organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl­pyridinium 2-hy­dr­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 26 July 2010; accepted 3 August 2010; online 11 August 2010)

In the title compound, C6H9N2+·C7H5O3, the protonated 2-amino-5-methyl­pyridinium cation and the 2-hy­droxy­benzoate anion are both essentially planar, with maximum deviations of 0.026 (2) and 0.034 (1) Å, respectively. The anion is stabilized by an intra­molecular O—H⋯O hydrogen bond, which forms an S(6) ring motif. In the solid state, the anions are linked to the cations via pairs of inter­molecular N—H⋯O hydrogen bonds forming R22(8) ring motifs. The crystal structure is further stabilized by N—H⋯O and C—H⋯O inter­actions which link the mol­ecules into chains along [010]. A ππ stacking inter­action [centroid–centroid-distance = 3.740 (2) Å] is also observed.

Related literature

For background to and the applications of carb­oxy­lic acids, see: Miller & Orgel (1974[Miller, S. L. & Orgel, L. E. (1974). The Origins of Life on Earth. New Jersey: Prentice Hall.]); Kvenvolden et al. (1971[Kvenvolden, K. A., Lawless, J. G. & Ponnamperuma, C. (1971). Proc. Natl Acad. Sci. USA, 68, 486-490.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); MacDonald & Whitesides (1994[MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383-2420.]). For applications of salicylic acid, see: Singh & Vijayan (1974[Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 557-562.]); Patel et al. (1988[Patel, U., Haridas, M. & Singh, T. P. (1988). Acta Cryst. C44, 1264-1267.]). For related structures, see: Quah et al. (2008[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878-o1879.]; 2010a[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1932.],b[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2164-o2165.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H5O3

  • Mr = 246.26

  • Monoclinic, P 21 /c

  • a = 13.211 (7) Å

  • b = 7.170 (4) Å

  • c = 14.324 (7) Å

  • β = 104.668 (11)°

  • V = 1312.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 297 K

  • 0.42 × 0.19 × 0.10 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.991

  • 14312 measured reflections

  • 3797 independent reflections

  • 2233 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.134

  • S = 1.01

  • 3797 reflections

  • 219 parameters

  • All H-atom parameters refined

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3 1.03 (2) 1.65 (2) 2.678 (2) 174.6 (13)
N2—H1N2⋯O2i 0.884 (18) 1.987 (17) 2.852 (2) 165.4 (14)
N2—H2N2⋯O2 0.97 (2) 1.90 (2) 2.872 (2) 179 (2)
O1—H1O1⋯O3 1.03 (2) 1.55 (2) 2.515 (2) 155 (2)
C5—H5A⋯O1ii 0.961 (14) 2.598 (14) 3.518 (3) 160.2 (10)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrogen bonding has been established as the most effective tool for constructing sophisticated assemblies because of its strength and directionality. Carboxylic acids are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden et al., 1971) and they exhibit characteristic intermolecular interactions and aggregation patterns. Also carboxyl groups have been used as primary building blocks in the design of crystal structures (Desiraju, 1989; MacDonald & Whitesides, 1994). Salicylic acid, a well known analgesic, and its complexes with a few drug molecules such as antipyrine (Singh & Vijayan, 1974) and sulfadimidine (Patel et al., 1988) were already reported in the literature. The present study is aimed at investigating the supramolecular interactions of the title compound, (I).

The asymmetric unit of title compound (Fig. 1), contains a protonated 2-amino-5-methylpyridinium cation and a 2-hydroxybenzoate anion. In the 2-amino-5-methylpyridinium cation, a wide angle [122.26 (13)°] is subtended at the protonated N1 atom. The 2-amino-5-methylpyridinium cation and 2-hydroxybenzoate anion are essentially planar, with a maximum deviation of 0.026 (2) Å for atom C6 and 0.034 (1) Å for atom O3, respectively. The diheral angle between these two planes is 4.78 (5)°, indicating they are nearly parallel to each other. The anion is stabilized by an intramolecular O1–H1O1···O3 hydrogen bond, which forms an S(6) ring motif (Bernstein et al., 1995).

In the solid state (Fig. 2), the anions are linked to the cations via intermolecular N1–H1N1···O3 and N2–H2N2..O2 hydrogen bonds forming R22(8) ring motifs. The crystal structure is further stabilized by N2–H1N2···O2 and C5–H5A···O1 interactions. The molecules are linked by these interactions into chains along [010]. ππ stacking interactions with short intermolecular distance [3.740 (2) Å] between symmetry-related N1/C1—C5 (centroid Cg1) and C7—C12 (centroid Cg2) [symmetry code: x, 1 + y, z] are also observed.

Related literature top

For details of carboxylic acids, see: Miller & Orgel (1974); Kvenvolden et al. (1971); Desiraju (1989); MacDonald & Whitesides (1994). For applications of salicylic acid, see: Singh & Vijayan (1974); Patel et al. (1988). For related structures, see: Quah et al. (2008; 2010a,b). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and salicylic acid (34.5 mg, Merck) was mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All H atoms were located in a difference Fourier map and refined freely.

Structure description top

Hydrogen bonding has been established as the most effective tool for constructing sophisticated assemblies because of its strength and directionality. Carboxylic acids are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden et al., 1971) and they exhibit characteristic intermolecular interactions and aggregation patterns. Also carboxyl groups have been used as primary building blocks in the design of crystal structures (Desiraju, 1989; MacDonald & Whitesides, 1994). Salicylic acid, a well known analgesic, and its complexes with a few drug molecules such as antipyrine (Singh & Vijayan, 1974) and sulfadimidine (Patel et al., 1988) were already reported in the literature. The present study is aimed at investigating the supramolecular interactions of the title compound, (I).

The asymmetric unit of title compound (Fig. 1), contains a protonated 2-amino-5-methylpyridinium cation and a 2-hydroxybenzoate anion. In the 2-amino-5-methylpyridinium cation, a wide angle [122.26 (13)°] is subtended at the protonated N1 atom. The 2-amino-5-methylpyridinium cation and 2-hydroxybenzoate anion are essentially planar, with a maximum deviation of 0.026 (2) Å for atom C6 and 0.034 (1) Å for atom O3, respectively. The diheral angle between these two planes is 4.78 (5)°, indicating they are nearly parallel to each other. The anion is stabilized by an intramolecular O1–H1O1···O3 hydrogen bond, which forms an S(6) ring motif (Bernstein et al., 1995).

In the solid state (Fig. 2), the anions are linked to the cations via intermolecular N1–H1N1···O3 and N2–H2N2..O2 hydrogen bonds forming R22(8) ring motifs. The crystal structure is further stabilized by N2–H1N2···O2 and C5–H5A···O1 interactions. The molecules are linked by these interactions into chains along [010]. ππ stacking interactions with short intermolecular distance [3.740 (2) Å] between symmetry-related N1/C1—C5 (centroid Cg1) and C7—C12 (centroid Cg2) [symmetry code: x, 1 + y, z] are also observed.

For details of carboxylic acids, see: Miller & Orgel (1974); Kvenvolden et al. (1971); Desiraju (1989); MacDonald & Whitesides (1994). For applications of salicylic acid, see: Singh & Vijayan (1974); Patel et al. (1988). For related structures, see: Quah et al. (2008; 2010a,b). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Intramolecular interactions are shown in dashed lines.
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the c axis.
2-Amino-5-methylpyridinium 2-hydroxybenzoate top
Crystal data top
C6H9N2+·C7H5O3F(000) = 520
Mr = 246.26Dx = 1.246 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3026 reflections
a = 13.211 (7) Åθ = 3.2–26.8°
b = 7.170 (4) ŵ = 0.09 mm1
c = 14.324 (7) ÅT = 297 K
β = 104.668 (11)°Block, yellow
V = 1312.6 (12) Å30.42 × 0.19 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3797 independent reflections
Radiation source: fine-focus sealed tube2233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.963, Tmax = 0.991k = 1010
14312 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.0959P]
where P = (Fo2 + 2Fc2)/3
3797 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C6H9N2+·C7H5O3V = 1312.6 (12) Å3
Mr = 246.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.211 (7) ŵ = 0.09 mm1
b = 7.170 (4) ÅT = 297 K
c = 14.324 (7) Å0.42 × 0.19 × 0.10 mm
β = 104.668 (11)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3797 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2233 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.991Rint = 0.028
14312 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.134All H-atom parameters refined
S = 1.01Δρmax = 0.14 e Å3
3797 reflectionsΔρmin = 0.15 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25056 (7)0.79968 (17)0.30963 (8)0.0491 (3)
N20.07534 (9)0.7373 (2)0.28908 (10)0.0664 (4)
C10.15649 (8)0.84904 (19)0.32288 (9)0.0485 (3)
C20.15072 (10)1.0168 (2)0.37198 (9)0.0542 (3)
C30.23752 (10)1.1242 (2)0.40264 (10)0.0561 (3)
C40.33511 (10)1.0709 (2)0.38749 (9)0.0544 (3)
C50.33759 (9)0.9075 (2)0.34103 (9)0.0523 (3)
C60.43050 (14)1.1912 (3)0.41915 (16)0.0791 (5)
O10.40974 (7)0.27586 (19)0.17167 (9)0.0806 (4)
O20.10956 (7)0.41138 (14)0.18462 (8)0.0703 (3)
O30.27788 (7)0.48394 (15)0.21915 (9)0.0710 (3)
C70.32912 (10)0.1574 (2)0.13606 (10)0.0581 (4)
C80.35051 (15)0.0109 (3)0.09641 (12)0.0760 (5)
C90.27204 (17)0.1348 (3)0.05976 (13)0.0830 (5)
C100.17009 (17)0.0959 (3)0.06012 (13)0.0799 (5)
C110.14807 (12)0.0712 (2)0.09921 (11)0.0635 (4)
C120.22624 (9)0.19952 (19)0.13827 (9)0.0494 (3)
C130.20156 (9)0.37630 (19)0.18311 (10)0.0529 (3)
H2A0.0850 (11)1.050 (2)0.3827 (10)0.067 (4)*
H3A0.2348 (12)1.246 (3)0.4373 (11)0.074 (5)*
H5A0.3970 (10)0.854 (2)0.3237 (9)0.053 (3)*
H6A0.4887 (16)1.146 (3)0.3935 (14)0.107 (7)*
H6B0.4150 (17)1.318 (4)0.3879 (17)0.131 (9)*
H6C0.4491 (16)1.208 (3)0.4862 (19)0.123 (8)*
H8A0.4216 (15)0.033 (3)0.1009 (13)0.097 (6)*
H9A0.2895 (14)0.256 (3)0.0343 (13)0.098 (6)*
H10A0.1156 (15)0.181 (3)0.0375 (14)0.102 (6)*
H11A0.0773 (12)0.101 (2)0.1003 (10)0.068 (4)*
H1N10.2564 (11)0.678 (3)0.2733 (11)0.073 (4)*
H1N20.0141 (13)0.771 (2)0.2980 (12)0.078 (5)*
H2N20.0862 (13)0.626 (3)0.2540 (13)0.087 (5)*
H1O10.3730 (16)0.382 (3)0.1984 (15)0.116 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0397 (5)0.0494 (7)0.0589 (6)0.0009 (5)0.0137 (4)0.0009 (5)
N20.0401 (5)0.0620 (9)0.0988 (9)0.0039 (5)0.0209 (6)0.0157 (7)
C10.0396 (5)0.0504 (8)0.0560 (7)0.0017 (5)0.0131 (5)0.0018 (6)
C20.0480 (6)0.0565 (9)0.0592 (7)0.0039 (6)0.0158 (6)0.0028 (6)
C30.0614 (7)0.0537 (9)0.0520 (7)0.0011 (7)0.0121 (6)0.0041 (7)
C40.0524 (7)0.0579 (9)0.0508 (7)0.0090 (6)0.0092 (5)0.0044 (6)
C50.0401 (6)0.0607 (9)0.0574 (7)0.0017 (6)0.0143 (5)0.0045 (7)
C60.0653 (9)0.0833 (14)0.0848 (12)0.0264 (10)0.0118 (9)0.0071 (11)
O10.0495 (5)0.0882 (9)0.1105 (9)0.0064 (5)0.0323 (5)0.0146 (7)
O20.0473 (5)0.0544 (7)0.1169 (8)0.0028 (4)0.0349 (5)0.0095 (6)
O30.0502 (5)0.0530 (6)0.1159 (8)0.0031 (5)0.0324 (5)0.0166 (6)
C70.0549 (7)0.0635 (10)0.0597 (7)0.0154 (7)0.0216 (6)0.0049 (7)
C80.0784 (10)0.0775 (13)0.0775 (10)0.0292 (10)0.0297 (8)0.0028 (9)
C90.1128 (15)0.0655 (12)0.0739 (10)0.0248 (11)0.0296 (10)0.0121 (9)
C100.0967 (13)0.0645 (12)0.0772 (11)0.0022 (10)0.0198 (9)0.0197 (9)
C110.0634 (8)0.0604 (10)0.0672 (9)0.0032 (7)0.0177 (7)0.0063 (7)
C120.0505 (6)0.0480 (8)0.0521 (6)0.0086 (6)0.0176 (5)0.0059 (6)
C130.0471 (6)0.0451 (8)0.0719 (8)0.0040 (6)0.0252 (6)0.0047 (7)
Geometric parameters (Å, º) top
N1—C11.3510 (15)C6—H6C0.94 (3)
N1—C51.3638 (17)O1—C71.3567 (19)
N1—H1N11.030 (18)O1—H1O11.03 (2)
N2—C11.3279 (18)O2—C131.2467 (15)
N2—H1N20.884 (18)O3—C131.2710 (16)
N2—H2N20.97 (2)C7—C81.393 (2)
C1—C21.405 (2)C7—C121.4006 (18)
C2—C31.359 (2)C8—C91.365 (3)
C2—H2A0.950 (15)C8—H8A0.938 (19)
C3—C41.413 (2)C9—C101.377 (3)
C3—H3A1.011 (18)C9—H9A0.99 (2)
C4—C51.352 (2)C10—C111.384 (2)
C4—C61.500 (2)C10—H10A0.94 (2)
C5—H5A0.960 (13)C11—C121.391 (2)
C6—H6A0.99 (2)C11—H11A0.962 (15)
C6—H6B1.01 (3)C12—C131.494 (2)
C1—N1—C5122.26 (13)H6A—C6—H6C113.4 (17)
C1—N1—H1N1118.8 (8)H6B—C6—H6C108 (2)
C5—N1—H1N1118.9 (8)C7—O1—H1O1101.7 (11)
C1—N2—H1N2117.6 (11)O1—C7—C8118.34 (13)
C1—N2—H2N2118.2 (10)O1—C7—C12122.04 (13)
H1N2—N2—H2N2124.1 (15)C8—C7—C12119.62 (15)
N2—C1—N1118.50 (13)C9—C8—C7120.52 (16)
N2—C1—C2123.91 (12)C9—C8—H8A124.5 (13)
N1—C1—C2117.58 (11)C7—C8—H8A114.8 (13)
C3—C2—C1119.91 (12)C8—C9—C10121.02 (18)
C3—C2—H2A122.5 (9)C8—C9—H9A119.2 (11)
C1—C2—H2A117.6 (9)C10—C9—H9A119.8 (11)
C2—C3—C4121.70 (14)C9—C10—C11118.87 (18)
C2—C3—H3A121.2 (9)C9—C10—H10A122.2 (13)
C4—C3—H3A117.1 (9)C11—C10—H10A118.9 (13)
C5—C4—C3116.52 (12)C10—C11—C12121.65 (15)
C5—C4—C6121.61 (14)C10—C11—H11A120.0 (10)
C3—C4—C6121.86 (16)C12—C11—H11A118.3 (9)
C4—C5—N1122.02 (12)C11—C12—C7118.32 (13)
C4—C5—H5A126.5 (8)C11—C12—C13120.92 (12)
N1—C5—H5A111.4 (8)C7—C12—C13120.75 (12)
C4—C6—H6A111.8 (13)O2—C13—O3123.17 (13)
C4—C6—H6B108.9 (13)O2—C13—C12119.90 (12)
H6A—C6—H6B102.8 (18)O3—C13—C12116.93 (11)
C4—C6—H6C111.5 (14)
C5—N1—C1—N2179.21 (12)C8—C9—C10—C110.5 (3)
C5—N1—C1—C20.82 (18)C9—C10—C11—C120.3 (3)
N2—C1—C2—C3178.87 (13)C10—C11—C12—C71.0 (2)
N1—C1—C2—C31.16 (19)C10—C11—C12—C13177.95 (14)
C1—C2—C3—C40.7 (2)O1—C7—C12—C11179.29 (13)
C2—C3—C4—C50.1 (2)C8—C7—C12—C110.8 (2)
C2—C3—C4—C6178.54 (15)O1—C7—C12—C131.8 (2)
C3—C4—C5—N10.46 (19)C8—C7—C12—C13178.09 (13)
C6—C4—C5—N1178.17 (14)C11—C12—C13—O21.0 (2)
C1—N1—C5—C40.00 (19)C7—C12—C13—O2179.86 (12)
O1—C7—C8—C9179.92 (15)C11—C12—C13—O3178.39 (13)
C12—C7—C8—C90.0 (2)C7—C12—C13—O30.49 (19)
C7—C8—C9—C100.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O31.03 (2)1.65 (2)2.678 (2)174.6 (13)
N2—H1N2···O2i0.884 (18)1.987 (17)2.852 (2)165.4 (14)
N2—H2N2···O20.97 (2)1.90 (2)2.872 (2)179 (2)
O1—H1O1···O31.03 (2)1.55 (2)2.515 (2)155 (2)
C5—H5A···O1ii0.961 (14)2.598 (14)3.518 (3)160.2 (10)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H5O3
Mr246.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)13.211 (7), 7.170 (4), 14.324 (7)
β (°) 104.668 (11)
V3)1312.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.19 × 0.10
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.963, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
14312, 3797, 2233
Rint0.028
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.134, 1.01
No. of reflections3797
No. of parameters219
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O31.03 (2)1.65 (2)2.678 (2)174.6 (13)
N2—H1N2···O2i0.884 (18)1.987 (17)2.852 (2)165.4 (14)
N2—H2N2···O20.97 (2)1.90 (2)2.872 (2)179 (2)
O1—H1O1···O31.03 (2)1.55 (2)2.515 (2)155 (2)
C5—H5A···O1ii0.961 (14)2.598 (14)3.518 (3)160.2 (10)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of USM fellowship and HM also thanks USM for the award of post doctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationKvenvolden, K. A., Lawless, J. G. & Ponnamperuma, C. (1971). Proc. Natl Acad. Sci. USA, 68, 486–490.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420.  CrossRef CAS Web of Science Google Scholar
First citationMiller, S. L. & Orgel, L. E. (1974). The Origins of Life on Earth. New Jersey: Prentice Hall.  Google Scholar
First citationPatel, U., Haridas, M. & Singh, T. P. (1988). Acta Cryst. C44, 1264–1267.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2164–o2165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878–o1879.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 557–562.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds