02259 (7)0.00028 (4)0.00262 (4)0.00195 (5)
N10.0112 (4)0.0107 (5)0.0165 (5)0.0015 (4)0.0023 (4)0.0004 (4)
N20.0124 (5)0.0108 (5)0.0201 (5)0.0002 (4)0.0017 (4)0.0006 (4)
C10.0128 (5)0.0124 (5)0.0161 (5)0.0000 (4)0.0027 (4)0.0010 (4)
C20.0137 (5)0.0103 (5)0.0170 (5)0.0005 (4)0.0040 (4)0.0008 (4)
C30.0129 (5)0.0123 (5)0.0182 (6)0.0025 (4)0.0035 (4)0.0017 (4)
C40.0117 (5)0.0129 (6)0.0162 (5)0.0016 (4)0.0011 (4)0.0019 (4)
C50.0111 (5)0.0128 (5)0.0139 (5)0.0003 (4)0.0036 (4)0.0005 (4)
O1W0.0163 (5)0.0189 (5)0.0221 (5)0.0039 (4)0.0003 (4)0.0050 (4)
O10.0134 (4)0.0097 (4)0.0228 (5)0.0004 (3)0.0014 (3)0.0001 (3)
O20.0120 (4)0.0126 (4)0.0245 (5)0.0001 (3)0.0002 (3)0.0001 (4)
C60.0112 (5)0.0111 (5)0.0176 (5)0.0005 (4)0.0016 (4)0.0011 (4)
C70.0130 (5)0.0105 (5)0.0138 (5)0.0010 (4)0.0030 (4)0.0001 (4)
Geometric parameters (Å, º) top
Br1—C21.8832 (13)C3—H3A0.9300
N1—C51.3556 (15)C4—C51.4223 (17)
N1—C11.3616 (16)C4—H4A0.9300
N1—H1N10.899 (18)O1W—H2W10.77 (2)
N2—C51.3278 (16)O1W—H1W10.81 (2)
N2—H2N20.81 (2)O1—C71.2863 (15)
N2—H1N20.89 (2)O2—C71.2416 (14)
C1—C21.3620 (17)C6—C6i1.326 (2)
C1—H1A0.9300C6—C71.4990 (17)
C2—C31.4130 (17)C6—H6AA0.9300
C3—C41.3635 (18)
C5—N1—C1122.64 (11)C2—C3—H3A120.3
C5—N1—H1N1119.8 (11)C3—C4—C5120.37 (11)
C1—N1—H1N1117.5 (12)C3—C4—H4A119.8
C5—N2—H2N2116.7 (14)C5—C4—H4A119.8
C5—N2—H1N2119.8 (13)N2—C5—N1119.22 (11)
H2N2—N2—H1N2123.4 (19)N2—C5—C4122.97 (11)
N1—C1—C2120.10 (11)N1—C5—C4117.81 (11)
N1—C1—H1A119.9H2W1—O1W—H1W1105 (2)
C2—C1—H1A120.0C6i—C6—C7123.34 (14)
C1—C2—C3119.67 (12)C6i—C6—H6AA118.3
C1—C2—Br1120.62 (9)C7—C6—H6AA118.3
C3—C2—Br1119.71 (9)O2—C7—O1124.24 (11)
C4—C3—C2119.37 (11)O2—C7—C6120.03 (11)
C4—C3—H3A120.3O1—C7—C6115.72 (11)
C5—N1—C1—C20.12 (18)C1—N1—C5—N2178.04 (12)
N1—C1—C2—C30.51 (19)C1—N1—C5—C41.59 (17)
N1—C1—C2—Br1178.98 (9)C3—C4—C5—N2177.11 (13)
C1—C2—C3—C40.42 (19)C3—C4—C5—N12.50 (18)
Br1—C2—C3—C4179.92 (10)C6i—C6—C7—O26.0 (2)
C2—C3—C4—C51.93 (19)C6i—C6—C7—O1173.89 (16)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.902 (18)1.815 (18)2.7136 (14)174.1 (19)
N2—H2N2···O1Wii0.82 (2)2.11 (2)2.9143 (16)169.7 (19)
N2—H1N2···O20.893 (19)1.946 (19)2.8348 (15)173.2 (19)
O1W—H2W1···O1iii0.77 (2)2.07 (2)2.8213 (15)169 (2)
O1W—H1W1···O1iv0.82 (3)1.99 (3)2.7865 (14)167 (3)
C3—H3A···O2v0.932.413.3089 (17)162
Symmetry codes: (ii) x+1, y, z; (iii) x, y, z+1; (iv) x, y+3/2, z+1/2; (v) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C5H6BrN2+·C4H2O42·2H2O
Mr498.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.3717 (1), 16.5354 (2), 6.7846 (1)
β (°) 108.336 (1)
V3)891.50 (2)
Z2
Radiation typeMo Kα
µ (mm1)4.59
Crystal size (mm)0.39 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.271, 0.618
No. of measured, independent and
observed [I > 2σ(I)] reflections
15040, 3942, 3252
Rint0.028
(sin θ/λ)max1)0.811
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.059, 1.03
No. of reflections3942
No. of parameters138
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.902 (18)1.815 (18)2.7136 (14)174.1 (19)
N2—H2N2···O1Wi0.82 (2)2.11 (2)2.9143 (16)169.7 (19)
N2—H1N2···O20.893 (19)1.946 (19)2.8348 (15)173.2 (19)
O1W—H2W1···O1ii0.77 (2)2.07 (2)2.8213 (15)169 (2)
O1W—H1W1···O1iii0.82 (3)1.99 (3)2.7865 (14)167 (3)
C3—H3A···O2iv0.93002.41003.3089 (17)162.00
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y+3/2, z+1/2; (iv) x+2, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of a USM fellowship and HM also thanks USM for the award of a postdoctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBatchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839–848.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBüyükgüngör, O. & Odabąsoǧlu, M. (2006). Acta Cryst. E62, o3816–o3818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBüyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. & Lönnecke, P. (2004). Acta Cryst. C60, o470–o472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoswami, S. P. & Ghosh, K. (1997). Tetrahedron Lett. 38, 4503–4506.  CrossRef CAS Web of Science Google Scholar
First citationGoswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1998). Acta Cryst. C54, 1301–1302.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1416–o1417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1962–o1963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1935–o1936.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2164–o2165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878–o1879.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds