organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy­ethanaminium 2,4-di­nitro­phenolate hemihydrate

aSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: gfwref@sina.cn

(Received 2 August 2010; accepted 9 August 2010; online 18 August 2010)

In the title salt, C2H8NO+·C6H3N2O5·0.5H2O, the anions, cations and water mol­ecules are linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensionl network.

Related literature

For comparable structures, see: Goddard et al. (2002[Goddard, R., Herzog, H. M. & Reetz, M. T. (2002). Tetrahedron, 58, 7847-7853.]); Iwasaki & Kawano (1977[Iwasaki, F. & Kawano, Y. (1977). Acta Cryst. B33, 2455-2459.]); Kunnert et al. (1995[Kunnert, M., Zahn, G. & Sieler, J. (1995). Z. Anorg. Allg. Chem. 621, 1597-1582.]); Rais & Bergman (2004[Rais, D. & Bergman, R. G. (2004). Chem. Eur. J. 10, 3970-3974.]); Sieler et al. (1994[Sieler, J., Pink, M. & Zahn, G. (1994). Z. Anorg. Allg. Chem. 620, 743-746.]); Yuan et al. (2005[Yuan, J.-X., Shen, Z.-L., Li, L., Song, X.-Y. & Jin, Z.-M. (2005). Acta Cryst. E61, o3712-o3714.]).

[Scheme 1]

Experimental

Crystal data
  • C2H8NO+·C6H3N2O5·0.5H2O

  • Mr = 254.20

  • Orthorhombic, P c a 21

  • a = 24.5688 (4) Å

  • b = 10.5945 (2) Å

  • c = 8.4238 (2) Å

  • V = 2192.67 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 153 K

  • 0.56 × 0.45 × 0.33 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • 20722 measured reflections

  • 2686 independent reflections

  • 2646 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.066

  • S = 1.00

  • 2686 reflections

  • 357 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11O⋯O1 0.84 (3) 1.76 (3) 2.5914 (14) 168 (3)
O12—H12O⋯O6 0.77 (3) 1.94 (3) 2.6963 (16) 166 (3)
O13—H0A⋯O1 0.84 (2) 1.94 (2) 2.7315 (13) 156 (2)
O13—H0A⋯O5 0.84 (2) 2.31 (2) 2.8938 (15) 127 (2)
O13—H0B⋯O12i 0.85 (2) 1.97 (2) 2.8214 (15) 171 (2)
N5—H5B⋯O9ii 0.92 (2) 2.13 (2) 2.9620 (15) 150 (2)
N5—H5C⋯O11iii 0.92 (2) 1.85 (2) 2.7620 (16) 171 (2)
N5—H5A⋯O13 0.82 (2) 2.11 (2) 2.9038 (14) 161 (2)
N6—H6C⋯O5ii 0.91 (2) 2.07 (2) 2.9127 (16) 155 (2)
N6—H6B⋯O6ii 0.87 (3) 1.93 (3) 2.7453 (17) 155 (2)
N6—H6B⋯O10ii 0.87 (3) 2.34 (2) 2.9517 (16) 127 (2)
N6—H6A⋯O13 0.93 (2) 1.87 (2) 2.7937 (17) 175 (2)
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, -y, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As shown in Fig. 1, compound (I) consists of two crystallographically independent ionic O+—H···O- hydrogen bonding (Table 2) pairs of ethanolammonium DNPL (A and B for containing O1 and O6, respectively), and one water molecule. The ion pairs of A and B are asociated via the water molecule by a N—H···O hydrogen bonds (Table 2).

Following analysis shows the the feature of quinoic-phenolic resonance of DNPL in ionic pairs A. The C1—C6 and C1—C2 bond lengths are extremely longer than the normal length (1.38 Å), and the C3—C4 bond length is abviously longer than the normal length. The C2—C3 bond length is the shortest one in DNPL, and is slightly shorter than the normal one (Table 1). The N1—C6 [1.4416 (16) Å] and N2—C4 [1.4478 (17) Å] bond lengths are obviously shorter than that observed in 2,4-dinitrophenol [1.484 (5) Å, Iwasaki & Kawano, 1977]. The C1—O1 bond length [1.2671 (16) Å] is shorter than that of phenolates, 1.317 (4)Å for a naphtholate (Yuan et al., 2005), 1.283 (2)–1.331 (6)Å for phenolates in different compounds (Sieler et al., 1994; Kunnert et al., 1995; Goddard et al., 2002; Rais et al., 2004).

The nitro groups of the DNPL at C2 and C4 are twisted relatively to the aromatic ring with dihedral angles lesser than about 4°, which are indicated by torsion angles in Table 2. This twist of the nitro group relative to the benzene ring is a result of the participation of nitro O atoms in O—H···O hydrogen bonds (Table 2).

The N—H···O and O—H···O hydrogen bonding in the structure leads to a three-dimensional hydrogen-bonded netwerk (Table 2). As shown in Fig. 2, the water molecule acts as well a hydrogen-bond donor for DNPL anion and ethanolammonium cation. Furthermore, the DNPL anions are linked to ethanolammonium cations via various hydrogen bonds of N—H···O (Table 2 & Fig. 2).

Related literature top

For comparable structures, see: Goddard et al. (2002); Iwasaki & Kawano (1977); Kunnert et al. (1995); Rais & Bergman (2004); Sieler et al. (1994); Yuan et al. (2005).

Experimental top

Admixture of ethanolamine, DNP and water in the molar ratio of 2:1:1 were heated to a temperature where clear solutions resulted. The cystals of (I) were formed by making the resulting solutions standing overnight at 293k.

Refinement top

The H atoms bonded to N and O were taken from a difference fourier map, and were refined. Others were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.95 (phenyl), 0.99 (methylene), with Uiso(H) values 1.2 times Ueq of the parent atoms.

Structure description top

As shown in Fig. 1, compound (I) consists of two crystallographically independent ionic O+—H···O- hydrogen bonding (Table 2) pairs of ethanolammonium DNPL (A and B for containing O1 and O6, respectively), and one water molecule. The ion pairs of A and B are asociated via the water molecule by a N—H···O hydrogen bonds (Table 2).

Following analysis shows the the feature of quinoic-phenolic resonance of DNPL in ionic pairs A. The C1—C6 and C1—C2 bond lengths are extremely longer than the normal length (1.38 Å), and the C3—C4 bond length is abviously longer than the normal length. The C2—C3 bond length is the shortest one in DNPL, and is slightly shorter than the normal one (Table 1). The N1—C6 [1.4416 (16) Å] and N2—C4 [1.4478 (17) Å] bond lengths are obviously shorter than that observed in 2,4-dinitrophenol [1.484 (5) Å, Iwasaki & Kawano, 1977]. The C1—O1 bond length [1.2671 (16) Å] is shorter than that of phenolates, 1.317 (4)Å for a naphtholate (Yuan et al., 2005), 1.283 (2)–1.331 (6)Å for phenolates in different compounds (Sieler et al., 1994; Kunnert et al., 1995; Goddard et al., 2002; Rais et al., 2004).

The nitro groups of the DNPL at C2 and C4 are twisted relatively to the aromatic ring with dihedral angles lesser than about 4°, which are indicated by torsion angles in Table 2. This twist of the nitro group relative to the benzene ring is a result of the participation of nitro O atoms in O—H···O hydrogen bonds (Table 2).

The N—H···O and O—H···O hydrogen bonding in the structure leads to a three-dimensional hydrogen-bonded netwerk (Table 2). As shown in Fig. 2, the water molecule acts as well a hydrogen-bond donor for DNPL anion and ethanolammonium cation. Furthermore, the DNPL anions are linked to ethanolammonium cations via various hydrogen bonds of N—H···O (Table 2 & Fig. 2).

For comparable structures, see: Goddard et al. (2002); Iwasaki & Kawano (1977); Kunnert et al. (1995); Rais & Bergman (2004); Sieler et al. (1994); Yuan et al. (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO (Rigaku/MSC, 2004); data reduction: RAPID-AUTO (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cell unit of (I) with atom labels, showing 40% probability displacement ellipsoids. Hydrogen bonds are illustrated as thin lines.
[Figure 2] Fig. 2. A diagram of crystal packing viewed down along the b axis. Hydrogen bonds are drawn as dashed lines.
2-Hydroxyethanaminium 2,4-dinitrophenolate hemihydrate top
Crystal data top
C2H8NO+·C6H3N2O5·0.5H2OF(000) = 1064
Mr = 254.20Dx = 1.540 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 20146 reflections
a = 24.5688 (4) Åθ = 3.1–27.5°
b = 10.5945 (2) ŵ = 0.14 mm1
c = 8.4238 (2) ÅT = 153 K
V = 2192.67 (8) Å3Prism, yellow
Z = 80.56 × 0.45 × 0.33 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2646 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.018
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 3131
20722 measured reflectionsk = 1313
2686 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.256P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2686 reflectionsΔρmax = 0.25 e Å3
357 parametersΔρmin = 0.17 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0213 (13)
Crystal data top
C2H8NO+·C6H3N2O5·0.5H2OV = 2192.67 (8) Å3
Mr = 254.20Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 24.5688 (4) ŵ = 0.14 mm1
b = 10.5945 (2) ÅT = 153 K
c = 8.4238 (2) Å0.56 × 0.45 × 0.33 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2646 reflections with I > 2σ(I)
20722 measured reflectionsRint = 0.018
2686 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0241 restraint
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.25 e Å3
2686 reflectionsΔρmin = 0.17 e Å3
357 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40970 (4)0.16257 (9)0.70708 (14)0.0246 (2)
O20.15648 (4)0.16118 (13)0.7433 (2)0.0436 (4)
O30.17398 (5)0.31833 (12)0.89817 (19)0.0390 (3)
O40.35318 (5)0.43069 (14)1.0234 (2)0.0489 (4)
O50.42268 (4)0.35022 (10)0.91162 (16)0.0300 (3)
O60.38672 (4)0.63686 (10)0.71654 (14)0.0262 (2)
O70.13452 (4)0.69048 (12)0.70476 (19)0.0384 (3)
O80.15347 (5)0.83799 (13)0.87468 (18)0.0407 (3)
O90.33436 (4)0.93189 (10)1.00421 (14)0.0292 (2)
O100.40336 (4)0.83871 (10)0.89816 (14)0.0265 (2)
O110.46306 (4)0.03331 (10)0.49735 (13)0.0236 (2)
O120.45349 (4)0.58299 (10)0.47171 (13)0.0220 (2)
N10.37306 (4)0.35618 (10)0.92905 (16)0.0211 (2)
N20.18870 (5)0.23265 (12)0.81025 (19)0.0276 (3)
N30.35365 (5)0.85094 (10)0.91370 (14)0.0194 (2)
N40.16743 (5)0.75211 (13)0.78413 (18)0.0270 (3)
N50.56485 (5)0.01705 (10)0.68611 (15)0.0185 (2)
N60.53325 (5)0.39558 (11)0.44028 (16)0.0218 (2)
C10.35954 (5)0.17880 (12)0.73496 (16)0.0175 (2)
C20.31902 (6)0.09935 (12)0.66134 (18)0.0224 (3)
H20.33080.03300.59380.027*
C30.26441 (6)0.11540 (13)0.68459 (19)0.0236 (3)
H30.23900.06150.63350.028*
C40.24637 (6)0.21292 (11)0.78519 (17)0.0210 (3)
C50.28234 (5)0.29052 (12)0.86297 (18)0.0202 (3)
H50.26940.35520.93140.024*
C60.33790 (5)0.27319 (12)0.84031 (16)0.0176 (3)
C70.33707 (5)0.66684 (12)0.73307 (15)0.0186 (3)
C80.29498 (6)0.59359 (13)0.65700 (19)0.0243 (3)
H80.30540.52410.59260.029*
C90.24074 (6)0.61971 (12)0.67346 (19)0.0249 (3)
H90.21430.56870.62200.030*
C100.22461 (5)0.72307 (13)0.76756 (18)0.0217 (3)
C110.26181 (5)0.79730 (12)0.84427 (16)0.0194 (3)
H110.25020.86630.90780.023*
C120.31712 (5)0.77025 (12)0.82799 (16)0.0180 (3)
C130.54204 (6)0.08272 (12)0.58103 (18)0.0209 (3)
H13A0.55400.16660.61910.025*
H13B0.55610.07110.47180.025*
C140.48060 (6)0.07767 (13)0.57902 (19)0.0233 (3)
H14A0.46600.15350.52510.028*
H14B0.46660.07670.68920.028*
C150.48229 (6)0.39280 (14)0.34614 (19)0.0273 (3)
H15A0.47200.30400.32510.033*
H15B0.48860.43460.24270.033*
C160.43622 (5)0.45829 (13)0.4314 (2)0.0246 (3)
H16A0.40370.46210.36210.029*
H16B0.42650.41100.52880.029*
O130.51234 (4)0.26120 (9)0.71903 (13)0.0197 (2)
H0A0.4788 (9)0.249 (2)0.732 (3)0.036 (5)*
H0B0.5255 (8)0.3027 (19)0.797 (3)0.029 (5)*
H5A0.5523 (9)0.088 (2)0.673 (3)0.037 (6)*
H5B0.6013 (9)0.0271 (17)0.667 (3)0.031 (5)*
H5C0.5571 (8)0.0081 (19)0.788 (3)0.028 (5)*
H6A0.5286 (8)0.3495 (18)0.533 (3)0.024 (4)*
H6B0.5606 (10)0.366 (2)0.386 (3)0.041 (6)*
H6C0.5420 (8)0.4771 (19)0.461 (3)0.028 (5)*
H11O0.4426 (10)0.078 (2)0.555 (4)0.042 (6)*
H12O0.4350 (10)0.610 (2)0.537 (4)0.044 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0164 (4)0.0285 (5)0.0289 (5)0.0015 (3)0.0016 (4)0.0118 (4)
O20.0166 (5)0.0491 (7)0.0652 (10)0.0100 (5)0.0046 (6)0.0124 (7)
O30.0200 (5)0.0422 (6)0.0548 (8)0.0079 (4)0.0030 (5)0.0084 (6)
O40.0238 (5)0.0577 (8)0.0653 (9)0.0005 (5)0.0029 (6)0.0452 (8)
O50.0154 (4)0.0274 (5)0.0472 (7)0.0029 (4)0.0007 (5)0.0153 (5)
O60.0180 (4)0.0364 (5)0.0242 (5)0.0073 (4)0.0034 (4)0.0102 (5)
O70.0173 (5)0.0440 (6)0.0539 (8)0.0048 (4)0.0075 (5)0.0008 (7)
O80.0223 (5)0.0569 (7)0.0429 (7)0.0128 (5)0.0000 (5)0.0094 (7)
O90.0240 (5)0.0303 (5)0.0333 (6)0.0067 (4)0.0053 (5)0.0156 (5)
O100.0158 (4)0.0313 (5)0.0326 (6)0.0033 (4)0.0014 (4)0.0080 (5)
O110.0221 (4)0.0288 (5)0.0199 (5)0.0050 (4)0.0004 (4)0.0066 (4)
O120.0188 (4)0.0221 (5)0.0250 (5)0.0002 (4)0.0048 (4)0.0013 (4)
N10.0164 (5)0.0197 (5)0.0274 (6)0.0004 (4)0.0000 (5)0.0073 (5)
N20.0151 (5)0.0309 (6)0.0368 (7)0.0006 (4)0.0012 (5)0.0004 (6)
N30.0184 (5)0.0197 (5)0.0199 (6)0.0016 (4)0.0014 (5)0.0019 (4)
N40.0160 (5)0.0330 (6)0.0319 (7)0.0020 (5)0.0023 (5)0.0046 (5)
N50.0168 (5)0.0181 (5)0.0206 (6)0.0016 (4)0.0013 (4)0.0027 (4)
N60.0210 (5)0.0191 (5)0.0253 (6)0.0023 (4)0.0065 (5)0.0015 (5)
C10.0167 (5)0.0178 (5)0.0178 (6)0.0003 (4)0.0000 (5)0.0013 (5)
C20.0221 (6)0.0198 (6)0.0253 (7)0.0014 (5)0.0010 (5)0.0060 (5)
C30.0206 (6)0.0226 (6)0.0275 (7)0.0052 (5)0.0036 (6)0.0027 (6)
C40.0129 (5)0.0231 (5)0.0269 (7)0.0009 (5)0.0001 (5)0.0014 (5)
C50.0159 (6)0.0204 (5)0.0242 (7)0.0016 (4)0.0007 (5)0.0024 (5)
C60.0155 (5)0.0173 (5)0.0201 (6)0.0015 (4)0.0000 (5)0.0028 (5)
C70.0182 (6)0.0218 (6)0.0160 (6)0.0028 (5)0.0025 (5)0.0009 (5)
C80.0242 (7)0.0217 (6)0.0269 (7)0.0024 (5)0.0064 (6)0.0065 (5)
C90.0223 (7)0.0219 (5)0.0304 (8)0.0016 (5)0.0080 (6)0.0019 (6)
C100.0155 (6)0.0250 (6)0.0245 (7)0.0014 (5)0.0021 (5)0.0032 (5)
C110.0167 (6)0.0221 (5)0.0195 (6)0.0037 (4)0.0009 (5)0.0001 (5)
C120.0162 (6)0.0197 (5)0.0179 (6)0.0008 (4)0.0018 (5)0.0012 (5)
C130.0242 (6)0.0182 (5)0.0203 (6)0.0026 (5)0.0045 (5)0.0009 (5)
C140.0230 (6)0.0238 (6)0.0231 (7)0.0047 (5)0.0040 (5)0.0030 (6)
C150.0287 (7)0.0279 (6)0.0253 (7)0.0012 (5)0.0016 (6)0.0055 (6)
C160.0187 (6)0.0240 (6)0.0310 (8)0.0036 (5)0.0015 (5)0.0012 (6)
O130.0156 (4)0.0214 (4)0.0220 (5)0.0015 (3)0.0009 (4)0.0011 (4)
Geometric parameters (Å, º) top
O1—C11.2661 (16)C2—C31.3665 (19)
O2—N21.2322 (18)C2—H20.9500
O3—N21.2261 (19)C3—C41.408 (2)
O4—N11.2223 (17)C3—H30.9500
O5—N11.2293 (15)C4—C51.3734 (19)
O6—C71.2683 (16)C5—C61.3905 (17)
O7—N41.2357 (19)C5—H50.9500
O8—N41.236 (2)C7—C121.4421 (18)
O9—N31.2417 (15)C7—C81.4429 (18)
O10—N31.2351 (15)C8—C91.3680 (19)
O11—C141.4288 (17)C8—H80.9500
O11—H11O0.84 (3)C9—C101.409 (2)
O12—C161.4285 (17)C9—H90.9500
O12—H12O0.77 (3)C10—C111.3681 (18)
N1—C61.4416 (16)C11—C121.3955 (17)
N2—C41.4478 (17)C11—H110.9500
N3—C121.4345 (17)C13—C141.5105 (19)
N4—C101.4449 (16)C13—H13A0.9900
N5—C131.4882 (18)C13—H13B0.9900
N5—H5A0.82 (2)C14—H14A0.9900
N5—H5B0.92 (2)C14—H14B0.9900
N5—H5C0.92 (2)C15—C161.510 (2)
N6—C151.4824 (19)C15—H15A0.9900
N6—H6A0.93 (2)C15—H15B0.9900
N6—H6B0.87 (3)C16—H16A0.9900
N6—H6C0.91 (2)C16—H16B0.9900
C1—C61.4388 (18)O13—H0A0.84 (2)
C1—C21.4438 (18)O13—H0B0.85 (2)
C14—O11—H11O111.2 (18)O6—C7—C12125.31 (12)
C16—O12—H12O109.9 (18)O6—C7—C8120.39 (12)
O4—N1—O5120.48 (12)C12—C7—C8114.28 (11)
O4—N1—C6119.45 (11)C9—C8—C7122.97 (13)
O5—N1—C6120.06 (11)C9—C8—H8118.5
O3—N2—O2122.82 (13)C7—C8—H8118.5
O3—N2—C4118.92 (12)C8—C9—C10119.23 (12)
O2—N2—C4118.25 (13)C8—C9—H9120.4
O10—N3—O9121.00 (11)C10—C9—H9120.4
O10—N3—C12120.19 (11)C11—C10—C9121.64 (12)
O9—N3—C12118.81 (11)C11—C10—N4118.79 (12)
O7—N4—O8122.78 (13)C9—C10—N4119.57 (13)
O7—N4—C10118.13 (13)C10—C11—C12119.09 (12)
O8—N4—C10119.08 (13)C10—C11—H11120.5
C13—N5—H5A115.5 (17)C12—C11—H11120.5
C13—N5—H5B110.1 (13)C11—C12—N3115.94 (12)
H5A—N5—H5B103.6 (19)C11—C12—C7122.78 (12)
C13—N5—H5C105.7 (13)N3—C12—C7121.28 (11)
H5A—N5—H5C108 (2)N5—C13—C14110.97 (11)
H5B—N5—H5C113.8 (18)N5—C13—H13A109.4
C15—N6—H6A109.6 (12)C14—C13—H13A109.4
C15—N6—H6B111.3 (16)N5—C13—H13B109.4
H6A—N6—H6B110 (2)C14—C13—H13B109.4
C15—N6—H6C108.8 (13)H13A—C13—H13B108.0
H6A—N6—H6C111.6 (19)O11—C14—C13109.63 (11)
H6B—N6—H6C105 (2)O11—C14—H14A109.7
O1—C1—C6124.65 (12)C13—C14—H14A109.7
O1—C1—C2120.82 (12)O11—C14—H14B109.7
C6—C1—C2114.53 (11)C13—C14—H14B109.7
C3—C2—C1122.89 (12)H14A—C14—H14B108.2
C3—C2—H2118.6N6—C15—C16111.68 (13)
C1—C2—H2118.6N6—C15—H15A109.3
C2—C3—C4119.12 (12)C16—C15—H15A109.3
C2—C3—H3120.4N6—C15—H15B109.3
C4—C3—H3120.4C16—C15—H15B109.3
C5—C4—C3121.60 (12)H15A—C15—H15B107.9
C5—C4—N2118.28 (12)O12—C16—C15108.38 (11)
C3—C4—N2120.12 (12)O12—C16—H16A110.0
C4—C5—C6119.15 (12)C15—C16—H16A110.0
C4—C5—H5120.4O12—C16—H16B110.0
C6—C5—H5120.4C15—C16—H16B110.0
C5—C6—C1122.63 (12)H16A—C16—H16B108.4
C5—C6—N1115.89 (11)H0A—O13—H0B111 (2)
C1—C6—N1121.48 (11)
O1—C1—C2—C3178.24 (14)C12—C7—C8—C90.1 (2)
C6—C1—C2—C32.5 (2)C7—C8—C9—C100.5 (2)
C1—C2—C3—C40.4 (2)C8—C9—C10—C110.7 (2)
C2—C3—C4—C51.4 (2)C8—C9—C10—N4179.33 (14)
C2—C3—C4—N2179.31 (13)O7—N4—C10—C11174.57 (14)
O3—N2—C4—C50.8 (2)O8—N4—C10—C114.5 (2)
O2—N2—C4—C5178.37 (15)O7—N4—C10—C95.4 (2)
O3—N2—C4—C3179.87 (15)O8—N4—C10—C9175.54 (14)
O2—N2—C4—C31.0 (2)C9—C10—C11—C120.4 (2)
C3—C4—C5—C60.7 (2)N4—C10—C11—C12179.61 (12)
N2—C4—C5—C6179.92 (13)C10—C11—C12—N3179.11 (12)
C4—C5—C6—C11.6 (2)C10—C11—C12—C70.1 (2)
C4—C5—C6—N1178.49 (12)O10—N3—C12—C11175.46 (12)
O1—C1—C6—C5177.64 (13)O9—N3—C12—C115.19 (18)
C2—C1—C6—C53.1 (2)O10—N3—C12—C75.35 (19)
O1—C1—C6—N12.2 (2)O9—N3—C12—C7174.00 (13)
C2—C1—C6—N1177.00 (12)O6—C7—C12—C11178.70 (13)
O4—N1—C6—C53.9 (2)C8—C7—C12—C110.2 (2)
O5—N1—C6—C5177.39 (13)O6—C7—C12—N30.4 (2)
O4—N1—C6—C1176.23 (15)C8—C7—C12—N3178.91 (12)
O5—N1—C6—C12.5 (2)N5—C13—C14—O1169.73 (14)
O6—C7—C8—C9178.49 (14)N6—C15—C16—O1254.43 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···O10.84 (3)1.76 (3)2.5914 (14)168 (3)
O12—H12O···O60.77 (3)1.94 (3)2.6963 (16)166 (3)
O13—H0A···O10.84 (2)1.94 (2)2.7315 (13)156 (2)
O13—H0A···O50.84 (2)2.31 (2)2.8938 (15)127 (2)
O13—H0B···O12i0.85 (2)1.97 (2)2.8214 (15)171 (2)
N5—H5B···O9ii0.92 (2)2.13 (2)2.9620 (15)150 (2)
N5—H5C···O11iii0.92 (2)1.85 (2)2.7620 (16)171 (2)
N5—H5A···O130.82 (2)2.11 (2)2.9038 (14)161 (2)
N6—H6C···O5ii0.91 (2)2.07 (2)2.9127 (16)155 (2)
N6—H6B···O6ii0.87 (3)1.93 (3)2.7453 (17)155 (2)
N6—H6B···O10ii0.87 (3)2.34 (2)2.9517 (16)127 (2)
N6—H6A···O130.93 (2)1.87 (2)2.7937 (17)175 (2)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y+1, z1/2; (iii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC2H8NO+·C6H3N2O5·0.5H2O
Mr254.20
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)153
a, b, c (Å)24.5688 (4), 10.5945 (2), 8.4238 (2)
V3)2192.67 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.56 × 0.45 × 0.33
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20722, 2686, 2646
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.00
No. of reflections2686
No. of parameters357
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11O···O10.84 (3)1.76 (3)2.5914 (14)168 (3)
O12—H12O···O60.77 (3)1.94 (3)2.6963 (16)166 (3)
O13—H0A···O10.84 (2)1.94 (2)2.7315 (13)156 (2)
O13—H0A···O50.84 (2)2.31 (2)2.8938 (15)127 (2)
O13—H0B···O12i0.85 (2)1.97 (2)2.8214 (15)171 (2)
N5—H5B···O9ii0.92 (2)2.13 (2)2.9620 (15)150 (2)
N5—H5C···O11iii0.92 (2)1.85 (2)2.7620 (16)171 (2)
N5—H5A···O130.82 (2)2.11 (2)2.9038 (14)161 (2)
N6—H6C···O5ii0.91 (2)2.07 (2)2.9127 (16)155 (2)
N6—H6B···O6ii0.87 (3)1.93 (3)2.7453 (17)155 (2)
N6—H6B···O10ii0.87 (3)2.34 (2)2.9517 (16)127 (2)
N6—H6A···O130.93 (2)1.87 (2)2.7937 (17)175 (2)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y+1, z1/2; (iii) x+1, y, z+1/2.
 

References

First citationGoddard, R., Herzog, H. M. & Reetz, M. T. (2002). Tetrahedron, 58, 7847–7853.  Web of Science CSD CrossRef CAS Google Scholar
First citationIwasaki, F. & Kawano, Y. (1977). Acta Cryst. B33, 2455–2459.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKunnert, M., Zahn, G. & Sieler, J. (1995). Z. Anorg. Allg. Chem. 621, 1597–1582.  CSD CrossRef Web of Science Google Scholar
First citationRais, D. & Bergman, R. G. (2004). Chem. Eur. J. 10, 3970–3974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieler, J., Pink, M. & Zahn, G. (1994). Z. Anorg. Allg. Chem. 620, 743–746.  CSD CrossRef CAS Web of Science Google Scholar
First citationYuan, J.-X., Shen, Z.-L., Li, L., Song, X.-Y. & Jin, Z.-M. (2005). Acta Cryst. E61, o3712–o3714.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds