metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4,8,11-Tetra­azonia­cyclo­tetra­decane di­aqua­tetra­chloridomanganese(II) dichloride dihydrate

aInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic, and bDepartment of Chemistry, Faculty of Sciences, University Mohammed 1st, PO Box 717, 60000 Oujda, Morocco
*Correspondence e-mail: pojarova@fzu.cz

(Received 30 July 2010; accepted 9 August 2010; online 18 August 2010)

The title compound, (C10H28N4)[MnCl4(H2O)2]Cl2·2H2O, consists of isolated octa­hedral [MnCl4(H2O)2]2− anions, tetra­protonated 1,4,8,11-tetra­azoniacyclo­tetradecane cations, chloride anions and water mol­ecules connected by a network of hydrogen bonds. The MnII atom is situated on an inversion centre, and the 1,4,8,11-tetra­azoniacyclo­tetradecane cation is located on a mirror plane.

Related literature

For bond distances and angles in the cyclam mol­ecule, see: Melson (1979[Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H28N4)[MnCl4(H2O)2]Cl2·2H2O

  • Mr = 544.1

  • Orthorhombic, P n m a

  • a = 14.8492 (2) Å

  • b = 19.3511 (3) Å

  • c = 7.8772 (1) Å

  • V = 2263.50 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 292 K

  • 0.36 × 0.22 × 0.16 mm

Data collection
  • Oxford Diffraction CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.721, Tmax = 0.840

  • 26200 measured reflections

  • 2429 independent reflections

  • 1999 reflections with I > 3σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.059

  • S = 1.09

  • 2429 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1M⋯O2 0.87 2.01 2.8367 (16) 159
N1—H1N⋯Cl2i 0.87 2.51 3.2465 (11) 143
N1—H1N⋯Cl1ii 0.87 2.77 3.2317 (11) 115
O1—H1O⋯O2 0.82 (1) 1.94 (1) 2.7474 (15) 172 (2)
O1—H1P⋯Cl3 0.82 (1) 2.35 (1) 3.1382 (10) 162 (1)
N2—H2M⋯O1iii 0.87 2.08 2.8926 (15) 155
N2—H2N⋯Cl1 0.87 2.48 3.2383 (11) 146
O2—H2O⋯Cl4iv 0.83 (1) 2.19 (1) 3.0205 (12) 173 (1)
O2—H2P⋯Cl2v 0.81 (2) 2.52 (2) 3.2832 (11) 157 (1)
C1—H1A⋯Cl2 0.96 2.71 3.6100 (14) 156
C3—H3N⋯Cl3 0.96 2.81 3.7016 (14) 155
C5—H5B⋯Cl4 0.96 2.72 3.6178 (14) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) x, y, z+1; (iv) x, y, z-1; (v) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structure contains isolated [MnCl4(H2O)2]2- octahedron and centrosymmetric tetraprotonated 1,4,8,11-tetraazacyclodecane (cyclamH44+) moieties connected by a network of N—H···X (X= O, Cl) hydrogen bonds (Fig. 1). The positive charge of the cyclamH44+ is out-balanced beside the octahedral anion with two chloride ions. Two molecules of water participate in the manganese coordination, whereas the third water molecule forms bridge between chloride anion (Cl4), nitrogen atom (N1) in 1,4,8,11-tetraazacyclodecane (cyclam) and water (O1) molecule in [MnCl4(H2O)2]. The cyclam molecules and [MnCl4(H2O)2] octahedral are arranged into alternating layers parallel with ab. In direction of c axis the cyclam molecules form infinite channels (Fig. 2). The molecules of cyclam are in a distance of 7.877 Å with chloride anion between the middle CH2 groups in propyl chains (C6···Cl4 3.952 Å, Cl4···C6 3.923Å on one side and C4···Cl3 3.855 Å, Cl3···C4 4.022Å on the other side of channels). The tetra-protonated cyclam (C10H28N4)4+ exhibits C—C, C—N bond distances and angles in the range usually found for the cyclam molecule (Melson, 1979). The tetra-protonated macrocycle adopts an endodentate quadrangular (3,4,3,4)-A conformation which is the most stable among the four possible conformations, the exo orientation of the four nitrogen atoms gives rise to the maximal charge separation. The free water molecule participates also in a cyclic system of hydrogen bonds between water (O1) molecule coordinated to manganese and chloride anions (Cl3 and Cl4). The six-membered cycle is formed by hydrogen bonds between O1—H1o···O2—H2o···Cl4···H2o—O2···H1o—O1—H1p···Cl3···H1p—O1 (Fig. 4).

Related literature top

For bond distances and angles in the

cyclam molecule, see: Melson (1979).

Experimental top

To an acidic solution of cyclam (1 mmol) was added MnCl2.4H2O (1 mmol) in 10 ml of distilled water. The mixture was then stirred at room temperature for 3 h after which it was left to evaporate in air. After three weeks, crystals appeared, which were filtered off and washed with 90% ethanol solution.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. Despite of it the hydrogen atoms bonded to carbon and nitrogen atoms were constrained to ideal positions. The O—H distances were restrained to 0.82 Å with sigma 0.01. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.)

Structure description top

The structure contains isolated [MnCl4(H2O)2]2- octahedron and centrosymmetric tetraprotonated 1,4,8,11-tetraazacyclodecane (cyclamH44+) moieties connected by a network of N—H···X (X= O, Cl) hydrogen bonds (Fig. 1). The positive charge of the cyclamH44+ is out-balanced beside the octahedral anion with two chloride ions. Two molecules of water participate in the manganese coordination, whereas the third water molecule forms bridge between chloride anion (Cl4), nitrogen atom (N1) in 1,4,8,11-tetraazacyclodecane (cyclam) and water (O1) molecule in [MnCl4(H2O)2]. The cyclam molecules and [MnCl4(H2O)2] octahedral are arranged into alternating layers parallel with ab. In direction of c axis the cyclam molecules form infinite channels (Fig. 2). The molecules of cyclam are in a distance of 7.877 Å with chloride anion between the middle CH2 groups in propyl chains (C6···Cl4 3.952 Å, Cl4···C6 3.923Å on one side and C4···Cl3 3.855 Å, Cl3···C4 4.022Å on the other side of channels). The tetra-protonated cyclam (C10H28N4)4+ exhibits C—C, C—N bond distances and angles in the range usually found for the cyclam molecule (Melson, 1979). The tetra-protonated macrocycle adopts an endodentate quadrangular (3,4,3,4)-A conformation which is the most stable among the four possible conformations, the exo orientation of the four nitrogen atoms gives rise to the maximal charge separation. The free water molecule participates also in a cyclic system of hydrogen bonds between water (O1) molecule coordinated to manganese and chloride anions (Cl3 and Cl4). The six-membered cycle is formed by hydrogen bonds between O1—H1o···O2—H2o···Cl4···H2o—O2···H1o—O1—H1p···Cl3···H1p—O1 (Fig. 4).

For bond distances and angles in the

cyclam molecule, see: Melson (1979).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED(Oxford Diffraction, 2005); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the cyclamH44+ cation, the [MnCl4(H2O)2]2- anion, free water molecule and chloride anions, together with atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Projection along the c axis, showing the channels formed by the cyclam cavity.
1,4,8,11-Tetraazoniacyclotetradecane diaquatetrachloridomanganese(II) dichloride dihydrate top
Crystal data top
(C10H28N4)[MnCl4(H2O)2]Cl2·2H2OF(000) = 1132
Mr = 544.1Dx = 1.596 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 16479 reflections
a = 14.8492 (2) Åθ = 2.5–26.5°
b = 19.3511 (3) ŵ = 1.31 mm1
c = 7.8772 (1) ÅT = 292 K
V = 2263.50 (5) Å3Prism, colourless
Z = 40.36 × 0.22 × 0.16 mm
Data collection top
Oxford Diffraction CCD
diffractometer
2429 independent reflections
Radiation source: X-ray tube1999 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3438 pixels mm-1θmax = 26.5°, θmin = 2.7°
Rotation method data acquisition using ω scansh = 1818
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2005)
k = 2424
Tmin = 0.721, Tmax = 0.840l = 99
26200 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F > 3σ(F)] = 0.018Hydrogen site location: difference Fourier map
wR(F) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.09Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
2429 reflections(Δ/σ)max = 0.010
133 parametersΔρmax = 0.14 e Å3
Primary atom site location: structure-invariant direct methodsΔρmin = 0.10 e Å3
Crystal data top
(C10H28N4)[MnCl4(H2O)2]Cl2·2H2OV = 2263.50 (5) Å3
Mr = 544.1Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.8492 (2) ŵ = 1.31 mm1
b = 19.3511 (3) ÅT = 292 K
c = 7.8772 (1) Å0.36 × 0.22 × 0.16 mm
Data collection top
Oxford Diffraction CCD
diffractometer
2429 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2005)
1999 reflections with I > 3σ(I)
Tmin = 0.721, Tmax = 0.840Rint = 0.026
26200 measured reflections
Refinement top
R[F > 3σ(F)] = 0.018133 parameters
wR(F) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.14 e Å3
2429 reflectionsΔρmin = 0.10 e Å3
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

All the H atoms were discrenible in difference Fourier maps and could be refined to reasonable geometry. Despite of it the H atoms bonded to catbon and nitrogen atoms were constrained to ideal positions. The O—H distances were restrained to 0.82 Å with σ 0.01. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details,

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10000.01920 (9)
Cl10.06104 (2)0.040619 (17)0.28548 (4)0.02344 (10)
Cl30.03588 (3)0.250.10590 (6)0.02742 (14)
Cl20.14001 (2)0.046308 (19)0.14869 (4)0.03195 (11)
Cl40.27203 (4)0.250.80690 (7)0.03300 (16)
O10.06526 (7)0.10208 (5)0.04773 (13)0.0246 (3)
O20.24961 (7)0.11049 (6)0.02640 (14)0.0323 (3)
N10.25833 (7)0.12044 (5)0.33251 (14)0.0211 (3)
N20.04152 (7)0.12050 (5)0.59062 (14)0.0203 (3)
C10.15939 (9)0.11683 (7)0.36796 (16)0.0212 (4)
C20.14089 (8)0.11699 (7)0.55731 (17)0.0206 (4)
C30.00618 (8)0.18592 (7)0.54150 (17)0.0217 (4)
C40.03729 (16)0.250.6165 (3)0.0314 (6)
C50.30646 (9)0.18591 (6)0.38037 (17)0.0228 (4)
C60.26338 (16)0.250.3046 (3)0.0329 (7)
H1m0.2680450.1113730.2258950.0253*
H1n0.2851520.0853550.3795720.0253*
H2m0.0311590.1115260.6970620.0244*
H2n0.0150460.0854240.5428360.0244*
H1a0.1349920.0755610.3183880.0254*
H1b0.1298160.1555840.316190.0254*
H2a0.1650290.075690.6072050.0247*
H2b0.1699810.1560820.6085220.0247*
H3a0.0679280.1834510.5770830.026*
H3n0.0076090.189810.4200390.026*
H4a0.1004760.250.5907040.0377*
H4b0.0292520.250.7374190.0377*
H5a0.3681810.183120.3447490.0273*
H5b0.3080950.1901110.501760.0273*
H6a0.2000570.250.3291670.0394*
H6b0.2720470.250.1837830.0394*
H2o0.2545 (12)0.1474 (6)0.080 (2)0.0387*
H2p0.2810 (10)0.0859 (8)0.085 (2)0.0387*
H1o0.1201 (6)0.1002 (8)0.042 (2)0.0296*
H1p0.0475 (11)0.1365 (6)0.0039 (18)0.0296*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02119 (16)0.01807 (15)0.01834 (15)0.00097 (11)0.00088 (10)0.00132 (11)
Cl10.0257 (2)0.02367 (17)0.02098 (17)0.00260 (12)0.00054 (12)0.00266 (13)
Cl30.0298 (3)0.0235 (2)0.0290 (3)00.0005 (2)0
Cl20.0316 (2)0.0361 (2)0.02823 (19)0.01481 (15)0.00806 (14)0.00686 (15)
Cl40.0394 (3)0.0291 (3)0.0305 (3)00.0040 (2)0
O10.0262 (5)0.0217 (5)0.0260 (5)0.0011 (4)0.0017 (4)0.0027 (4)
O20.0351 (6)0.0327 (6)0.0290 (6)0.0005 (5)0.0060 (4)0.0008 (5)
N10.0225 (6)0.0184 (5)0.0224 (6)0.0031 (4)0.0018 (4)0.0012 (5)
N20.0223 (6)0.0179 (5)0.0207 (6)0.0024 (4)0.0023 (4)0.0014 (4)
C10.0198 (6)0.0208 (6)0.0230 (7)0.0017 (5)0.0010 (5)0.0022 (5)
C20.0186 (6)0.0221 (6)0.0210 (6)0.0009 (5)0.0010 (5)0.0026 (5)
C30.0191 (7)0.0200 (7)0.0259 (7)0.0011 (5)0.0014 (5)0.0002 (6)
C40.0448 (13)0.0191 (9)0.0304 (11)00.0135 (10)0
C50.0185 (7)0.0214 (7)0.0285 (7)0.0010 (5)0.0013 (5)0.0002 (6)
C60.0451 (13)0.0208 (10)0.0327 (12)00.0135 (9)0
Geometric parameters (Å, º) top
Mn1—Cl12.5488 (3)N2—H2n0.8700
Mn1—Cl1i2.5488 (3)C1—C21.5166 (18)
Mn1—Cl22.5490 (4)C1—H1a0.9600
Mn1—Cl2i2.5490 (4)C1—H1b0.9600
Mn1—O12.2322 (10)C2—H2a0.9600
Mn1—O1i2.2322 (10)C2—H2b0.9600
O1—H1o0.817 (9)C3—C41.5176 (18)
O1—H1p0.824 (13)C3—H3a0.9600
O2—H2o0.833 (13)C3—H3n0.9600
O2—H2p0.812 (15)C4—H4a0.960
N1—C11.4971 (17)C4—H4b0.960
N1—C51.5026 (16)C5—C61.5179 (18)
N1—H1m0.8700C5—H5a0.9600
N1—H1n0.8700C5—H5b0.9600
N2—C21.5004 (16)C6—H6a0.960
N2—C31.5013 (17)C6—H6b0.960
N2—H2m0.8700
Cl1—Mn1—Cl1i180C2—C1—H1b109.47
Cl1—Mn1—Cl289.601 (11)H1a—C1—H1b107.72
Cl1—Mn1—Cl2i90.399 (11)N2—C2—C1110.50 (10)
Cl1—Mn1—O191.72 (3)N2—C2—H2a109.47
Cl1—Mn1—O1i88.28 (3)N2—C2—H2b109.47
Cl1i—Mn1—Cl290.399 (11)C1—C2—H2a109.47
Cl1i—Mn1—Cl2i89.601 (11)C1—C2—H2b109.47
Cl1i—Mn1—O188.28 (3)H2a—C2—H2b108.42
Cl1i—Mn1—O1i91.72 (3)N2—C3—C4112.83 (11)
Cl2—Mn1—Cl2i180N2—C3—H3a109.47
Cl2—Mn1—O191.97 (3)N2—C3—H3n109.47
Cl2—Mn1—O1i88.03 (3)C4—C3—H3a109.47
Cl2i—Mn1—O188.03 (3)C4—C3—H3n109.47
Cl2i—Mn1—O1i91.97 (3)H3a—C3—H3n105.89
O1—Mn1—O1i180C3—C4—C3ii109.58 (15)
H1o—O1—H1p109.3 (16)C3—C4—H4a109.47
H2o—O2—H2p99.4 (15)C3—C4—H4b109.47
C1—N1—C5117.34 (10)C3ii—C4—H4a109.47
C1—N1—H1m109.47C3ii—C4—H4b109.47
C1—N1—H1n109.47H4a—C4—H4b109.4
C5—N1—H1m109.47N1—C5—C6112.94 (12)
C5—N1—H1n109.47N1—C5—H5a109.47
H1m—N1—H1n100.26N1—C5—H5b109.47
C2—N2—C3117.20 (10)C6—C5—H5a109.47
C2—N2—H2m109.47C6—C5—H5b109.47
C2—N2—H2n109.47H5a—C5—H5b105.77
C3—N2—H2m109.47C5—C6—C5ii109.58 (16)
C3—N2—H2n109.47C5—C6—H6a109.47
H2m—N2—H2n100.45C5—C6—H6b109.47
N1—C1—C2111.17 (10)C5ii—C6—H6a109.47
N1—C1—H1a109.47C5ii—C6—H6b109.47
N1—C1—H1b109.47H6a—C6—H6b109.4
C2—C1—H1a109.47
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1M···O20.872.012.8367 (16)159
N1—H1N···Cl2iii0.872.513.2465 (11)143
N1—H1N···Cl1iv0.872.773.2317 (11)115
O1—H1O···O20.82 (1)1.94 (1)2.7474 (15)172 (2)
O1—H1P···Cl30.82 (1)2.35 (1)3.1382 (10)162 (1)
N2—H2M···O1v0.872.082.8926 (15)155
N2—H2N···Cl10.872.483.2383 (11)146
O2—H2O···Cl4vi0.83 (1)2.19 (1)3.0205 (12)173 (1)
O2—H2P···Cl2vii0.81 (2)2.52 (2)3.2832 (11)157 (1)
C1—H1A···Cl20.962.713.6100 (14)156
C3—H3N···Cl30.962.813.7016 (14)155
C5—H5B···Cl40.962.723.6178 (14)156
Symmetry codes: (iii) x+1/2, y, z+1/2; (iv) x+1/2, y, z+1/2; (v) x, y, z+1; (vi) x, y, z1; (vii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formula(C10H28N4)[MnCl4(H2O)2]Cl2·2H2O
Mr544.1
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)292
a, b, c (Å)14.8492 (2), 19.3511 (3), 7.8772 (1)
V3)2263.50 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.36 × 0.22 × 0.16
Data collection
DiffractometerOxford Diffraction CCD
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2005)
Tmin, Tmax0.721, 0.840
No. of measured, independent and
observed [I > 3σ(I)] reflections
26200, 2429, 1999
Rint0.026
(sin θ/λ)max1)0.628
Refinement
R[F > 3σ(F)], wR(F), S 0.018, 0.059, 1.09
No. of reflections2429
No. of parameters133
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.10

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), CrysAlis RED(Oxford Diffraction, 2005), SIR2002 (Burla et al., 2003), DIAMOND (Brandenburg & Putz, 2005), JANA2006 (Petříček et al., 2006) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1M···O20.872.012.8367 (16)159
N1—H1N···Cl2i0.872.513.2465 (11)143
N1—H1N···Cl1ii0.872.773.2317 (11)115
O1—H1O···O20.816 (9)1.937 (9)2.7474 (15)171.5 (15)
O1—H1P···Cl30.824 (13)2.345 (12)3.1382 (10)161.8 (14)
N2—H2M···O1iii0.872.082.8926 (15)155
N2—H2N···Cl10.872.483.2383 (11)146
O2—H2O···Cl4iv0.833 (13)2.192 (13)3.0205 (12)173.4 (14)
O2—H2P···Cl2v0.810 (15)2.523 (16)3.2832 (11)156.8 (14)
C1—H1A···Cl20.962.713.6100 (14)156
C3—H3N···Cl30.962.813.7016 (14)155
C5—H5B···Cl40.962.723.6178 (14)156
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x, y, z+1; (iv) x, y, z1; (v) x+1/2, y, z1/2.
 

Acknowledgements

The authors acknowledge the institutional research plan No. AVOZ10100521 of the Institute of Physics, the project Praemium Academiae of the Academy of Sciences of the Czech Republic and Unité associée au CNRST (URAC 19).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationMelson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum.  Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds