organic compounds
10-(2-Ethoxy-1,3-thiazol-5-yl)-10-hydroxyphenanthren-9(10H)-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my
In the title compound, C19H15NO3S, the dihydrophenanthrene unit is not planar, its central ring being distorted towards a sofa conformation. The essentially planar thiazole ring [maximum deviation = 0.005 (1) Å] is inclined at a dihedral angle of 85.29 (5)° with respect to the mean plane formed through the dihydrophenanthrene unit. In the pairs of intermolecular C—H⋯O hydrogen bonds link adjacent molecules into inversion dimers. Intermolecular O—H⋯N hydrogen bonds further interconnect these dimers into chains along the a axis. The is further stabilized by weak intermolecular C—H⋯π interactions involving the thiazole ring.
Related literature
For general background to and applications of phenanthrenone derivatives, see: Schuetzle (1983); Cho et al. (2004); Lim et al. (1998); Sanbongi et al. (2003); Shurygina et al. (2008); Zhang et al. (2004); Lichtenthaler et al. (2004); Cutignano et al. (2001); Williams et al. (2001); DeRoy & Charette (2003); Yoshimura et al. (1995); Tsuruni et al. (1995); Gao et al. (2010); Shi et al. (2010); Kaleta et al. (2006). For ring conformations, see: Cremer & Pople (1975). For a closely related phenanthrenone structure, see: Wang et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810031004/bt5320sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810031004/bt5320Isup2.hkl
The title compound was one of the products from the photoreaction between phenanthraquinone and 2-ethoxylthiazole. The compound was purified by flash
with ethyl acetate/petroleum ether (1:4) as eluents. X-ray quality single crystals of the title compound were obtained from slow evaporation of an acetone and petroleum ether (1:5) solution. M.p. 410–412 K.The H atom bonded to O was located from difference Fourier map and allowed to refine freely. The remaining hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was applied to the methyl group.
Phenanthraquinone and its derivatives have shown diverse applications and biological activities (Schuetzle, 1983; Cho et al., 2004; Lim et al., 1998; Sanbongi et al., 2003). 9,10-Phenanthraquinone has been used as o-quinone in photoreactions with various species (Shurygina et al., 2008; Zhang et al., 2004; Lichtenthaler et al., 2004). Thiazole-containing compounds, such as the mycothiazole (Cutignano et al.,2001), cystothiazole A (Williams et al.,2001; DeRoy & Charette,2003) and WS75624 B (Yoshimura et al.,1995; Tsuruni et al.,1995) have attracted considerable interest due to their potential application as bio-active species. Synthesis of organic molecules containing thiazole moieties therefore has been of current research interest (Gao et al.,2010; Shi et al.,2010; Kaleta et al.,2006). The title compound which contains phenanthraquinone and thiazole ring may has a potential use in biochemical and pharmaceutical fields. Due to the importance of the phenanthraquinone derivaties, we report in this paper the
of the title compound.In the title phenanthraquinone compound (Fig. 1), the 1,2-dihydrobenzene ring (C1/C2/C7/C8/C13/C14) of the 9,10-dihydrophenanthrene ring system (C1-C14) adopts a sofa conformation, with atoms C1 and C14 deviating from the mean plane through the remaning four atoms in opposite directions by 0.1244 (15) and -0.3597 (15) Å, respectively. The puckering parameters are Q = 0.3293 (16) Å, θ = 67.0 (3)° and φ = 317.5 (3)° (Cremer & Pople, 1975). The thiazole ring (C15/C16/N1/C17/S1) is essentially planar, with a maximum deviation of 0.005 (1) Å at atom C17. The mean plane formed through the 9,10-dihydrophenanthrene ring system is approximately perpendicular to the thiazole ring, as indicated by the dihedral angle formed between them being 85.29 (5)°. The geometric parameters are consistent with those observed in closely related 9,10-dihydrophenanthrenone structures (Wang et al., 2003).
In the
(Fig. 2), adjacent molecules are linked into dimers by pairs of intermolecular C12—H12A···O3 hydrogen bonds (Table 1). These dimers are interconnected by O2—H1O2···N1 hydrogen bonds (Table 1) into two-molecule-wide chains propagating along the a axis. Further stabilization of the is provided by weak intermolecular C4—H4A···Cg1 interactions (Table 1) involving the centroid of the thiazole ring.For general background to and applications of phenanthrenone derivatives, see: Schuetzle (1983); Cho et al. (2004); Lim et al. (1998); Sanbongi et al. (2003); Shurygina et al. (2008); Zhang et al. (2004); Lichtenthaler et al. (2004); Cutignano et al. (2001); Williams et al. (2001); DeRoy & Charette (2003); Yoshimura et al. (1995); Tsuruni et al. (1995); Gao et al. (2010); Shi et al. (2010); Kaleta et al. (2006). For ring conformations, see: Cremer & Pople (1975). For closely related phenanthrenone structures, see: Wang et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C19H15NO3S | Z = 2 |
Mr = 337.38 | F(000) = 352 |
Triclinic, P1 | Dx = 1.416 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1386 (4) Å | Cell parameters from 9610 reflections |
b = 9.6206 (6) Å | θ = 3.0–35.0° |
c = 12.7743 (8) Å | µ = 0.22 mm−1 |
α = 106.863 (2)° | T = 100 K |
β = 97.746 (2)° | Block, colourless |
γ = 104.667 (2)° | 0.40 × 0.31 × 0.20 mm |
V = 791.41 (8) Å3 |
Bruker APEXII DUO CCD area-detector diffractometer | 4157 independent reflections |
Radiation source: fine-focus sealed tube | 3811 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
φ and ω scans | θmax = 29.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −9→9 |
Tmin = 0.916, Tmax = 0.958 | k = −13→13 |
16288 measured reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.086P)2 + 0.3384P] where P = (Fo2 + 2Fc2)/3 |
4157 reflections | (Δ/σ)max < 0.001 |
222 parameters | Δρmax = 0.96 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
C19H15NO3S | γ = 104.667 (2)° |
Mr = 337.38 | V = 791.41 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1386 (4) Å | Mo Kα radiation |
b = 9.6206 (6) Å | µ = 0.22 mm−1 |
c = 12.7743 (8) Å | T = 100 K |
α = 106.863 (2)° | 0.40 × 0.31 × 0.20 mm |
β = 97.746 (2)° |
Bruker APEXII DUO CCD area-detector diffractometer | 4157 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3811 reflections with I > 2σ(I) |
Tmin = 0.916, Tmax = 0.958 | Rint = 0.023 |
16288 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.139 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.96 e Å−3 |
4157 reflections | Δρmin = −0.51 e Å−3 |
222 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.03580 (5) | −0.12894 (4) | 0.11117 (3) | 0.01623 (12) | |
O1 | 0.39811 (18) | −0.00646 (13) | 0.31190 (10) | 0.0235 (2) | |
O2 | 0.36598 (16) | 0.12494 (13) | 0.15415 (9) | 0.0185 (2) | |
O3 | −0.42108 (15) | −0.26001 (11) | 0.04040 (8) | 0.0161 (2) | |
N1 | −0.30774 (17) | 0.00285 (13) | 0.14259 (9) | 0.0143 (2) | |
C1 | 0.3195 (2) | 0.09376 (16) | 0.33170 (11) | 0.0154 (3) | |
C2 | 0.2699 (2) | 0.15724 (15) | 0.44016 (11) | 0.0145 (3) | |
C3 | 0.2670 (2) | 0.07575 (17) | 0.51513 (12) | 0.0181 (3) | |
H3A | 0.2985 | −0.0151 | 0.4963 | 0.022* | |
C4 | 0.2174 (2) | 0.12966 (18) | 0.61688 (12) | 0.0213 (3) | |
H4A | 0.2149 | 0.0754 | 0.6665 | 0.026* | |
C5 | 0.1715 (2) | 0.26594 (19) | 0.64427 (12) | 0.0234 (3) | |
H5A | 0.1340 | 0.3011 | 0.7116 | 0.028* | |
C6 | 0.1809 (2) | 0.35008 (17) | 0.57240 (12) | 0.0204 (3) | |
H6A | 0.1531 | 0.4424 | 0.5932 | 0.024* | |
C7 | 0.23147 (19) | 0.29845 (15) | 0.46916 (11) | 0.0143 (3) | |
C8 | 0.2552 (2) | 0.38983 (16) | 0.39351 (11) | 0.0153 (3) | |
C9 | 0.2628 (2) | 0.54351 (17) | 0.42843 (13) | 0.0202 (3) | |
H9A | 0.2493 | 0.5897 | 0.5006 | 0.024* | |
C10 | 0.2901 (2) | 0.62833 (17) | 0.35718 (14) | 0.0228 (3) | |
H10A | 0.2936 | 0.7301 | 0.3816 | 0.027* | |
C11 | 0.3123 (2) | 0.56129 (18) | 0.24976 (14) | 0.0230 (3) | |
H11A | 0.3321 | 0.6184 | 0.2024 | 0.028* | |
C12 | 0.3050 (2) | 0.40867 (17) | 0.21277 (13) | 0.0191 (3) | |
H12A | 0.3189 | 0.3637 | 0.1405 | 0.023* | |
C13 | 0.2769 (2) | 0.32302 (16) | 0.28379 (12) | 0.0151 (3) | |
C14 | 0.2567 (2) | 0.15402 (15) | 0.23775 (11) | 0.0140 (3) | |
C15 | 0.0382 (2) | 0.06559 (15) | 0.18794 (11) | 0.0139 (3) | |
C16 | −0.1246 (2) | 0.11260 (15) | 0.19485 (11) | 0.0151 (3) | |
H16A | −0.1142 | 0.2136 | 0.2328 | 0.018* | |
C17 | −0.2804 (2) | −0.12792 (15) | 0.09691 (11) | 0.0134 (2) | |
C18 | −0.6223 (2) | −0.24987 (16) | 0.01743 (12) | 0.0168 (3) | |
H18A | −0.6257 | −0.1734 | −0.0177 | 0.020* | |
H18B | −0.6678 | −0.2221 | 0.0866 | 0.020* | |
C19 | −0.7522 (2) | −0.40515 (19) | −0.06037 (15) | 0.0277 (3) | |
H19A | −0.8874 | −0.4047 | −0.0758 | 0.042* | |
H19B | −0.7438 | −0.4801 | −0.0256 | 0.042* | |
H19C | −0.7082 | −0.4296 | −0.1293 | 0.042* | |
H1O2 | 0.446 (4) | 0.075 (3) | 0.170 (2) | 0.046 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01308 (18) | 0.01435 (18) | 0.02028 (19) | 0.00675 (13) | 0.00430 (13) | 0.00202 (13) |
O1 | 0.0287 (6) | 0.0282 (6) | 0.0238 (5) | 0.0196 (5) | 0.0105 (4) | 0.0121 (4) |
O2 | 0.0193 (5) | 0.0265 (5) | 0.0193 (5) | 0.0148 (4) | 0.0105 (4) | 0.0122 (4) |
O3 | 0.0133 (5) | 0.0149 (5) | 0.0187 (5) | 0.0051 (4) | 0.0016 (4) | 0.0042 (4) |
N1 | 0.0137 (5) | 0.0156 (5) | 0.0150 (5) | 0.0066 (4) | 0.0038 (4) | 0.0052 (4) |
C1 | 0.0134 (6) | 0.0174 (6) | 0.0160 (6) | 0.0051 (5) | 0.0032 (5) | 0.0060 (5) |
C2 | 0.0120 (6) | 0.0160 (6) | 0.0143 (6) | 0.0041 (5) | 0.0023 (4) | 0.0038 (5) |
C3 | 0.0163 (6) | 0.0181 (6) | 0.0192 (6) | 0.0046 (5) | 0.0019 (5) | 0.0070 (5) |
C4 | 0.0214 (7) | 0.0250 (7) | 0.0165 (6) | 0.0034 (6) | 0.0025 (5) | 0.0096 (5) |
C5 | 0.0257 (8) | 0.0275 (7) | 0.0146 (6) | 0.0056 (6) | 0.0068 (5) | 0.0050 (6) |
C6 | 0.0230 (7) | 0.0202 (6) | 0.0176 (6) | 0.0086 (5) | 0.0066 (5) | 0.0032 (5) |
C7 | 0.0118 (6) | 0.0164 (6) | 0.0139 (6) | 0.0046 (5) | 0.0019 (5) | 0.0041 (5) |
C8 | 0.0110 (6) | 0.0172 (6) | 0.0175 (6) | 0.0051 (5) | 0.0013 (5) | 0.0060 (5) |
C9 | 0.0191 (7) | 0.0174 (6) | 0.0216 (7) | 0.0065 (5) | 0.0010 (5) | 0.0037 (5) |
C10 | 0.0201 (7) | 0.0160 (6) | 0.0304 (8) | 0.0057 (5) | 0.0004 (6) | 0.0071 (6) |
C11 | 0.0221 (7) | 0.0211 (7) | 0.0272 (7) | 0.0053 (6) | 0.0028 (6) | 0.0127 (6) |
C12 | 0.0181 (6) | 0.0206 (7) | 0.0204 (6) | 0.0065 (5) | 0.0038 (5) | 0.0094 (5) |
C13 | 0.0116 (6) | 0.0170 (6) | 0.0181 (6) | 0.0059 (5) | 0.0031 (5) | 0.0072 (5) |
C14 | 0.0133 (6) | 0.0166 (6) | 0.0142 (6) | 0.0069 (5) | 0.0042 (5) | 0.0061 (5) |
C15 | 0.0142 (6) | 0.0137 (6) | 0.0141 (6) | 0.0053 (5) | 0.0042 (5) | 0.0038 (4) |
C16 | 0.0148 (6) | 0.0147 (6) | 0.0169 (6) | 0.0068 (5) | 0.0039 (5) | 0.0050 (5) |
C17 | 0.0132 (6) | 0.0162 (6) | 0.0126 (5) | 0.0062 (5) | 0.0034 (4) | 0.0056 (5) |
C18 | 0.0127 (6) | 0.0193 (6) | 0.0195 (6) | 0.0060 (5) | 0.0028 (5) | 0.0077 (5) |
C19 | 0.0177 (7) | 0.0236 (7) | 0.0327 (8) | 0.0031 (6) | −0.0008 (6) | 0.0020 (6) |
S1—C17 | 1.7335 (14) | C7—C8 | 1.4821 (19) |
S1—C15 | 1.7430 (14) | C8—C9 | 1.3994 (19) |
O1—C1 | 1.2161 (18) | C8—C13 | 1.4100 (19) |
O2—C14 | 1.4105 (16) | C9—C10 | 1.389 (2) |
O2—H1O2 | 0.87 (3) | C9—H9A | 0.9300 |
O3—C17 | 1.3308 (16) | C10—C11 | 1.386 (2) |
O3—C18 | 1.4606 (17) | C10—H10A | 0.9300 |
N1—C17 | 1.3003 (17) | C11—C12 | 1.391 (2) |
N1—C16 | 1.3880 (17) | C11—H11A | 0.9300 |
C1—C2 | 1.4728 (19) | C12—C13 | 1.3933 (19) |
C1—C14 | 1.5388 (19) | C12—H12A | 0.9300 |
C2—C3 | 1.4019 (19) | C13—C14 | 1.5211 (19) |
C2—C7 | 1.4079 (19) | C14—C15 | 1.5189 (19) |
C3—C4 | 1.382 (2) | C15—C16 | 1.3543 (19) |
C3—H3A | 0.9300 | C16—H16A | 0.9300 |
C4—C5 | 1.390 (2) | C18—C19 | 1.506 (2) |
C4—H4A | 0.9300 | C18—H18A | 0.9700 |
C5—C6 | 1.387 (2) | C18—H18B | 0.9700 |
C5—H5A | 0.9300 | C19—H19A | 0.9600 |
C6—C7 | 1.3984 (19) | C19—H19B | 0.9600 |
C6—H6A | 0.9300 | C19—H19C | 0.9600 |
C17—S1—C15 | 88.43 (6) | C10—C11—H11A | 120.0 |
C14—O2—H1O2 | 110.0 (18) | C12—C11—H11A | 120.0 |
C17—O3—C18 | 115.16 (11) | C11—C12—C13 | 120.15 (14) |
C17—N1—C16 | 109.10 (11) | C11—C12—H12A | 119.9 |
O1—C1—C2 | 123.78 (13) | C13—C12—H12A | 119.9 |
O1—C1—C14 | 119.33 (12) | C12—C13—C8 | 120.47 (13) |
C2—C1—C14 | 116.81 (12) | C12—C13—C14 | 118.51 (12) |
C3—C2—C7 | 120.73 (13) | C8—C13—C14 | 120.90 (12) |
C3—C2—C1 | 118.45 (13) | O2—C14—C15 | 109.48 (11) |
C7—C2—C1 | 120.80 (12) | O2—C14—C13 | 111.05 (11) |
C4—C3—C2 | 120.36 (14) | C15—C14—C13 | 108.38 (11) |
C4—C3—H3A | 119.8 | O2—C14—C1 | 110.69 (11) |
C2—C3—H3A | 119.8 | C15—C14—C1 | 105.45 (11) |
C3—C4—C5 | 119.26 (13) | C13—C14—C1 | 111.60 (11) |
C3—C4—H4A | 120.4 | C16—C15—C14 | 130.07 (12) |
C5—C4—H4A | 120.4 | C16—C15—S1 | 109.29 (10) |
C6—C5—C4 | 120.78 (14) | C14—C15—S1 | 120.62 (10) |
C6—C5—H5A | 119.6 | C15—C16—N1 | 116.81 (12) |
C4—C5—H5A | 119.6 | C15—C16—H16A | 121.6 |
C5—C6—C7 | 121.10 (14) | N1—C16—H16A | 121.6 |
C5—C6—H6A | 119.5 | N1—C17—O3 | 126.45 (12) |
C7—C6—H6A | 119.5 | N1—C17—S1 | 116.37 (10) |
C6—C7—C2 | 117.69 (13) | O3—C17—S1 | 117.18 (10) |
C6—C7—C8 | 122.51 (13) | O3—C18—C19 | 106.62 (12) |
C2—C7—C8 | 119.73 (12) | O3—C18—H18A | 110.4 |
C9—C8—C13 | 118.16 (13) | C19—C18—H18A | 110.4 |
C9—C8—C7 | 122.03 (13) | O3—C18—H18B | 110.4 |
C13—C8—C7 | 119.79 (12) | C19—C18—H18B | 110.4 |
C10—C9—C8 | 121.18 (14) | H18A—C18—H18B | 108.6 |
C10—C9—H9A | 119.4 | C18—C19—H19A | 109.5 |
C8—C9—H9A | 119.4 | C18—C19—H19B | 109.5 |
C11—C10—C9 | 120.00 (14) | H19A—C19—H19B | 109.5 |
C11—C10—H10A | 120.0 | C18—C19—H19C | 109.5 |
C9—C10—H10A | 120.0 | H19A—C19—H19C | 109.5 |
C10—C11—C12 | 120.05 (14) | H19B—C19—H19C | 109.5 |
O1—C1—C2—C3 | −16.1 (2) | C12—C13—C14—O2 | 30.47 (17) |
C14—C1—C2—C3 | 160.58 (12) | C8—C13—C14—O2 | −153.54 (12) |
O1—C1—C2—C7 | 162.22 (14) | C12—C13—C14—C15 | −89.82 (15) |
C14—C1—C2—C7 | −21.08 (18) | C8—C13—C14—C15 | 86.17 (15) |
C7—C2—C3—C4 | 2.9 (2) | C12—C13—C14—C1 | 154.49 (12) |
C1—C2—C3—C4 | −178.75 (13) | C8—C13—C14—C1 | −29.51 (17) |
C2—C3—C4—C5 | −0.3 (2) | O1—C1—C14—O2 | −22.47 (18) |
C3—C4—C5—C6 | −2.0 (2) | C2—C1—C14—O2 | 160.67 (11) |
C4—C5—C6—C7 | 1.8 (2) | O1—C1—C14—C15 | 95.84 (15) |
C5—C6—C7—C2 | 0.8 (2) | C2—C1—C14—C15 | −81.02 (14) |
C5—C6—C7—C8 | −176.09 (13) | O1—C1—C14—C13 | −146.70 (13) |
C3—C2—C7—C6 | −3.1 (2) | C2—C1—C14—C13 | 36.44 (16) |
C1—C2—C7—C6 | 178.58 (12) | O2—C14—C15—C16 | −131.81 (15) |
C3—C2—C7—C8 | 173.88 (12) | C13—C14—C15—C16 | −10.54 (19) |
C1—C2—C7—C8 | −4.43 (19) | C1—C14—C15—C16 | 109.08 (16) |
C6—C7—C8—C9 | 11.4 (2) | O2—C14—C15—S1 | 50.22 (14) |
C2—C7—C8—C9 | −165.45 (13) | C13—C14—C15—S1 | 171.49 (9) |
C6—C7—C8—C13 | −170.55 (13) | C1—C14—C15—S1 | −68.89 (13) |
C2—C7—C8—C13 | 12.60 (19) | C17—S1—C15—C16 | −0.46 (10) |
C13—C8—C9—C10 | 0.3 (2) | C17—S1—C15—C14 | 177.89 (11) |
C7—C8—C9—C10 | 178.36 (13) | C14—C15—C16—N1 | −178.05 (12) |
C8—C9—C10—C11 | −0.6 (2) | S1—C15—C16—N1 | 0.10 (15) |
C9—C10—C11—C12 | 0.7 (2) | C17—N1—C16—C15 | 0.48 (17) |
C10—C11—C12—C13 | −0.5 (2) | C16—N1—C17—O3 | 179.32 (12) |
C11—C12—C13—C8 | 0.2 (2) | C16—N1—C17—S1 | −0.87 (14) |
C11—C12—C13—C14 | 176.17 (13) | C18—O3—C17—N1 | 7.77 (19) |
C9—C8—C13—C12 | 0.0 (2) | C18—O3—C17—S1 | −172.05 (9) |
C7—C8—C13—C12 | −178.18 (12) | C15—S1—C17—N1 | 0.80 (11) |
C9—C8—C13—C14 | −175.96 (13) | C15—S1—C17—O3 | −179.37 (11) |
C7—C8—C13—C14 | 5.91 (19) | C17—O3—C18—C19 | 171.99 (12) |
Cg1 is the centroid of the thiazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···N1i | 0.87 (3) | 2.08 (3) | 2.8643 (18) | 149 (2) |
C12—H12A···O3ii | 0.93 | 2.52 | 3.4395 (18) | 170 |
C4—H4A···Cg1iii | 0.93 | 2.70 | 3.563 | 155 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y, −z; (iii) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C19H15NO3S |
Mr | 337.38 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.1386 (4), 9.6206 (6), 12.7743 (8) |
α, β, γ (°) | 106.863 (2), 97.746 (2), 104.667 (2) |
V (Å3) | 791.41 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.40 × 0.31 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.916, 0.958 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16288, 4157, 3811 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.682 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.139, 1.12 |
No. of reflections | 4157 |
No. of parameters | 222 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.96, −0.51 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 is the centroid of the thiazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···N1i | 0.87 (3) | 2.08 (3) | 2.8643 (18) | 149 (2) |
C12—H12A···O3ii | 0.9300 | 2.5200 | 3.4395 (18) | 170.00 |
C4—H4A···Cg1iii | 0.930 | 2.699 | 3.563 | 155 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y, −z; (iii) −x, −y, −z+1. |
Acknowledgements
HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cho, A. K., Di Stefano, E., Ying, Y., Rodriquez, C. E., Schmitz, D. A., Kumagai, Y., Miguel, A. H., Eiguren-Fernandez, A., Kobayashi, T., Avol, E. & Froines, J. R. (2004). Aerosol Sci. Technol. 38, 68–81. CrossRef CAS Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Cutignano, A., Bruno, I., Bifulco, G., Casapullo, A., Debitus, C., Gomez-Paloma, L. & Riccio, R. (2001). Eur. J. Org. Chem. pp. 775–778. CrossRef Google Scholar
DeRoy, P. L. & Charette, A. B. (2003). Org. Lett. 5, 4163–4165. Web of Science CrossRef PubMed CAS Google Scholar
Gao, X., Pan, Y.-M., Lin, M., Chen, L. & Zhan, Z.-P. (2010). Org. Biomol. Chem. 8, 3259–3266. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kaleta, Z., Makowshi, B. T., So'os, T. & Dembinski, R. (2006). Org. Lett. 8, 1625–1628. Web of Science CrossRef PubMed CAS Google Scholar
Lichtenthaler, F. W., Weimer, T. & Immel, S. (2004). Tetrahedron Asymmetry, 15, 2703–2709. Web of Science CSD CrossRef CAS Google Scholar
Lim, H. B., Ichinose, T., Miyabara, Y., Takano, H., Kumagai, Y., Shimojyo, N., Devalia, J. L. & Sagai, M. (1998). Free Radical Biol. Med. 25, 635–644. Web of Science CrossRef CAS Google Scholar
Sanbongi, C., Takano, H., Osakabe, N., Sasa, N., Natsume, M., Yanagisawa, R., Inoue, K., Kato, Y., Osawa, T. & Yoshikawa, T. (2003). Free Radical Biol. Med. 34, 1060–1069. Web of Science CrossRef CAS Google Scholar
Schuetzle, D. (1983). Environ. Health Perspect. 47, 65–80. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, B., Blake, A. J., Lewis, W., Campbell, I. B., Judkins, B. D. & Moody, C. J. (2010). J. Org. Chem. 75, 152–161. Web of Science CSD CrossRef PubMed CAS Google Scholar
Shurygina, M. P., Kurskii, Y. A., Chesnokov, S. A. & Abakumov, G. A. (2008). Tetrahedron, 64, 1459–1466. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsuruni, Y., Ueda, H., Hayashi, K., Takase, S., Nishikawa, M., Kiyoto, S. & Okuhara, M. (1995). J. Antibiot. 48, 1066–1072. PubMed Web of Science Google Scholar
Wang, L., Usman, A., Fun, H.-K., Zhang, Y. & Xu, J.-H. (2003). Acta Cryst. E59, o721–o722. Web of Science CSD CrossRef IUCr Journals Google Scholar
Williams, D. R., Patnaik, S. & Clark, M. P. (2001). J. Org. Chem. 66, 8463–8469. Web of Science CrossRef PubMed CAS Google Scholar
Yoshimura, S., Tsuruni, Y., Takase, S. & Okuhara, M. (1995). J. Antibiot. 48, 1073–1075. CrossRef CAS PubMed Web of Science Google Scholar
Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 6, 4893–4895. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phenanthraquinone and its derivatives have shown diverse applications and biological activities (Schuetzle, 1983; Cho et al., 2004; Lim et al., 1998; Sanbongi et al., 2003). 9,10-Phenanthraquinone has been used as o-quinone in photoreactions with various species (Shurygina et al., 2008; Zhang et al., 2004; Lichtenthaler et al., 2004). Thiazole-containing compounds, such as the mycothiazole (Cutignano et al.,2001), cystothiazole A (Williams et al.,2001; DeRoy & Charette,2003) and WS75624 B (Yoshimura et al.,1995; Tsuruni et al.,1995) have attracted considerable interest due to their potential application as bio-active species. Synthesis of organic molecules containing thiazole moieties therefore has been of current research interest (Gao et al.,2010; Shi et al.,2010; Kaleta et al.,2006). The title compound which contains phenanthraquinone and thiazole ring may has a potential use in biochemical and pharmaceutical fields. Due to the importance of the phenanthraquinone derivaties, we report in this paper the crystal structure of the title compound.
In the title phenanthraquinone compound (Fig. 1), the 1,2-dihydrobenzene ring (C1/C2/C7/C8/C13/C14) of the 9,10-dihydrophenanthrene ring system (C1-C14) adopts a sofa conformation, with atoms C1 and C14 deviating from the mean plane through the remaning four atoms in opposite directions by 0.1244 (15) and -0.3597 (15) Å, respectively. The puckering parameters are Q = 0.3293 (16) Å, θ = 67.0 (3)° and φ = 317.5 (3)° (Cremer & Pople, 1975). The thiazole ring (C15/C16/N1/C17/S1) is essentially planar, with a maximum deviation of 0.005 (1) Å at atom C17. The mean plane formed through the 9,10-dihydrophenanthrene ring system is approximately perpendicular to the thiazole ring, as indicated by the dihedral angle formed between them being 85.29 (5)°. The geometric parameters are consistent with those observed in closely related 9,10-dihydrophenanthrenone structures (Wang et al., 2003).
In the crystal structure (Fig. 2), adjacent molecules are linked into dimers by pairs of intermolecular C12—H12A···O3 hydrogen bonds (Table 1). These dimers are interconnected by O2—H1O2···N1 hydrogen bonds (Table 1) into two-molecule-wide chains propagating along the a axis. Further stabilization of the crystal structure is provided by weak intermolecular C4—H4A···Cg1 interactions (Table 1) involving the centroid of the thiazole ring.