metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(sec-Butyl­imino­meth­yl)quinoline]­chlorido(η6-1-iso­propyl-4-methyl­benzene)­ruthenium(II) hexa­fluorido­phosphate

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico
*Correspondence e-mail: simonho@unam.mx

(Received 31 July 2010; accepted 16 August 2010; online 21 August 2010)

In the title compound, [RuCl(C10H14)(C14H16N2)]PF6, the aromatic ring of the isopropyl­methyl­benzene fragment shows an η6-arene coordination to the ruthenium atom. Its coordination sphere is completed by a chloride ligand and 2-(sec-butyl­imino­meth­yl)quinoline. The dihedral angle between the η6-arene ring and the quinoline Schiff base is 45.64 (9)°. The sec-butyl substituent and the PF6 anion are disordered over two positions with ratios of 0.595 (11):0.405 (11) and 0.752 (8):0.248 (8), respectively.

Related literature

For the synthesis of a ruthenium dimer, see: Bennet et al. (1982[Bennet, M. A., Huang, T. N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74-78.]). For the synthesis of the Schiff base ligand and a Schiff base–ruthenium arene complex, see: Moreno et al. (2009[Moreno, A., Pregosin, P. S., Gabor Laurenczy, G. A., Phillips, A. D. & Dyson, P. J. (2009). Organometallics, 28, 6432-6441.]); Brunner et al. (2003[Brunner, H., Henning, F., Weber, M., Zabel, M., Carmona, D. & Lahoz, F. J. (2003). Synthesis, pp. 1091-1099.]); Lalrempuia et al. (2003[Lalrempuia, R., Kollipara, M. R., Patrick, J. & Carroll, P. J. (2003). Polyhedron, 22, 605-609.]). For the catalytic applications of Schiff base–ruthenium arene complexes, see: Drozdzak et al. (2005[Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055-3074.]); Opstal et al. (2003[Opstal, T., Couchez, K. & Verpoort, F. (2003). Adv. Synth. Catal. 345, 393-401.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C10H14)(C14H16N2)]PF6

  • Mr = 627.99

  • Monoclinic, P 21 /c

  • a = 10.4513 (6) Å

  • b = 15.3595 (9) Å

  • c = 16.578 (1) Å

  • β = 97.484 (1)°

  • V = 2638.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 298 K

  • 0.35 × 0.31 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.764, Tmax = 0.938

  • 21833 measured reflections

  • 4822 independent reflections

  • 3985 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.099

  • S = 1.03

  • 4822 reflections

  • 405 parameters

  • 498 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are found among the most convenient and attractive ligands for ruthenium complexes (Bennet et al. 1982), by steric and electronic effects around the Ru core, the donor atoms, N and O, of the chelated Schiff bases exert two opposite electronic effects (Brunner et al., 2003; Lalrempuia et al. 2003; Moreno et al. 2009]. As result of their particular structure, these ruthenium complexes display an enhanced activity and selectivity in a multitude of organic transformations [Drozdzak et al. 2005 & Opstal et al. 2003]. Due to importance of Schiff base ruthenium-arene complexes show as catalysts, we describe the synthesis and structural analysis of a new ruthenium Schiff base complex using an iminomethylquinoline as ligand.

The molecular structure of (I) with the numbering scheme is shown in Fig. 1. Selected bond distances, bond angles and torsion angles are shown in table 1. The structure exhibits an η6 - arene coordination of the isopropylmethylbenzene bonded to the ruthenium mononuclear structure, completing the coordinations sphere a chloride atom and 2-N-sec-butyliminomethylquinoline Schiff base are found. While the structure of classical Schiff bases have a fragment (O—C=C—C=N) and form a six member chelate ring with the metal atom as sixth member of the chelate, in (I) the Schiff base fragment (N1—C11—C20—N2) is forming a five member chelate ring with the ruthenium atom as fifth member of the chelate. The η6 - arene coordination and Schiff base fragment are not cooplanar and are forming a dihedral angle of 52.94°(9)°. The quinoline ring is sliglty deviated of planarity [0.044 (3) Å], while N1—C11—C20—N2 is planar [0.040 (2) Å]

Related literature top

For the synthesis of a ruthenium dimer, see: Bennet et al. (1982). For the synthesis of the Schiff base ligand and a Schiff bas–ruthenium arene complex, see: Moreno et al. (2009); Brunner et al. (2003); Lalrempuia et al. (2003). For the catalytic applications of Schiff base–ruthenium arene complexes, see: Drozdzak et al. (2005); Opstal et al. (2003).

Experimental top

Schiff base ligand. To a solution of 2-quinolincarboxaldehyde (1.0 g) in 150 ml of ethanol was added 0.64 ml (0.47 g) of sec-butylamine. The mixture was heated at 60 °C for 5 h, then concentrated until all the solvent was distilled. The residual deep yellow oil was then vacuum distilled obtaining 1.32 g of a light yellow liquid which was characterized by 1H NMR and IR spectroscopy.

Ruthenium derivative. To a solution of 0.9 g of di-m-Cl-bis([Cl(η6–1-isopropyl-4-methylbenzene)Ru(II)] in 40 ml of anhydrous methanol under nitrogen was added 0.0636 g of the 2-[N-(sec-butyliminomethyl)]quinoline followed of 0.110 g of potassium hexafluorophosphate the reaction mixture was stirred for 3 h. The color of the reaction mixture changed from initially orange to deep red at the end and by solvent concentration a precipitate was formed which was separated and dissolved in dichloromethane. The obtained solution was filtered through celite, concentrated and stored in a freezer at -30 °C for 48 h obtaining 0.75 g of a product as red crystals. This product (I) was characterized by IR spectroscopy and mass spectrometry (FAB+). Good quality crystals suitable for the X-ray diffraction study, were obtained by slow layer diffusion of methanol into a saturated dichloromethane solution of compound (I) at room temperature.

Refinement top

H atoms were placed in geometrically idealized positions [0.98 Å (for CH), 0.97 Å (for CH2), 0.96 Å (for CH3) and 0.93Å (for CH aromatic)] and refined using the riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 UeqC(methyl). The sec-butyl substituent and hexafluorophosphate anion are disordered and were refined anistropically in two positions with site occupation factors of 0.595 (11)/0.405 (11) and 0.752 (8)/0.248 (8), respectively.

Structure description top

Schiff bases are found among the most convenient and attractive ligands for ruthenium complexes (Bennet et al. 1982), by steric and electronic effects around the Ru core, the donor atoms, N and O, of the chelated Schiff bases exert two opposite electronic effects (Brunner et al., 2003; Lalrempuia et al. 2003; Moreno et al. 2009]. As result of their particular structure, these ruthenium complexes display an enhanced activity and selectivity in a multitude of organic transformations [Drozdzak et al. 2005 & Opstal et al. 2003]. Due to importance of Schiff base ruthenium-arene complexes show as catalysts, we describe the synthesis and structural analysis of a new ruthenium Schiff base complex using an iminomethylquinoline as ligand.

The molecular structure of (I) with the numbering scheme is shown in Fig. 1. Selected bond distances, bond angles and torsion angles are shown in table 1. The structure exhibits an η6 - arene coordination of the isopropylmethylbenzene bonded to the ruthenium mononuclear structure, completing the coordinations sphere a chloride atom and 2-N-sec-butyliminomethylquinoline Schiff base are found. While the structure of classical Schiff bases have a fragment (O—C=C—C=N) and form a six member chelate ring with the metal atom as sixth member of the chelate, in (I) the Schiff base fragment (N1—C11—C20—N2) is forming a five member chelate ring with the ruthenium atom as fifth member of the chelate. The η6 - arene coordination and Schiff base fragment are not cooplanar and are forming a dihedral angle of 52.94°(9)°. The quinoline ring is sliglty deviated of planarity [0.044 (3) Å], while N1—C11—C20—N2 is planar [0.040 (2) Å]

For the synthesis of a ruthenium dimer, see: Bennet et al. (1982). For the synthesis of the Schiff base ligand and a Schiff bas–ruthenium arene complex, see: Moreno et al. (2009); Brunner et al. (2003); Lalrempuia et al. (2003). For the catalytic applications of Schiff base–ruthenium arene complexes, see: Drozdzak et al. (2005); Opstal et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The H atom bonded to C atom and disordered atoms were omitted for clarity.
[2-(sec-Butyliminomethyl)quinoline]chlorido(η6-1-isopropyl-4- methylbenzene)ruthenium(II) hexafluoridophosphate top
Crystal data top
[RuCl(C10H14)(C14H16N2)]PF6F(000) = 1272
Mr = 627.99Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6413 reflections
a = 10.4513 (6) Åθ = 2.5–32.4°
b = 15.3595 (9) ŵ = 0.81 mm1
c = 16.578 (1) ÅT = 298 K
β = 97.484 (1)°Prism, red
V = 2638.5 (3) Å30.35 × 0.31 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4822 independent reflections
Radiation source: fine-focus sealed tube3985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 1.8°
ω scansh = 1212
Absorption correction: multi-scan
(SHELXTL; Sheldrick, 2008)
k = 1818
Tmin = 0.764, Tmax = 0.938l = 1919
21833 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.062P)2]
where P = (Fo2 + 2Fc2)/3
4822 reflections(Δ/σ)max = 0.016
405 parametersΔρmax = 0.71 e Å3
498 restraintsΔρmin = 0.40 e Å3
Crystal data top
[RuCl(C10H14)(C14H16N2)]PF6V = 2638.5 (3) Å3
Mr = 627.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4513 (6) ŵ = 0.81 mm1
b = 15.3595 (9) ÅT = 298 K
c = 16.578 (1) Å0.35 × 0.31 × 0.08 mm
β = 97.484 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4822 independent reflections
Absorption correction: multi-scan
(SHELXTL; Sheldrick, 2008)
3985 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.938Rint = 0.048
21833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038498 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.03Δρmax = 0.71 e Å3
4822 reflectionsΔρmin = 0.40 e Å3
405 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru0.84887 (3)0.039403 (18)0.232792 (16)0.03610 (13)
Cl0.76723 (11)0.13951 (7)0.32372 (6)0.0547 (3)
N10.9567 (3)0.01445 (19)0.33846 (17)0.0391 (7)
C10.8165 (4)0.1398 (2)0.1343 (2)0.0477 (9)
C20.7535 (4)0.0629 (3)0.1085 (2)0.0473 (10)
H20.66620.06450.08850.057*
C30.8200 (4)0.0176 (3)0.1121 (2)0.0458 (9)
H30.77480.06800.09530.055*
C40.9518 (4)0.0233 (3)0.1402 (2)0.0449 (9)
C51.0150 (4)0.0553 (2)0.1654 (2)0.0442 (9)
H51.10280.05390.18410.053*
C60.9506 (4)0.1343 (3)0.1633 (2)0.0468 (9)
H60.99570.18450.18100.056*
C70.7454 (4)0.2243 (3)0.1338 (3)0.0688 (13)
H7A0.66210.21460.15060.103*
H7B0.79350.26420.17060.103*
H7C0.73500.24820.07990.103*
C81.0292 (4)0.1076 (3)0.1447 (3)0.0579 (11)
H81.10270.10020.18730.069*
C90.9586 (6)0.1858 (3)0.1652 (3)0.0872 (17)
H9A0.88610.19520.12430.131*
H9B1.01490.23540.16760.131*
H9C0.92880.17780.21710.131*
C101.0837 (5)0.1192 (3)0.0638 (3)0.0756 (14)
H10A1.01400.12190.02010.113*
H10B1.13850.07070.05540.113*
H10C1.13280.17210.06530.113*
C110.8981 (4)0.0824 (2)0.3693 (2)0.0417 (9)
C120.9552 (4)0.1328 (3)0.4349 (2)0.0490 (10)
H120.91100.17960.45360.059*
C131.0758 (4)0.1125 (3)0.4707 (2)0.0518 (10)
H131.11600.14630.51310.062*
C141.2623 (4)0.0126 (3)0.4809 (3)0.0605 (12)
H141.30560.04580.52270.073*
C151.3161 (5)0.0605 (4)0.4570 (3)0.0713 (14)
H151.39690.07750.48230.086*
C161.2523 (4)0.1116 (3)0.3943 (3)0.0666 (12)
H161.29020.16290.37930.080*
C171.1349 (4)0.0869 (3)0.3551 (2)0.0533 (10)
H171.09380.12110.31320.064*
C181.0763 (4)0.0103 (3)0.3775 (2)0.0415 (9)
C191.1397 (4)0.0394 (3)0.4428 (2)0.0481 (10)
C200.7683 (4)0.0977 (2)0.3317 (2)0.0450 (9)
H200.71840.14140.35070.054*
N20.7229 (3)0.05014 (19)0.27189 (18)0.0416 (7)
C210.5006 (14)0.0530 (11)0.2997 (13)0.066 (4)0.595 (11)
H21A0.51090.00560.31950.099*0.595 (11)
H21B0.41220.06260.27770.099*0.595 (11)
H21C0.52450.09290.34370.099*0.595 (11)
C220.5868 (9)0.0677 (14)0.2335 (12)0.055 (4)0.595 (11)
H220.56430.02380.19110.066*0.595 (11)
C230.5702 (15)0.1587 (16)0.1931 (12)0.076 (5)0.595 (11)
H23A0.58030.20440.23380.092*0.595 (11)
H23B0.63290.16750.15560.092*0.595 (11)
C240.4327 (9)0.1578 (7)0.1479 (6)0.104 (4)0.595 (11)
H24A0.41390.21330.12240.156*0.595 (11)
H24B0.37260.14670.18580.156*0.595 (11)
H24C0.42540.11300.10720.156*0.595 (11)
C21A0.558 (2)0.148 (2)0.2066 (16)0.078 (8)0.405 (11)
H21D0.61570.16170.16770.117*0.405 (11)
H21E0.57310.18750.25170.117*0.405 (11)
H21F0.47070.15310.18140.117*0.405 (11)
C22A0.5835 (12)0.0541 (18)0.2372 (16)0.049 (6)0.405 (11)
H22A0.57170.01570.18960.059*0.405 (11)
C23A0.4888 (18)0.0237 (18)0.295 (2)0.086 (8)0.405 (11)
H23C0.51350.04620.34970.103*0.405 (11)
H23D0.48500.03930.29750.103*0.405 (11)
C24A0.3582 (9)0.0622 (10)0.2571 (9)0.089 (5)0.405 (11)
H24D0.29340.04980.29150.134*0.405 (11)
H24E0.33360.03660.20450.134*0.405 (11)
H24F0.36630.12410.25140.134*0.405 (11)
P0.33938 (11)0.84242 (8)0.08714 (8)0.0627 (3)
F10.2464 (7)0.8093 (5)0.1477 (5)0.114 (2)0.752 (8)
F20.2477 (7)0.8018 (4)0.0124 (4)0.136 (2)0.752 (8)
F30.2633 (6)0.9293 (3)0.0735 (4)0.1032 (18)0.752 (8)
F40.4317 (7)0.8723 (5)0.0237 (4)0.127 (2)0.752 (8)
F50.4400 (7)0.8762 (4)0.1569 (4)0.126 (2)0.752 (8)
F60.4127 (5)0.7502 (3)0.0936 (4)0.0839 (13)0.752 (8)
F1A0.4061 (18)0.8896 (12)0.0215 (10)0.112 (4)0.248 (8)
F2A0.4669 (11)0.8445 (12)0.1499 (10)0.100 (4)0.248 (8)
F3A0.3684 (18)0.7491 (6)0.0610 (12)0.105 (4)0.248 (8)
F4A0.2690 (18)0.8007 (12)0.1588 (9)0.081 (4)0.248 (8)
F5A0.2037 (10)0.8473 (12)0.0352 (9)0.104 (4)0.248 (8)
F6A0.3059 (14)0.9359 (6)0.1252 (11)0.0839 (13)0.248 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.04056 (19)0.03523 (19)0.03323 (18)0.00114 (13)0.00754 (12)0.00198 (12)
Cl0.0679 (7)0.0506 (6)0.0478 (6)0.0095 (5)0.0151 (5)0.0042 (4)
N10.0466 (18)0.0392 (17)0.0319 (16)0.0035 (14)0.0070 (14)0.0022 (13)
C10.057 (2)0.044 (2)0.045 (2)0.0017 (19)0.0183 (19)0.0135 (17)
C20.047 (2)0.060 (3)0.034 (2)0.0028 (19)0.0045 (17)0.0132 (18)
C30.061 (3)0.046 (2)0.0298 (19)0.0066 (19)0.0066 (17)0.0003 (16)
C40.055 (2)0.050 (2)0.0320 (19)0.0026 (19)0.0150 (17)0.0018 (17)
C50.042 (2)0.054 (2)0.039 (2)0.0015 (18)0.0125 (17)0.0023 (17)
C60.052 (2)0.044 (2)0.046 (2)0.0097 (19)0.0145 (18)0.0035 (17)
C70.077 (3)0.054 (3)0.078 (3)0.013 (2)0.019 (3)0.021 (2)
C80.068 (3)0.054 (3)0.054 (3)0.010 (2)0.021 (2)0.001 (2)
C90.112 (4)0.058 (3)0.099 (4)0.017 (3)0.044 (4)0.016 (3)
C100.094 (4)0.067 (3)0.073 (3)0.012 (3)0.040 (3)0.005 (3)
C110.048 (2)0.041 (2)0.037 (2)0.0031 (18)0.0114 (17)0.0000 (16)
C120.062 (3)0.045 (2)0.042 (2)0.004 (2)0.0100 (19)0.0067 (17)
C130.065 (3)0.052 (2)0.038 (2)0.017 (2)0.006 (2)0.0041 (18)
C140.053 (3)0.076 (3)0.050 (3)0.009 (2)0.001 (2)0.005 (2)
C150.052 (3)0.095 (4)0.064 (3)0.002 (3)0.003 (2)0.014 (3)
C160.060 (3)0.068 (3)0.072 (3)0.011 (2)0.007 (2)0.008 (3)
C170.052 (2)0.055 (3)0.052 (2)0.003 (2)0.003 (2)0.004 (2)
C180.042 (2)0.046 (2)0.038 (2)0.0035 (17)0.0096 (17)0.0070 (17)
C190.048 (2)0.057 (3)0.039 (2)0.0126 (19)0.0052 (18)0.0081 (18)
C200.054 (2)0.039 (2)0.043 (2)0.0060 (18)0.0097 (18)0.0070 (17)
N20.0445 (18)0.0437 (18)0.0376 (17)0.0053 (14)0.0091 (14)0.0045 (14)
C210.040 (5)0.082 (10)0.075 (8)0.014 (5)0.001 (5)0.001 (7)
C220.050 (8)0.064 (9)0.051 (8)0.001 (6)0.010 (6)0.021 (7)
C230.068 (8)0.093 (12)0.072 (8)0.028 (7)0.023 (7)0.009 (7)
C240.089 (7)0.109 (8)0.104 (8)0.036 (6)0.020 (6)0.004 (6)
C21A0.080 (15)0.066 (13)0.076 (14)0.020 (11)0.033 (12)0.005 (11)
C22A0.046 (11)0.047 (9)0.052 (11)0.020 (8)0.003 (10)0.001 (8)
C23A0.059 (11)0.119 (19)0.085 (12)0.017 (10)0.032 (9)0.035 (13)
C24A0.050 (7)0.124 (13)0.092 (10)0.018 (7)0.004 (7)0.027 (9)
P0.0546 (7)0.0548 (7)0.0768 (8)0.0068 (6)0.0009 (6)0.0149 (6)
F10.097 (4)0.097 (4)0.161 (5)0.034 (3)0.066 (4)0.056 (3)
F20.141 (4)0.114 (4)0.132 (4)0.009 (3)0.057 (3)0.015 (3)
F30.132 (4)0.078 (2)0.104 (4)0.038 (3)0.030 (3)0.036 (3)
F40.125 (4)0.117 (4)0.151 (4)0.006 (3)0.063 (4)0.058 (3)
F50.122 (4)0.107 (4)0.135 (4)0.008 (3)0.031 (3)0.042 (3)
F60.083 (3)0.0628 (19)0.108 (4)0.0081 (19)0.023 (2)0.0114 (19)
F1A0.101 (8)0.113 (9)0.135 (8)0.014 (8)0.058 (7)0.048 (7)
F2A0.052 (5)0.130 (11)0.113 (8)0.017 (5)0.008 (5)0.025 (8)
F3A0.141 (10)0.074 (5)0.104 (10)0.006 (6)0.029 (7)0.018 (6)
F4A0.081 (7)0.081 (7)0.084 (6)0.018 (7)0.018 (5)0.036 (6)
F5A0.082 (5)0.124 (9)0.095 (7)0.021 (6)0.028 (6)0.038 (6)
F6A0.083 (3)0.0628 (19)0.108 (4)0.0081 (19)0.023 (2)0.0114 (19)
Geometric parameters (Å, º) top
Ru—N22.066 (3)C16—C171.366 (6)
Ru—N12.123 (3)C16—H160.9300
Ru—C32.169 (4)C17—C181.399 (6)
Ru—C52.197 (4)C17—H170.9300
Ru—C22.199 (4)C18—C191.417 (5)
Ru—C42.207 (4)C20—N21.272 (4)
Ru—C62.215 (4)C20—H200.9300
Ru—C12.239 (4)N2—C22A1.496 (9)
Ru—Cl2.3875 (10)N2—C221.504 (8)
N1—C111.345 (5)C21—C221.525 (12)
N1—C181.383 (5)C21—H21A0.9600
C1—C21.391 (5)C21—H21B0.9600
C1—C61.424 (6)C21—H21C0.9600
C1—C71.495 (5)C22—C231.550 (13)
C2—C31.416 (5)C22—H220.9800
C2—H20.9300C23—C241.532 (16)
C3—C41.398 (6)C23—H23A0.9700
C3—H30.9300C23—H23B0.9700
C4—C51.412 (5)C24—H24A0.9600
C4—C81.524 (5)C24—H24B0.9600
C5—C61.386 (5)C24—H24C0.9600
C5—H50.9300C21A—C22A1.540 (16)
C6—H60.9300C21A—H21D0.9600
C7—H7A0.9600C21A—H21E0.9600
C7—H7B0.9600C21A—H21F0.9600
C7—H7C0.9600C22A—C23A1.539 (16)
C8—C91.472 (6)C22A—H22A0.9800
C8—C101.534 (5)C23A—C24A1.545 (19)
C8—H80.9800C23A—H23C0.9700
C9—H9A0.9600C23A—H23D0.9700
C9—H9B0.9600C24A—H24D0.9600
C9—H9C0.9600C24A—H24E0.9600
C10—H10A0.9600C24A—H24F0.9600
C10—H10B0.9600P—F3A1.539 (7)
C10—H10C0.9600P—F1A1.547 (7)
C11—C121.402 (5)P—F51.548 (4)
C11—C201.437 (5)P—F31.554 (4)
C12—C131.358 (5)P—F5A1.562 (7)
C12—H120.9300P—F11.570 (4)
C13—C191.414 (6)P—F2A1.580 (7)
C13—H130.9300P—F41.585 (4)
C14—C151.339 (7)P—F21.593 (4)
C14—C191.413 (6)P—F61.608 (4)
C14—H140.9300P—F4A1.609 (7)
C15—C161.400 (6)P—F6A1.625 (7)
C15—H150.9300
N2—Ru—N176.90 (12)C17—C18—C19118.6 (4)
N2—Ru—C390.17 (14)C14—C19—C13121.6 (4)
N1—Ru—C3126.81 (13)C14—C19—C18119.4 (4)
N2—Ru—C5144.25 (13)C13—C19—C18118.9 (4)
N1—Ru—C595.33 (13)N2—C20—C11118.7 (3)
C3—Ru—C566.42 (15)N2—C20—H20120.7
N2—Ru—C2100.02 (13)C11—C20—H20120.7
N1—Ru—C2164.63 (13)C20—N2—C22A121.4 (9)
C3—Ru—C237.82 (14)C20—N2—C22117.6 (6)
C5—Ru—C278.28 (14)C20—N2—Ru116.0 (3)
N2—Ru—C4108.42 (13)C22A—N2—Ru122.3 (8)
N1—Ru—C498.59 (13)C22—N2—Ru126.3 (6)
C3—Ru—C437.26 (15)C22—C21—H21A109.5
C5—Ru—C437.42 (14)C22—C21—H21B109.5
C2—Ru—C467.81 (15)H21A—C21—H21B109.5
N2—Ru—C6166.04 (14)C22—C21—H21C109.5
N1—Ru—C6116.52 (13)H21A—C21—H21C109.5
C3—Ru—C678.70 (14)H21B—C21—H21C109.5
C5—Ru—C636.63 (13)N2—C22—C21106.5 (12)
C2—Ru—C666.02 (15)N2—C22—C23113.0 (13)
C4—Ru—C667.34 (14)C21—C22—C23113.6 (7)
N2—Ru—C1130.19 (14)N2—C22—H22107.8
N1—Ru—C1152.05 (14)C21—C22—H22107.8
C3—Ru—C167.37 (14)C23—C22—H22107.8
C5—Ru—C166.86 (14)C24—C23—C22104.4 (12)
C2—Ru—C136.52 (14)C24—C23—H23A110.9
C4—Ru—C180.45 (14)C22—C23—H23A110.9
C6—Ru—C137.27 (14)C24—C23—H23B110.9
N2—Ru—Cl86.32 (9)C22—C23—H23B110.9
N1—Ru—Cl85.70 (8)H23A—C23—H23B108.9
C3—Ru—Cl145.50 (11)C23—C24—H24A109.5
C5—Ru—Cl128.37 (10)C23—C24—H24B109.5
C2—Ru—Cl109.28 (11)H24A—C24—H24B109.5
C4—Ru—Cl165.21 (11)C23—C24—H24C109.5
C6—Ru—Cl98.05 (11)H24A—C24—H24C109.5
C1—Ru—Cl89.12 (10)H24B—C24—H24C109.5
C11—N1—C18117.6 (3)C22A—C21A—H21D109.5
C11—N1—Ru113.4 (2)C22A—C21A—H21E109.5
C18—N1—Ru129.0 (2)H21D—C21A—H21E109.5
C2—C1—C6117.4 (4)C22A—C21A—H21F109.5
C2—C1—C7121.3 (4)H21D—C21A—H21F109.5
C6—C1—C7121.3 (4)H21E—C21A—H21F109.5
C2—C1—Ru70.2 (2)N2—C22A—C23A114.9 (16)
C6—C1—Ru70.4 (2)N2—C22A—C21A106.3 (16)
C7—C1—Ru129.0 (3)C23A—C22A—C21A113.2 (9)
C1—C2—C3121.2 (4)N2—C22A—H22A107.4
C1—C2—Ru73.3 (2)C23A—C22A—H22A107.4
C3—C2—Ru69.9 (2)C21A—C22A—H22A107.4
C1—C2—H2119.4C22A—C23A—C24A103.5 (13)
C3—C2—H2119.4C22A—C23A—H23C111.1
Ru—C2—H2130.0C24A—C23A—H23C111.1
C4—C3—C2121.7 (4)C22A—C23A—H23D111.1
C4—C3—Ru72.9 (2)C24A—C23A—H23D111.1
C2—C3—Ru72.3 (2)H23C—C23A—H23D109.0
C4—C3—H3119.1C23A—C24A—H24D109.5
C2—C3—H3119.1C23A—C24A—H24E109.5
Ru—C3—H3128.0H24D—C24A—H24E109.5
C3—C4—C5116.6 (4)C23A—C24A—H24F109.5
C3—C4—C8124.3 (4)H24D—C24A—H24F109.5
C5—C4—C8119.1 (4)H24E—C24A—H24F109.5
C3—C4—Ru69.9 (2)F3A—P—F1A96.6 (7)
C5—C4—Ru70.9 (2)F3A—P—F5112.6 (7)
C8—C4—Ru129.8 (3)F1A—P—F592.5 (10)
C6—C5—C4122.3 (4)F3A—P—F3150.9 (7)
C6—C5—Ru72.4 (2)F1A—P—F376.4 (8)
C4—C5—Ru71.7 (2)F5—P—F396.1 (3)
C6—C5—H5118.9F3A—P—F5A95.0 (7)
C4—C5—H5118.9F1A—P—F5A92.9 (7)
Ru—C5—H5129.7F5—P—F5A151.1 (7)
C5—C6—C1120.9 (4)F3—P—F5A57.9 (6)
C5—C6—Ru71.0 (2)F3A—P—F192.3 (9)
C1—C6—Ru72.3 (2)F1A—P—F1167.1 (8)
C5—C6—H6119.6F5—P—F192.8 (4)
C1—C6—H6119.6F3—P—F191.4 (3)
Ru—C6—H6129.7F5A—P—F177.0 (7)
C1—C7—H7A109.5F3A—P—F2A91.4 (7)
C1—C7—H7B109.5F1A—P—F2A92.0 (8)
H7A—C7—H7B109.5F3—P—F2A116.7 (6)
C1—C7—H7C109.5F5A—P—F2A171.4 (7)
H7A—C7—H7C109.5F1—P—F2A97.2 (9)
H7B—C7—H7C109.5F3A—P—F485.6 (8)
C9—C8—C4115.2 (4)F5—P—F489.1 (4)
C9—C8—C10111.2 (4)F3—P—F489.9 (3)
C4—C8—C10108.1 (3)F5A—P—F4102.0 (7)
C9—C8—H8107.3F1—P—F4177.6 (4)
C4—C8—H8107.3F2A—P—F484.1 (9)
C10—C8—H8107.3F3A—P—F262.3 (7)
C8—C9—H9A109.5F1A—P—F285.2 (10)
C8—C9—H9B109.5F5—P—F2174.0 (3)
H9A—C9—H9B109.5F3—P—F288.8 (3)
C8—C9—H9C109.5F1—P—F290.6 (4)
H9A—C9—H9C109.5F2A—P—F2153.0 (6)
H9B—C9—H9C109.5F4—P—F287.4 (4)
C8—C10—H10A109.5F1A—P—F6101.8 (8)
C8—C10—H10B109.5F5—P—F688.5 (3)
H10A—C10—H10B109.5F3—P—F6175.1 (3)
C8—C10—H10C109.5F5A—P—F6118.0 (7)
H10A—C10—H10C109.5F1—P—F690.1 (3)
H10B—C10—H10C109.5F2A—P—F667.7 (6)
N1—C11—C12123.6 (4)F4—P—F688.5 (3)
N1—C11—C20114.4 (3)F2—P—F686.5 (3)
C12—C11—C20121.9 (4)F3A—P—F4A87.9 (7)
C13—C12—C11119.3 (4)F1A—P—F4A175.5 (9)
C13—C12—H12120.4F5—P—F4A85.0 (9)
C11—C12—H12120.4F3—P—F4A100.1 (7)
C12—C13—C19119.4 (4)F5A—P—F4A87.5 (7)
C12—C13—H13120.3F2A—P—F4A87.1 (7)
C19—C13—H13120.3F4—P—F4A168.9 (8)
C15—C14—C19120.2 (4)F2—P—F4A97.6 (8)
C15—C14—H14119.9F6—P—F4A82.0 (8)
C19—C14—H14119.9F3A—P—F6A173.1 (7)
C14—C15—C16120.8 (4)F1A—P—F6A89.9 (7)
C14—C15—H15119.6F5—P—F6A64.7 (6)
C16—C15—H15119.6F3—P—F6A33.5 (5)
C17—C16—C15120.6 (5)F5A—P—F6A86.9 (6)
C17—C16—H16119.7F1—P—F6A81.7 (6)
C15—C16—H16119.7F2A—P—F6A86.1 (6)
C16—C17—C18120.3 (4)F4—P—F6A100.5 (6)
C16—C17—H17119.8F2—P—F6A120.7 (6)
C18—C17—H17119.8F6—P—F6A151.4 (6)
N1—C18—C17120.5 (3)F4A—P—F6A85.6 (7)
N1—C18—C19120.9 (4)
N2—Ru—N1—C117.3 (2)C2—Ru—C5—C665.4 (2)
C3—Ru—N1—C1172.9 (3)C4—Ru—C5—C6134.1 (4)
C5—Ru—N1—C11137.3 (3)C1—Ru—C5—C628.9 (2)
C2—Ru—N1—C1172.8 (6)Cl—Ru—C5—C640.0 (3)
C4—Ru—N1—C1199.8 (3)N2—Ru—C5—C422.2 (4)
C6—Ru—N1—C11168.7 (2)N1—Ru—C5—C497.2 (2)
C1—Ru—N1—C11174.4 (3)C3—Ru—C5—C430.8 (2)
Cl—Ru—N1—C1194.5 (2)C2—Ru—C5—C468.7 (2)
N2—Ru—N1—C18173.5 (3)C6—Ru—C5—C4134.1 (4)
C3—Ru—N1—C18106.3 (3)C1—Ru—C5—C4105.2 (3)
C5—Ru—N1—C1841.9 (3)Cl—Ru—C5—C4174.09 (18)
C2—Ru—N1—C18106.4 (5)C4—C5—C6—C10.7 (6)
C4—Ru—N1—C1879.5 (3)Ru—C5—C6—C154.5 (3)
C6—Ru—N1—C1810.6 (3)C4—C5—C6—Ru53.8 (3)
C1—Ru—N1—C186.4 (5)C2—C1—C6—C50.0 (5)
Cl—Ru—N1—C1886.3 (3)C7—C1—C6—C5178.3 (4)
N2—Ru—C1—C240.7 (3)Ru—C1—C6—C553.9 (3)
N1—Ru—C1—C2155.8 (3)C2—C1—C6—Ru53.9 (3)
C3—Ru—C1—C228.9 (2)C7—C1—C6—Ru124.4 (4)
C5—Ru—C1—C2101.9 (3)N2—Ru—C6—C5103.2 (5)
C4—Ru—C1—C265.4 (2)N1—Ru—C6—C560.2 (3)
C6—Ru—C1—C2130.3 (3)C3—Ru—C6—C565.5 (2)
Cl—Ru—C1—C2125.1 (2)C2—Ru—C6—C5103.0 (3)
N2—Ru—C1—C6171.0 (2)C4—Ru—C6—C528.2 (2)
N1—Ru—C1—C625.4 (4)C1—Ru—C6—C5132.8 (4)
C3—Ru—C1—C6101.4 (3)Cl—Ru—C6—C5149.4 (2)
C5—Ru—C1—C628.4 (2)N2—Ru—C6—C129.7 (6)
C2—Ru—C1—C6130.3 (3)N1—Ru—C6—C1167.0 (2)
C4—Ru—C1—C664.9 (2)C3—Ru—C6—C167.3 (2)
Cl—Ru—C1—C6104.6 (2)C5—Ru—C6—C1132.8 (4)
N2—Ru—C1—C774.1 (4)C2—Ru—C6—C129.8 (2)
N1—Ru—C1—C789.5 (5)C4—Ru—C6—C1104.6 (3)
C3—Ru—C1—C7143.7 (4)Cl—Ru—C6—C177.8 (2)
C5—Ru—C1—C7143.4 (4)C3—C4—C8—C934.9 (6)
C2—Ru—C1—C7114.8 (5)C5—C4—C8—C9145.4 (4)
C4—Ru—C1—C7179.8 (4)Ru—C4—C8—C956.7 (6)
C6—Ru—C1—C7114.9 (5)C3—C4—C8—C1090.2 (5)
Cl—Ru—C1—C710.4 (4)C5—C4—C8—C1089.5 (5)
C6—C1—C2—C30.9 (5)Ru—C4—C8—C10178.2 (3)
C7—C1—C2—C3177.4 (4)C18—N1—C11—C124.6 (5)
Ru—C1—C2—C353.1 (3)Ru—N1—C11—C12174.7 (3)
C6—C1—C2—Ru54.0 (3)C18—N1—C11—C20172.9 (3)
C7—C1—C2—Ru124.3 (4)Ru—N1—C11—C207.8 (4)
N2—Ru—C2—C1149.6 (2)N1—C11—C12—C130.7 (6)
N1—Ru—C2—C1133.4 (5)C20—C11—C12—C13176.6 (4)
C3—Ru—C2—C1133.2 (3)C11—C12—C13—C191.9 (6)
C5—Ru—C2—C166.8 (2)C19—C14—C15—C160.2 (7)
C4—Ru—C2—C1104.5 (3)C14—C15—C16—C171.5 (7)
C6—Ru—C2—C130.4 (2)C15—C16—C17—C180.6 (7)
Cl—Ru—C2—C160.0 (2)C11—N1—C18—C17171.8 (3)
N2—Ru—C2—C377.1 (2)Ru—N1—C18—C179.0 (5)
N1—Ru—C2—C30.2 (6)C11—N1—C18—C195.9 (5)
C5—Ru—C2—C366.5 (2)Ru—N1—C18—C19173.3 (2)
C4—Ru—C2—C328.8 (2)C16—C17—C18—N1179.3 (4)
C6—Ru—C2—C3102.9 (3)C16—C17—C18—C191.5 (6)
C1—Ru—C2—C3133.2 (3)C15—C14—C19—C13175.1 (4)
Cl—Ru—C2—C3166.7 (2)C15—C14—C19—C182.0 (6)
C1—C2—C3—C41.2 (6)C12—C13—C19—C14176.4 (4)
Ru—C2—C3—C455.8 (3)C12—C13—C19—C180.6 (6)
C1—C2—C3—Ru54.6 (3)N1—C18—C19—C14179.5 (3)
N2—Ru—C3—C4121.2 (2)C17—C18—C19—C142.8 (5)
N1—Ru—C3—C447.5 (3)N1—C18—C19—C133.4 (5)
C5—Ru—C3—C431.0 (2)C17—C18—C19—C13174.3 (4)
C2—Ru—C3—C4132.6 (3)N1—C11—C20—N23.2 (5)
C6—Ru—C3—C467.3 (2)C12—C11—C20—N2179.2 (4)
C1—Ru—C3—C4104.5 (3)C11—C20—N2—C22A171.5 (15)
Cl—Ru—C3—C4155.06 (19)C11—C20—N2—C22179.9 (12)
N2—Ru—C3—C2106.2 (2)C11—C20—N2—Ru3.4 (5)
N1—Ru—C3—C2179.9 (2)N1—Ru—N2—C205.7 (3)
C5—Ru—C3—C2101.6 (2)C3—Ru—N2—C20122.2 (3)
C4—Ru—C3—C2132.6 (3)C5—Ru—N2—C2075.1 (4)
C6—Ru—C3—C265.3 (2)C2—Ru—N2—C20158.9 (3)
C1—Ru—C3—C228.0 (2)C4—Ru—N2—C2089.1 (3)
Cl—Ru—C3—C222.5 (3)C6—Ru—N2—C20159.0 (5)
C2—C3—C4—C50.5 (5)C1—Ru—N2—C20177.9 (3)
Ru—C3—C4—C555.1 (3)Cl—Ru—N2—C2092.1 (3)
C2—C3—C4—C8179.3 (3)N1—Ru—N2—C22A169.1 (15)
Ru—C3—C4—C8125.2 (4)C3—Ru—N2—C22A63.0 (15)
C2—C3—C4—Ru55.6 (3)C5—Ru—N2—C22A110.1 (15)
N2—Ru—C4—C364.4 (2)C2—Ru—N2—C22A26.3 (15)
N1—Ru—C4—C3143.3 (2)C4—Ru—N2—C22A96.1 (15)
C5—Ru—C4—C3129.1 (3)C6—Ru—N2—C22A26.2 (16)
C2—Ru—C4—C329.2 (2)C1—Ru—N2—C22A3.1 (15)
C6—Ru—C4—C3101.4 (2)Cl—Ru—N2—C22A82.7 (15)
C1—Ru—C4—C365.0 (2)N1—Ru—N2—C22178.1 (13)
Cl—Ru—C4—C3110.7 (4)C3—Ru—N2—C2253.9 (13)
N2—Ru—C4—C5166.5 (2)C5—Ru—N2—C22101.0 (13)
N1—Ru—C4—C587.5 (2)C2—Ru—N2—C2217.2 (13)
C3—Ru—C4—C5129.1 (3)C4—Ru—N2—C2287.0 (13)
C2—Ru—C4—C599.9 (2)C6—Ru—N2—C2217.1 (14)
C6—Ru—C4—C527.7 (2)C1—Ru—N2—C226.0 (13)
C1—Ru—C4—C564.2 (2)Cl—Ru—N2—C2291.7 (13)
Cl—Ru—C4—C518.4 (6)C20—N2—C22—C2161.0 (15)
N2—Ru—C4—C854.0 (4)C22A—N2—C22—C2158 (11)
N1—Ru—C4—C824.9 (4)Ru—N2—C22—C21122.9 (8)
C3—Ru—C4—C8118.4 (5)C20—N2—C22—C2364.4 (15)
C5—Ru—C4—C8112.5 (5)C22A—N2—C22—C23176 (11)
C2—Ru—C4—C8147.6 (4)Ru—N2—C22—C23111.7 (9)
C6—Ru—C4—C8140.2 (4)N2—C22—C23—C24172.0 (12)
C1—Ru—C4—C8176.6 (4)C21—C22—C23—C2466.5 (13)
Cl—Ru—C4—C8130.9 (4)C20—N2—C22A—C23A65 (2)
C3—C4—C5—C60.4 (5)C22—N2—C22A—C23A130 (10)
C8—C4—C5—C6179.8 (3)Ru—N2—C22A—C23A109.6 (13)
Ru—C4—C5—C654.1 (3)C20—N2—C22A—C21A61 (2)
C3—C4—C5—Ru54.5 (3)C22—N2—C22A—C21A4 (9)
C8—C4—C5—Ru125.7 (3)Ru—N2—C22A—C21A124.4 (12)
N2—Ru—C5—C6156.3 (2)N2—C22A—C23A—C24A161.9 (17)
N1—Ru—C5—C6128.8 (2)C21A—C22A—C23A—C24A39.6 (19)
C3—Ru—C5—C6103.2 (3)

Experimental details

Crystal data
Chemical formula[RuCl(C10H14)(C14H16N2)]PF6
Mr627.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.4513 (6), 15.3595 (9), 16.578 (1)
β (°) 97.484 (1)
V3)2638.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.35 × 0.31 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.764, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
21833, 4822, 3985
Rint0.048
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.03
No. of reflections4822
No. of parameters405
No. of restraints498
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.40

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

SHO acknowledges J. Pérez-Flores and R. Patíño-Maya for technical assistance.

References

First citationBennet, M. A., Huang, T. N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74–78.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunner, H., Henning, F., Weber, M., Zabel, M., Carmona, D. & Lahoz, F. J. (2003). Synthesis, pp. 1091–1099.  CSD CrossRef Google Scholar
First citationDrozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V. & Verpoort, F. (2005). Coord. Chem. Rev. 249, 3055–3074.  Web of Science CrossRef CAS Google Scholar
First citationLalrempuia, R., Kollipara, M. R., Patrick, J. & Carroll, P. J. (2003). Polyhedron, 22, 605–609.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreno, A., Pregosin, P. S., Gabor Laurenczy, G. A., Phillips, A. D. & Dyson, P. J. (2009). Organometallics, 28, 6432–6441.  Web of Science CSD CrossRef CAS Google Scholar
First citationOpstal, T., Couchez, K. & Verpoort, F. (2003). Adv. Synth. Catal. 345, 393–401.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds