metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(2-Carbamo­thiol­ylhydrazin-1-yl­­idene-κ2N1,S)meth­yl]-6-hy­dr­oxy­phenolato-κO1}(tri­phenyl­phosphine-κP)nickel(II) chloride

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: mjamil@um.edu.my

(Received 29 July 2010; accepted 3 August 2010; online 11 August 2010)

The deprotonated Schiff base ligand in the title compound, [Ni(C8H8N3O2S)(C18H15P)]Cl, functions as an N,O,S-chelating anion to the phosphine-coordinated Ni atom, which exists in a distorted square-planar geometry. The hy­droxy group forms an intra­molecular O—H⋯O hydrogen bond. The two amino groups of the cation are hydrogen-bond donors to the chloride anion; the hydrogen bonds generate a chain structure running along the b axis.

Related literature

For the crystal structure of 2,3-dihy­droxy­benzaldehyde thio­semicarbazone hemihydrate, see: Swesi et al. (2006[Swesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457-o5458.]). For similar crystal structures containing a nickel(II) atom, see: García-Reynaldos et al. (2007[García-Reynaldos, P. X., Hernández-Ortega, S., Toscano, R. A. & Valdés-Martínez, J. (2007). Supramol. Chem. 19, 613-619.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H8N3O2S)(C18H15P)]Cl

  • Mr = 566.66

  • Orthorhombic, P 21 21 21

  • a = 7.7902 (4) Å

  • b = 14.6791 (7) Å

  • c = 21.7410 (11) Å

  • V = 2486.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 100 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.707, Tmax = 0.815

  • 24072 measured reflections

  • 5703 independent reflections

  • 5490 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.02

  • 5703 reflections

  • 332 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2468 Friedel pairs

  • Flack parameter: −0.011 (7)

Table 1
Selected bond lengths (Å)

Ni1—O1 1.847 (1)
Ni1—N1 1.897 (1)
Ni1—P1 2.1998 (4)
Ni1—S1 2.1416 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O1 0.84 (1) 2.11 (3) 2.636 (2) 120 (2)
N2—H2⋯Cl1 0.86 (1) 2.17 (1) 3.016 (2) 167 (2)
N3—H3⋯Cl1i 0.85 (1) 2.46 (1) 3.275 (2) 161 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Substituted 2-hydroxybenzaldehyde thiosemicarbazones are generally doubly-deprotonated in their nickel complexes, the dianion chelating to the metal atom through its nitrogen, oxygen and sulfur atoms. However, with the triphenylphosphine adducts of nickel 2-hydroxybenzaldehyde thiosemicarbonates, the Schiff base is only mono-deprotonated; the positive charge of the cation is balanced by a chloride counterion (García-Reynaldos et al., 2007). The reaction of the 3-hydroxy substituted Schiff base with nickel chloride affords the analogous salt, 3-hydroxy-2-oxidobenzaldehydethiosemicarbazone)(triphenylphosphine)nickel(II) chloride (Scheme I). The coordination environment of nickel is a square plane made up of nitrogen, oxygen, phosphorus and sulfur atoms (Fig. 1). Adjacent ions are linked by N–H···Cl hydrogen bonds to generate a chain structure (Fig. 2).

Related literature top

For the crystal structure of 2,3-dihydroxybenzaldehyde thiosemicarbazone hemihydrate, see: Swesi et al. (2006). For similar nickel crystal structures, see: García-Reynaldos et al. (2007).

Experimental top

2,3-Dihydroxybenzaldehyde thiosemicarbazone hemihydrate (Swesi et al., 2006) (0.22 g, 1 mmol), triphenylphosphine (0.26, 1 mmol) and nickel chloride (0.13 g, 1 mmol) were heated in a methanol/ethanol (50 ml) for an hour. The brown solution was then set aside for the growth of crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.86±0.01 and O–H 0.84±0.01 Å; their displacement paramters were freely refined.

Structure description top

Substituted 2-hydroxybenzaldehyde thiosemicarbazones are generally doubly-deprotonated in their nickel complexes, the dianion chelating to the metal atom through its nitrogen, oxygen and sulfur atoms. However, with the triphenylphosphine adducts of nickel 2-hydroxybenzaldehyde thiosemicarbonates, the Schiff base is only mono-deprotonated; the positive charge of the cation is balanced by a chloride counterion (García-Reynaldos et al., 2007). The reaction of the 3-hydroxy substituted Schiff base with nickel chloride affords the analogous salt, 3-hydroxy-2-oxidobenzaldehydethiosemicarbazone)(triphenylphosphine)nickel(II) chloride (Scheme I). The coordination environment of nickel is a square plane made up of nitrogen, oxygen, phosphorus and sulfur atoms (Fig. 1). Adjacent ions are linked by N–H···Cl hydrogen bonds to generate a chain structure (Fig. 2).

For the crystal structure of 2,3-dihydroxybenzaldehyde thiosemicarbazone hemihydrate, see: Swesi et al. (2006). For similar nickel crystal structures, see: García-Reynaldos et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain motif.
{2-[(2-Carbamothiolylhydrazin-1-ylidene-κ2N1,S)methyl]-6- hydroxyphenolato-κO1}(triphenylphosphine-κP)nickel(II) chloride top
Crystal data top
[Ni(C8H8N3O2S)(C18H15P)]ClF(000) = 1168
Mr = 566.66Dx = 1.514 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9879 reflections
a = 7.7902 (4) Åθ = 2.8–28.3°
b = 14.6791 (7) ŵ = 1.07 mm1
c = 21.7410 (11) ÅT = 100 K
V = 2486.2 (2) Å3Block, brown
Z = 40.35 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
5703 independent reflections
Radiation source: fine-focus sealed tube5490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.707, Tmax = 0.815k = 1919
24072 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.032P)2 + 0.4343P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5703 reflectionsΔρmax = 0.29 e Å3
332 parametersΔρmin = 0.21 e Å3
4 restraintsAbsolute structure: Flack (1983), 2468 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (7)
Crystal data top
[Ni(C8H8N3O2S)(C18H15P)]ClV = 2486.2 (2) Å3
Mr = 566.66Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7902 (4) ŵ = 1.07 mm1
b = 14.6791 (7) ÅT = 100 K
c = 21.7410 (11) Å0.35 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
5703 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5490 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.815Rint = 0.028
24072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054Δρmax = 0.29 e Å3
S = 1.02Δρmin = 0.21 e Å3
5703 reflectionsAbsolute structure: Flack (1983), 2468 Friedel pairs
332 parametersAbsolute structure parameter: 0.011 (7)
4 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.20955 (2)0.505537 (13)0.401439 (8)0.01255 (5)
Cl11.73655 (6)0.39315 (3)0.57199 (2)0.02565 (10)
S11.17398 (5)0.36636 (3)0.42809 (2)0.01724 (9)
P11.03089 (5)0.49177 (3)0.323635 (17)0.01239 (8)
O11.24123 (15)0.62350 (7)0.37422 (5)0.0187 (2)
O21.19946 (19)0.78945 (8)0.33035 (6)0.0287 (3)
N11.37566 (17)0.51529 (9)0.46493 (6)0.0149 (3)
N21.42733 (19)0.43510 (10)0.49349 (7)0.0185 (3)
N31.3866 (2)0.28145 (11)0.50486 (8)0.0241 (3)
C11.31436 (19)0.68926 (10)0.40627 (7)0.0142 (3)
C21.2891 (2)0.77878 (11)0.38354 (8)0.0176 (3)
C31.3508 (2)0.85370 (11)0.41499 (8)0.0190 (3)
H3A1.32820.91340.40020.023*
C41.4466 (3)0.84135 (12)0.46872 (8)0.0240 (4)
H4A1.48880.89280.49040.029*
C51.4800 (2)0.75525 (13)0.49031 (8)0.0214 (4)
H51.54830.74760.52610.026*
C61.4135 (2)0.67776 (11)0.45966 (7)0.0155 (3)
C71.4512 (2)0.58908 (11)0.48329 (8)0.0170 (3)
H71.53660.58400.51430.020*
C81.3423 (2)0.35953 (11)0.47936 (8)0.0178 (3)
C90.8816 (2)0.39672 (11)0.32651 (8)0.0148 (3)
C100.9418 (2)0.30780 (11)0.31890 (8)0.0185 (3)
H101.05770.29790.30710.022*
C110.8346 (2)0.23421 (12)0.32831 (8)0.0217 (4)
H110.87710.17400.32340.026*
C120.6650 (2)0.24820 (12)0.34488 (8)0.0233 (4)
H120.59190.19770.35250.028*
C130.6022 (2)0.33652 (13)0.35029 (9)0.0243 (4)
H130.48460.34600.35990.029*
C140.7092 (2)0.41065 (11)0.34182 (8)0.0201 (3)
H140.66580.47080.34640.024*
C151.1516 (2)0.47966 (10)0.25280 (7)0.0137 (3)
C161.0725 (2)0.44338 (11)0.20070 (8)0.0186 (3)
H160.96120.41720.20370.022*
C171.1566 (3)0.44565 (12)0.14459 (8)0.0243 (4)
H171.10170.42190.10900.029*
C181.3205 (2)0.48240 (12)0.13991 (8)0.0235 (4)
H181.37630.48510.10110.028*
C191.4021 (2)0.51502 (12)0.19194 (8)0.0216 (3)
H191.51580.53800.18910.026*
C201.3182 (2)0.51420 (11)0.24836 (7)0.0179 (3)
H201.37420.53720.28390.021*
C210.8940 (2)0.59074 (10)0.31157 (8)0.0137 (3)
C220.8430 (2)0.64323 (11)0.36199 (8)0.0174 (3)
H220.88510.62910.40190.021*
C230.7311 (2)0.71597 (12)0.35396 (8)0.0205 (4)
H230.69770.75170.38840.025*
C240.6678 (2)0.73673 (11)0.29596 (8)0.0212 (4)
H240.59070.78620.29070.025*
C250.7181 (2)0.68466 (11)0.24565 (8)0.0188 (3)
H250.67480.69860.20590.023*
C260.8313 (2)0.61229 (11)0.25321 (8)0.0159 (3)
H260.86610.57740.21860.019*
H11.167 (4)0.7369 (10)0.3206 (13)0.066 (9)*
H21.5176 (19)0.4328 (14)0.5163 (8)0.024 (5)*
H31.345 (3)0.2305 (10)0.4935 (10)0.034 (6)*
H41.470 (2)0.2785 (16)0.5305 (9)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01379 (9)0.01142 (9)0.01246 (9)0.00043 (8)0.00276 (7)0.00082 (8)
Cl10.0260 (2)0.0220 (2)0.0290 (2)0.00243 (16)0.01141 (18)0.00098 (17)
S10.01566 (18)0.01508 (18)0.0210 (2)0.00126 (15)0.00263 (16)0.00560 (15)
P10.01259 (17)0.01158 (18)0.01300 (18)0.00005 (16)0.00142 (13)0.00061 (15)
O10.0255 (6)0.0114 (5)0.0190 (6)0.0023 (5)0.0093 (5)0.0008 (4)
O20.0330 (7)0.0164 (6)0.0368 (7)0.0018 (6)0.0196 (6)0.0063 (5)
N10.0150 (6)0.0171 (7)0.0126 (6)0.0033 (5)0.0011 (5)0.0028 (5)
N20.0188 (7)0.0198 (7)0.0168 (7)0.0026 (6)0.0063 (6)0.0040 (6)
N30.0264 (9)0.0198 (8)0.0261 (8)0.0011 (6)0.0061 (7)0.0075 (7)
C10.0125 (7)0.0153 (7)0.0148 (7)0.0003 (6)0.0006 (6)0.0014 (6)
C20.0137 (7)0.0168 (7)0.0223 (8)0.0001 (6)0.0007 (7)0.0003 (6)
C30.0189 (8)0.0138 (7)0.0242 (9)0.0015 (6)0.0055 (7)0.0019 (6)
C40.0313 (10)0.0225 (9)0.0183 (9)0.0107 (8)0.0045 (7)0.0054 (7)
C50.0259 (9)0.0244 (8)0.0140 (8)0.0078 (7)0.0005 (7)0.0015 (7)
C60.0142 (7)0.0183 (8)0.0139 (8)0.0018 (6)0.0002 (6)0.0011 (6)
C70.0164 (8)0.0239 (8)0.0108 (7)0.0009 (6)0.0014 (6)0.0004 (6)
C80.0182 (8)0.0186 (8)0.0166 (8)0.0013 (6)0.0009 (6)0.0041 (6)
C90.0147 (7)0.0150 (7)0.0146 (8)0.0040 (6)0.0027 (6)0.0019 (6)
C100.0165 (8)0.0180 (8)0.0209 (9)0.0008 (7)0.0012 (7)0.0018 (6)
C110.0238 (9)0.0143 (8)0.0268 (9)0.0003 (7)0.0037 (8)0.0026 (7)
C120.0225 (9)0.0226 (9)0.0249 (9)0.0088 (7)0.0005 (7)0.0014 (7)
C130.0149 (8)0.0270 (9)0.0312 (10)0.0025 (7)0.0042 (7)0.0028 (8)
C140.0184 (8)0.0180 (8)0.0239 (9)0.0020 (7)0.0002 (7)0.0032 (6)
C150.0156 (7)0.0109 (7)0.0147 (7)0.0024 (5)0.0006 (6)0.0004 (5)
C160.0182 (8)0.0184 (8)0.0191 (8)0.0007 (6)0.0012 (7)0.0032 (6)
C170.0301 (10)0.0252 (9)0.0175 (8)0.0055 (8)0.0033 (7)0.0079 (7)
C180.0286 (9)0.0234 (9)0.0187 (8)0.0102 (7)0.0080 (7)0.0007 (6)
C190.0176 (8)0.0186 (8)0.0286 (9)0.0015 (7)0.0051 (7)0.0007 (7)
C200.0180 (8)0.0157 (7)0.0200 (7)0.0011 (6)0.0008 (6)0.0024 (6)
C210.0117 (7)0.0115 (7)0.0178 (8)0.0005 (6)0.0003 (6)0.0005 (6)
C220.0187 (8)0.0165 (8)0.0170 (8)0.0006 (6)0.0004 (6)0.0002 (6)
C230.0200 (9)0.0176 (7)0.0237 (9)0.0017 (7)0.0073 (7)0.0015 (7)
C240.0147 (8)0.0142 (7)0.0346 (10)0.0025 (6)0.0032 (7)0.0041 (7)
C250.0157 (8)0.0179 (7)0.0228 (8)0.0020 (7)0.0031 (7)0.0041 (6)
C260.0156 (7)0.0154 (7)0.0169 (7)0.0007 (6)0.0019 (6)0.0001 (6)
Geometric parameters (Å, º) top
Ni1—O11.847 (1)C10—C111.381 (2)
Ni1—N11.897 (1)C10—H100.9500
Ni1—P12.1998 (4)C11—C121.384 (3)
Ni1—S12.1416 (4)C11—H110.9500
S1—C81.7240 (17)C12—C131.391 (3)
P1—C151.8134 (16)C12—H120.9500
P1—C91.8176 (17)C13—C141.383 (2)
P1—C211.8211 (16)C13—H130.9500
O1—C11.3198 (18)C14—H140.9500
O2—C21.360 (2)C15—C161.395 (2)
O2—H10.839 (10)C15—C201.396 (2)
N1—C71.296 (2)C16—C171.385 (2)
N1—N21.3904 (19)C16—H160.9500
N2—C81.328 (2)C17—C181.390 (3)
N2—H20.861 (9)C17—H170.9500
N3—C81.319 (2)C18—C191.383 (3)
N3—H30.850 (10)C18—H180.9500
N3—H40.857 (10)C19—C201.390 (2)
C1—C61.405 (2)C19—H190.9500
C1—C21.418 (2)C20—H200.9500
C2—C31.381 (2)C21—C261.396 (2)
C3—C41.398 (2)C21—C221.397 (2)
C3—H3A0.9500C22—C231.390 (2)
C4—C51.373 (3)C22—H220.9500
C4—H4A0.9500C23—C241.388 (3)
C5—C61.416 (2)C23—H230.9500
C5—H50.9500C24—C251.391 (2)
C6—C71.430 (2)C24—H240.9500
C7—H70.9500C25—C261.391 (2)
C9—C101.397 (2)C25—H250.9500
C9—C141.399 (2)C26—H260.9500
O1—Ni1—N194.09 (5)C11—C10—C9120.68 (16)
O1—Ni1—S1176.98 (4)C11—C10—H10119.7
N1—Ni1—S187.90 (4)C9—C10—H10119.7
O1—Ni1—P185.66 (4)C10—C11—C12119.98 (16)
N1—Ni1—P1176.19 (4)C10—C11—H11120.0
S1—Ni1—P192.207 (17)C12—C11—H11120.0
C8—S1—Ni197.58 (6)C11—C12—C13119.74 (17)
C15—P1—C9106.62 (7)C11—C12—H12120.1
C15—P1—C21105.05 (7)C13—C12—H12120.1
C9—P1—C21104.04 (7)C14—C13—C12120.68 (17)
C15—P1—Ni1109.50 (5)C14—C13—H13119.7
C9—P1—Ni1116.68 (5)C12—C13—H13119.7
C21—P1—Ni1114.07 (5)C13—C14—C9119.68 (16)
C1—O1—Ni1125.06 (10)C13—C14—H14120.2
C2—O2—H1105 (2)C9—C14—H14120.2
C7—N1—N2116.02 (13)C16—C15—C20119.55 (15)
C7—N1—Ni1126.64 (12)C16—C15—P1119.83 (12)
N2—N1—Ni1117.29 (10)C20—C15—P1120.34 (12)
C8—N2—N1117.35 (13)C17—C16—C15119.78 (16)
C8—N2—H2120.6 (14)C17—C16—H16120.1
N1—N2—H2121.7 (14)C15—C16—H16120.1
C8—N3—H3122.9 (16)C16—C17—C18120.56 (16)
C8—N3—H4121.0 (17)C16—C17—H17119.7
H3—N3—H4115 (2)C18—C17—H17119.7
O1—C1—C6125.86 (14)C19—C18—C17119.80 (16)
O1—C1—C2115.72 (14)C19—C18—H18120.1
C6—C1—C2118.42 (14)C17—C18—H18120.1
O2—C2—C3120.53 (15)C18—C19—C20120.15 (16)
O2—C2—C1118.33 (14)C18—C19—H19119.9
C3—C2—C1121.13 (15)C20—C19—H19119.9
C2—C3—C4119.75 (16)C19—C20—C15120.09 (15)
C2—C3—H3A120.1C19—C20—H20120.0
C4—C3—H3A120.1C15—C20—H20120.0
C5—C4—C3120.41 (16)C26—C21—C22119.25 (15)
C5—C4—H4A119.8C26—C21—P1121.10 (12)
C3—C4—H4A119.8C22—C21—P1119.55 (13)
C4—C5—C6120.62 (16)C23—C22—C21120.22 (15)
C4—C5—H5119.7C23—C22—H22119.9
C6—C5—H5119.7C21—C22—H22119.9
C1—C6—C5119.56 (15)C24—C23—C22120.38 (16)
C1—C6—C7121.27 (15)C24—C23—H23119.8
C5—C6—C7119.17 (15)C22—C23—H23119.8
N1—C7—C6123.88 (15)C23—C24—C25119.62 (15)
N1—C7—H7118.1C23—C24—H24120.2
C6—C7—H7118.1C25—C24—H24120.2
N3—C8—N2119.87 (16)C24—C25—C26120.36 (16)
N3—C8—S1121.41 (14)C24—C25—H25119.8
N2—C8—S1118.71 (12)C26—C25—H25119.8
C10—C9—C14119.17 (16)C25—C26—C21120.16 (16)
C10—C9—P1119.88 (13)C25—C26—H26119.9
C14—C9—P1120.69 (13)C21—C26—H26119.9
N1—Ni1—S1—C88.42 (7)C21—P1—C9—C10162.94 (14)
P1—Ni1—S1—C8167.76 (6)Ni1—P1—C9—C1070.45 (15)
O1—Ni1—P1—C1576.20 (7)C15—P1—C9—C14133.63 (14)
S1—Ni1—P1—C15101.67 (5)C21—P1—C9—C1422.91 (16)
O1—Ni1—P1—C9162.64 (7)Ni1—P1—C9—C14103.70 (14)
S1—Ni1—P1—C919.49 (6)C14—C9—C10—C112.2 (3)
O1—Ni1—P1—C2141.18 (7)P1—C9—C10—C11172.08 (13)
S1—Ni1—P1—C21140.95 (6)C9—C10—C11—C120.6 (3)
N1—Ni1—O1—C118.45 (13)C10—C11—C12—C131.8 (3)
P1—Ni1—O1—C1165.37 (13)C11—C12—C13—C142.7 (3)
O1—Ni1—N1—C79.88 (14)C12—C13—C14—C91.2 (3)
S1—Ni1—N1—C7172.40 (14)C10—C9—C14—C131.2 (3)
O1—Ni1—N1—N2167.58 (11)P1—C9—C14—C13172.98 (14)
S1—Ni1—N1—N210.15 (11)C9—P1—C15—C1633.87 (15)
C7—N1—N2—C8174.49 (15)C21—P1—C15—C1676.15 (14)
Ni1—N1—N2—C87.78 (19)Ni1—P1—C15—C16160.94 (11)
Ni1—O1—C1—C615.1 (2)C9—P1—C15—C20152.17 (12)
Ni1—O1—C1—C2165.23 (11)C21—P1—C15—C2097.81 (13)
O1—C1—C2—O22.6 (2)Ni1—P1—C15—C2025.10 (13)
C6—C1—C2—O2177.13 (15)C20—C15—C16—C172.9 (2)
O1—C1—C2—C3176.23 (15)P1—C15—C16—C17171.13 (13)
C6—C1—C2—C34.0 (2)C15—C16—C17—C181.1 (3)
O2—C2—C3—C4178.30 (16)C16—C17—C18—C191.6 (3)
C1—C2—C3—C42.9 (3)C17—C18—C19—C202.4 (3)
C2—C3—C4—C50.2 (3)C18—C19—C20—C150.6 (2)
C3—C4—C5—C62.0 (3)C16—C15—C20—C192.0 (2)
O1—C1—C6—C5178.13 (16)P1—C15—C20—C19171.93 (12)
C2—C1—C6—C52.2 (2)C15—P1—C21—C2631.84 (15)
O1—C1—C6—C72.8 (3)C9—P1—C21—C2680.02 (14)
C2—C1—C6—C7176.86 (16)Ni1—P1—C21—C26151.76 (12)
C4—C5—C6—C10.8 (3)C15—P1—C21—C22151.69 (13)
C4—C5—C6—C7179.84 (17)C9—P1—C21—C2296.45 (14)
N2—N1—C7—C6179.36 (15)Ni1—P1—C21—C2231.77 (14)
Ni1—N1—C7—C63.2 (2)C26—C21—C22—C230.1 (2)
C1—C6—C7—N112.3 (3)P1—C21—C22—C23176.48 (13)
C5—C6—C7—N1168.62 (16)C21—C22—C23—C240.5 (3)
N1—N2—C8—N3179.62 (15)C22—C23—C24—C250.5 (3)
N1—N2—C8—S10.9 (2)C23—C24—C25—C260.2 (3)
Ni1—S1—C8—N3173.17 (14)C24—C25—C26—C210.7 (2)
Ni1—S1—C8—N27.37 (14)C22—C21—C26—C250.7 (2)
C15—P1—C9—C1052.22 (15)P1—C21—C26—C25175.82 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O10.84 (1)2.11 (3)2.636 (2)120 (2)
N2—H2···Cl10.86 (1)2.17 (1)3.016 (2)167 (2)
N3—H3···Cl1i0.85 (1)2.46 (1)3.275 (2)161 (2)
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C8H8N3O2S)(C18H15P)]Cl
Mr566.66
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.7902 (4), 14.6791 (7), 21.7410 (11)
V3)2486.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.707, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
24072, 5703, 5490
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.02
No. of reflections5703
No. of parameters332
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.21
Absolute structureFlack (1983), 2468 Friedel pairs
Absolute structure parameter0.011 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—O11.847 (1)Ni1—P12.1998 (4)
Ni1—N11.897 (1)Ni1—S12.1416 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O10.84 (1)2.11 (3)2.636 (2)120 (2)
N2—H2···Cl10.86 (1)2.17 (1)3.016 (2)167 (2)
N3—H3···Cl1i0.85 (1)2.46 (1)3.275 (2)161 (2)
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

We thank the University of Malaya (PS354/2009) and MOHE (FRGS-FP001/2009) for supporting this study. HBS also thanks the Libyan People's Bureau in Malaysia for a scholarship.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarcía-Reynaldos, P. X., Hernández-Ortega, S., Toscano, R. A. & Valdés-Martínez, J. (2007). Supramol. Chem. 19, 613–619.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457–o5458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds