metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

mer-Bis[2-(1,3-benzo­thiazol-2-yl)phenyl-κ2C1,N][3-phenyl-5-(2-pyridyl)-1,2,4-triazol-1-ido-κ2N1,N5]iridium(III) deutero­chloro­form 3.5-solvate

aInstitut für Anorganische und Analytische Chemie, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and bLabor für Elektrooptik am Institut für Hochfrequenztechnik, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

(Received 2 August 2010; accepted 6 August 2010; online 11 August 2010)

In the title compound, [Ir(C13H9N4)(C13H8NS)2]·3.5CDCl3, the coordination at iridium is octa­hedral, but with narrow ligand bite angles. The bond lengths at iridium show the expected trans influence, with the Ir—N bonds trans to C being appreciably longer than those trans to N. The chelate rings are mutually perpendicular, the inter­planar angles between them all lying within 6° of 90°. All ligands are approximately planar; the maximum inter­planar angles within ligands are ca 10°. The three ordered deuterochloro­form mol­ecules are all involved in C⋯D—A contacts that can be inter­preted as hydrogen bonds of various types. The fourth deuterochloroform is disordered over an inversion centre.

Related literature

For the preparation of iridium complexes, see: Lamansky et al. (2001[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704-1711.]); Tamayo et al. (2003[Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377-7387.]). For the photoluminescent properties and color tuning of cyclo­metalated iridium complexes, see: Grushin et al. (2001[Grushin, V. V., Herron, N., LeCloux, D. D., Marshall, W. J., Petrov, V. A. & Wang, Y. (2001). Chem. Commun. pp. 1494-1495.]); Kwon et al. (2005[Kwon, T.-H., Cho, H. S., Kim, M. K., Kim, J.-W., Kim, J.-J., Lee, K. H., Park, S. J., Shin, I.-S., Kim, H., Shin, D. M., Chung, Y. K. & Hong, J.-I. (2005). Organometallics, 24, 1578-1585.]); You & Park (2005[You, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438-12439.]). For general background to organic light-emitting diodes (OLEDs), see: Holder et al. (2005[Holder, E., Langeveld, B. M. W. & Schubert, U. S. (2005). Adv. Mater. 17, 1109-1121.]); Kappaun et al. (2008[Kappaun, S., Slugovc, C. & List, E. J. W. (2008). Int. J. Mol. Sci. 9, 1527-1547.]). For a related recent publication from our groups, see: Jones et al. (2010[Jones, P. G., Debeaux, M., Weinkauf, A., Hopf, H., Kowalsky, W. & Johannes, H.-H. (2010). Acta Cryst. E66, m66-m67.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C13H9N4)(C13H8NS)2]·3.5CDCl3

  • Mr = 1254.78

  • Triclinic, [P \overline 1]

  • a = 11.7521 (4) Å

  • b = 13.5592 (4) Å

  • c = 15.8373 (4) Å

  • α = 74.045 (3)°

  • β = 79.247 (3)°

  • γ = 76.002 (3)°

  • V = 2334.80 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.59 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Limited, Abingdon, England.]). Tmin = 0.902, Tmax = 1.000

  • 94997 measured reflections

  • 13407 independent reflections

  • 10433 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.047

  • S = 0.88

  • 13407 reflections

  • 572 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.88 e Å−3

  • Δρmin = −1.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C27–C32 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C99—D99⋯N19 1.00 2.18 3.180 (4) 175
C98—D98⋯S3′ 1.00 3.04 3.660 (3) 121
C97—D97⋯Cg 1.00 2.50 3.50 173

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Limited, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc. Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organometallic phosphorescent materials based on iridium(III) play an important role in the field of organic light-emitting diodes (OLEDs). They exhibit high quantum efficiencies, relatively short phosphorescent lifetimes, and facile colour tuning by modification of the ligand structures. Moreover, this class of materials can lead to OLEDs with 100% internal quantum efficiencies by harvesting both singlet and triplet excitons. In this contribution, we have synthesized and characterized a new iridium(III) complex with two 2-phenylbenzothiazoles as chromophoric ligands and 3-phenyl-5-(2-pyridine)-1,2,4-triazole as ancillary ligand, and report here the crystal structure of this compound.

The structure of the title complex is shown in Fig. 1. It crystallizes with four molecules of deuterochloroform, one of which is disordered cleanly over an inversion centre. The coordination at iridium is octahedral, with the major deviations in angles arising from the restricted bite of the chelating ligands: N1—Ir—C11 79.54 (9), N1'—Ir—C11' 79.98 (9), N16—Ir—N22 76.03 (8)°. The bond lengths at iridium show the expected trans influence, with Ir—N16 and Ir—N22, 2.126 (2) and 2.160 (2) Å respectively, trans to C being appreciably longer than the mutually trans Ir—N1 2.060 (2) and Ir—N1' 2.064 (2) Å. The interplanar angles between the chelate rings all lie within 6° of 90°. Within the ligands, the interplanar angles between phenyl and benzothiazole are 9.9 (1) and 10.8 (1)°, whereas in the triazole ligand the pyridyl and phenyl rings subtend angles of 0.4 (2) and 9.2 (2)° respectively to the triazole ring.

The three ordered deuterochloroform molecules are all involved in C···D—A contacts that can be interpreted as hydrogen bonds of various types (Table 1); D99···N19 2.18, D98···S3' 3.04 (but with a narrow angle of 121°), D97···Cg(C27–C32) 2.50 Å.

Related literature top

For the preparation of iridium complexes, see: Lamansky et al. (2001); Tamayo et al. (2003). For the photoluminescent properties and color tuning of cyclometalated iridium complexes, see: Grushin et al. (2001); Kwon et al. (2005); You & Park (2005). For general background to organic light-emitting diodes (OLEDs), see: Holder et al. (2005); Kappaun et al. (2008). For a related recent publication from our groups, see Jones et al. (2010).

Experimental top

A mixture of bis(2-phenylbenzo[d]thiazole)-iridium(III)-µ-chloro bridged dimer (300 mg, 231 µmol), 3-phenyl-5-(2-pyridyl)-1,2,4-triazole (129 mg, 579 µmol) and potassium tert-butoxide (65 mg, 579 µmol) in dry dichloromethane (10 ml) and dry ethanol (3 ml) was stirred overnight at room temperature under nitrogen atmosphere. The solvent was then removed under reduced pressure and the residue was purified via flash-chromatography on silica gel (eluent: dichloromethane/acetone = 10: 1, Rf = 0.57) to yield an orange solid (299 mg, 77%). m.p. 306 °C.

- 1H NMR (CDCl3, 600 MHz): δ = 8.22 (d, J = 7.9 Hz, 1H), 8.13–8.11 (m, 2H), 7.83 (ddd, J = 5.5, 1.5, 0.9 Hz, 1H), 7.80 (ddd, J = 7.8, 7.8, 1.6 Hz, 1H), 7.78–7.77 (m, 1H), 7.75–7.73 (m, 3H), 7.34–7.31 (m, 2H), 7.27–7.23 (m, 2H), 7.21 (ddd, J = 8.2, 7.3, 1.0 Hz, 1H), 7.13–7.10 (m, 2H), 7.02 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H), 6.99 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.93 (ddd, J = 8.5, 7.3, 1.2 Hz, 1H), 6.83 (ddd, J = 7.5, 7.5, 1.3 Hz, 1H), 6.80 (ddd, J = 7.5, 7.5, 1.4 Hz, 1H), 6.54 (d, J = 7.4 Hz, 1H), 6.48 (dd, J = 7.7, 0.4 Hz, 1H), 6.23 (d, J = 8.4 Hz, 1H) p.p.m..

- 13C NMR (CDCl3, 150 MHz): δ = 180.96, 180.35, 165.06, 163.63, 154.92, 152.95, 149.80, 149.75, 149.71, 149.60, 141.22, 140.77, 138.27, 134.18, 133.52, 132.93, 131.43, 131.37, 130.93, 130.83, 128.32, 128.21, 127.66, 127.02, 126.20, 126.04, 125.94, 125.46, 124.89, 123.84, 122.94, 122.15, 122.10, 121.73, 121.16, 120.36, 118.04 p.p.m..

- EI—MS: m/z (%) = 834 (100) [M+], 756 (9), 613 (35), 286 (12), 211 (41).

- IR: ν-tilde = 3055 (w), 1606 (w), 1581 (w), 1436 (m), 1408 (m), 1322 (w), 1297 (w), 1266 (m), 1157 (w), 1024 (m), 993 (m), 791 (w), 752 (s), 723 (versus), 696 (m), 582 (w) cm-1.

- UV/Vis (CH2Cl2): λ (ε [cm-1M-1]) = 228 (47000), 272 (45500), 310 (36600), 323 (35600), 350 (15400), 383 (9400), 454 (4200) nm.

- Elemental analysis: calculated for C39H25IrN6S2: C 56.16, H 3.02, N 10.08, S 7.69%; found: C 56.29, H 3.02, N 10.39 S 7.47%.

Single crystals were obtained by evaporation from CDCl3 in an NMR tube.

Refinement top

Hydrogen atoms were included at calculated positions using a riding model with aromatic C—H 0.95, sp3-C—H 1.00 Å. The U(H) values were fixed at 1.2 × Ueq(C) of the parent C atom.

The chloroform molecule C96–Cl12 is disordered over an inversion centre; the carbon was refined isotropically. Distance restraints were employed to improve refinement stability.

There are several peaks of 1.1–1.9 e Å-3 either ca 0.9 Å from the Ir atom, which may reasonably be attributed to residual absorption errors, or in the solvent region, corresponding to slight extra disorder or irregular displacement features.

Structure description top

Organometallic phosphorescent materials based on iridium(III) play an important role in the field of organic light-emitting diodes (OLEDs). They exhibit high quantum efficiencies, relatively short phosphorescent lifetimes, and facile colour tuning by modification of the ligand structures. Moreover, this class of materials can lead to OLEDs with 100% internal quantum efficiencies by harvesting both singlet and triplet excitons. In this contribution, we have synthesized and characterized a new iridium(III) complex with two 2-phenylbenzothiazoles as chromophoric ligands and 3-phenyl-5-(2-pyridine)-1,2,4-triazole as ancillary ligand, and report here the crystal structure of this compound.

The structure of the title complex is shown in Fig. 1. It crystallizes with four molecules of deuterochloroform, one of which is disordered cleanly over an inversion centre. The coordination at iridium is octahedral, with the major deviations in angles arising from the restricted bite of the chelating ligands: N1—Ir—C11 79.54 (9), N1'—Ir—C11' 79.98 (9), N16—Ir—N22 76.03 (8)°. The bond lengths at iridium show the expected trans influence, with Ir—N16 and Ir—N22, 2.126 (2) and 2.160 (2) Å respectively, trans to C being appreciably longer than the mutually trans Ir—N1 2.060 (2) and Ir—N1' 2.064 (2) Å. The interplanar angles between the chelate rings all lie within 6° of 90°. Within the ligands, the interplanar angles between phenyl and benzothiazole are 9.9 (1) and 10.8 (1)°, whereas in the triazole ligand the pyridyl and phenyl rings subtend angles of 0.4 (2) and 9.2 (2)° respectively to the triazole ring.

The three ordered deuterochloroform molecules are all involved in C···D—A contacts that can be interpreted as hydrogen bonds of various types (Table 1); D99···N19 2.18, D98···S3' 3.04 (but with a narrow angle of 121°), D97···Cg(C27–C32) 2.50 Å.

For the preparation of iridium complexes, see: Lamansky et al. (2001); Tamayo et al. (2003). For the photoluminescent properties and color tuning of cyclometalated iridium complexes, see: Grushin et al. (2001); Kwon et al. (2005); You & Park (2005). For general background to organic light-emitting diodes (OLEDs), see: Holder et al. (2005); Kappaun et al. (2008). For a related recent publication from our groups, see Jones et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound in the crystal. Ellipsoids represent 50% probability levels. Solvent molecules and hydrogen atoms are omitted for clarity.
mer-Bis[2-(1,3-benzothiazol-2-yl)phenyl-κ2C1,N]{3- phenyl-5-(2-pyridyl)-1,2,4-triazol-1-ido- κ2N1,N5}iridium(III) deuterochloroform 3.5-solvate top
Crystal data top
[Ir(C13H9N4)(C13H8NS)2]·3.5CDCl3Z = 2
Mr = 1254.78F(000) = 1226
Triclinic, P1Dx = 1.785 Mg m3
a = 11.7521 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.5592 (4) ÅCell parameters from 31145 reflections
c = 15.8373 (4) Åθ = 2.2–30.8°
α = 74.045 (3)°µ = 3.59 mm1
β = 79.247 (3)°T = 100 K
γ = 76.002 (3)°Prism, orange
V = 2334.80 (12) Å30.20 × 0.10 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
13407 independent reflections
Radiation source: fine-focus sealed tube10433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 16.1419 pixels mm-1θmax = 30.0°, θmin = 2.2°
ω–scanh = 1616
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction (2010).
k = 1918
Tmin = 0.902, Tmax = 1.000l = 2222
94997 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0175P)2]
where P = (Fo2 + 2Fc2)/3
13407 reflections(Δ/σ)max = 0.002
572 parametersΔρmax = 1.88 e Å3
6 restraintsΔρmin = 1.70 e Å3
Crystal data top
[Ir(C13H9N4)(C13H8NS)2]·3.5CDCl3γ = 76.002 (3)°
Mr = 1254.78V = 2334.80 (12) Å3
Triclinic, P1Z = 2
a = 11.7521 (4) ÅMo Kα radiation
b = 13.5592 (4) ŵ = 3.59 mm1
c = 15.8373 (4) ÅT = 100 K
α = 74.045 (3)°0.20 × 0.10 × 0.08 mm
β = 79.247 (3)°
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
13407 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction (2010).
10433 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 1.000Rint = 0.058
94997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0276 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 0.88Δρmax = 1.88 e Å3
13407 reflectionsΔρmin = 1.70 e Å3
572 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.9800 (0.0061) x - 1.7224 (0.0133) y + 10.9969 (0.0085) z = 7.6717 (0.0069)

* -0.0488 (0.0009) Ir * 0.0413 (0.0012) N1 * -0.0066 (0.0014) C2 * -0.0540 (0.0015) C10 * 0.0680 (0.0013) C11

Rms deviation of fitted atoms = 0.0483

8.3461 (0.0059) x + 9.9411 (0.0076) y - 1.7893 (0.0166) z = 2.3716 (0.0114)

Angle to previous plane (with approximate e.s.d.) = 87.72 (0.06)

* -0.0493 (0.0009) Ir * 0.0551 (0.0013) N1' * -0.0297 (0.0015) C2' * -0.0327 (0.0016) C10' * 0.0566 (0.0013) C11'

Rms deviation of fitted atoms = 0.0461

- 2.3439 (0.0116) x + 9.9572 (0.0069) y + 10.8389 (0.0095) z = 7.7705 (0.0077)

Angle to previous plane (with approximate e.s.d.) = 84.16 (0.06)

* -0.0054 (0.0009) Ir * 0.0091 (0.0014) N16 * -0.0083 (0.0016) C20 * 0.0006 (0.0016) C21 * 0.0041 (0.0013) N22

Rms deviation of fitted atoms = 0.0063

7.9800 (0.0061) x - 1.7224 (0.0133) y + 10.9969 (0.0085) z = 7.6717 (0.0069)

Angle to previous plane (with approximate e.s.d.) = 89.73 (0.07)

* -0.0488 (0.0009) Ir * 0.0413 (0.0012) N1 * -0.0066 (0.0014) C2 * -0.0540 (0.0015) C10 * 0.0680 (0.0013) C11

Rms deviation of fitted atoms = 0.0483

8.2788 (0.0045) x - 0.5241 (0.0062) y + 11.4855 (0.0070) z = 8.1544 (0.0022)

Angle to previous plane (with approximate e.s.d.) = 5.08 (0.10)

* 0.0042 (0.0016) N1 * 0.0078 (0.0016) C2 * -0.0070 (0.0011) S3 * -0.0048 (0.0020) C4 * -0.0050 (0.0020) C5 * -0.0049 (0.0018) C6 * 0.0005 (0.0018) C7 * 0.0043 (0.0018) C8 * 0.0049 (0.0017) C9

Rms deviation of fitted atoms = 0.0052

8.4858 (0.0077) x - 2.4161 (0.0127) y + 9.6572 (0.0118) z = 7.0197 (0.0090)

Angle to previous plane (with approximate e.s.d.) = 9.93 (0.11)

* 0.0136 (0.0016) C10 * -0.0217 (0.0016) C11 * 0.0118 (0.0016) C12 * 0.0070 (0.0017) C13 * -0.0158 (0.0017) C14 * 0.0052 (0.0017) C15

Rms deviation of fitted atoms = 0.0137

7.1925 (0.0056) x + 9.8261 (0.0068) y - 3.8421 (0.0083) z = 0.9988 (0.0081)

Angle to previous plane (with approximate e.s.d.) = 85.34 (0.06)

* -0.0364 (0.0018) N1' * 0.0610 (0.0017) C2' * 0.0364 (0.0013) S3' * -0.0552 (0.0023) C4' * -0.0535 (0.0022) C5' * 0.0058 (0.0021) C6' * 0.0512 (0.0022) C7' * 0.0250 (0.0022) C8' * -0.0342 (0.0021) C9'

Rms deviation of fitted atoms = 0.0431

8.1235 (0.0081) x + 10.5535 (0.0086) y - 0.9454 (0.0159) z = 2.9872 (0.0090)

Angle to previous plane (with approximate e.s.d.) = 10.83 (0.12)

* 0.0050 (0.0017) C10' * 0.0034 (0.0017) C11' * -0.0084 (0.0018) C12' * 0.0049 (0.0018) C13' * 0.0036 (0.0018) C14' * -0.0084 (0.0017) C15'

Rms deviation of fitted atoms = 0.0060

- 2.5414 (0.0127) x + 9.7359 (0.0101) y + 10.9194 (0.0127) z = 7.8052 (0.0089)

Angle to previous plane (with approximate e.s.d.) = 81.42 (0.07)

* 0.0037 (0.0018) C21 * -0.0086 (0.0016) N22 * 0.0048 (0.0018) C23 * 0.0039 (0.0020) C24 * -0.0087 (0.0020) C25 * 0.0048 (0.0019) C26

Rms deviation of fitted atoms = 0.0061

- 2.5107 (0.0151) x + 9.8045 (0.0109) y + 10.8623 (0.0148) z = 7.7407 (0.0143)

Angle to previous plane (with approximate e.s.d.) = 0.43 (0.17)

* -0.0022 (0.0014) N16 * 0.0011 (0.0014) N17 * 0.0003 (0.0015) C18 * -0.0016 (0.0014) N19 * 0.0024 (0.0015) C20

Rms deviation of fitted atoms = 0.0017

- 2.4518 (0.0127) x + 10.9099 (0.0091) y + 9.0926 (0.0145) z = 6.2049 (0.0171)

Angle to previous plane (with approximate e.s.d.) = 9.27 (0.16)

* 0.0117 (0.0018) C27 * -0.0068 (0.0019) C28 * -0.0042 (0.0019) C29 * 0.0103 (0.0019) C30 * -0.0052 (0.0019) C31 * -0.0058 (0.0019) C32

Rms deviation of fitted atoms = 0.0078

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir0.185225 (9)0.183852 (9)0.587566 (7)0.01036 (3)
N10.29011 (17)0.09344 (16)0.50550 (13)0.0113 (5)
C20.3713 (2)0.1390 (2)0.44934 (16)0.0113 (5)
S30.46148 (5)0.06657 (5)0.37977 (4)0.01364 (13)
C40.3867 (2)0.0356 (2)0.42917 (16)0.0115 (5)
C50.2971 (2)0.00772 (19)0.49503 (16)0.0115 (5)
C60.2262 (2)0.0791 (2)0.54288 (16)0.0150 (6)
H60.16470.06150.58770.018*
C70.2476 (2)0.1758 (2)0.52351 (17)0.0158 (6)
H70.20010.22500.55560.019*
C80.3378 (2)0.2028 (2)0.45764 (16)0.0153 (6)
H80.35040.26980.44570.018*
C90.4085 (2)0.1336 (2)0.40982 (16)0.0135 (5)
H90.47010.15190.36520.016*
C100.3802 (2)0.24172 (19)0.45468 (16)0.0118 (5)
C110.3038 (2)0.2743 (2)0.52632 (16)0.0120 (5)
C120.3162 (2)0.3678 (2)0.54230 (17)0.0145 (6)
H120.26990.39140.59160.017*
C130.3950 (2)0.4261 (2)0.48715 (18)0.0179 (6)
H130.40090.48950.49910.022*
C140.4655 (2)0.3945 (2)0.41489 (18)0.0181 (6)
H140.51730.43660.37680.022*
C150.4593 (2)0.3009 (2)0.39911 (17)0.0163 (6)
H150.50840.27700.35090.020*
N160.26737 (17)0.08428 (16)0.69814 (13)0.0120 (5)
N170.36908 (17)0.07191 (16)0.73312 (13)0.0133 (5)
C180.3628 (2)0.0086 (2)0.80427 (16)0.0143 (5)
N190.26461 (18)0.04920 (17)0.81804 (13)0.0151 (5)
C200.2083 (2)0.0125 (2)0.74975 (16)0.0125 (5)
C210.0947 (2)0.0096 (2)0.72860 (16)0.0138 (5)
N220.06182 (18)0.08334 (16)0.65410 (13)0.0129 (5)
C230.0419 (2)0.0868 (2)0.62811 (17)0.0157 (6)
H230.06590.13870.57720.019*
C240.1149 (2)0.0181 (2)0.67229 (19)0.0225 (6)
H240.18760.02270.65200.027*
C250.0811 (2)0.0577 (2)0.74654 (19)0.0221 (6)
H250.12950.10660.77730.026*
C260.0244 (2)0.0613 (2)0.77559 (17)0.0188 (6)
H260.04830.11190.82720.023*
C270.4565 (2)0.0474 (2)0.86363 (17)0.0155 (6)
C280.4390 (2)0.1198 (2)0.94374 (17)0.0192 (6)
H280.36990.14880.95840.023*
C290.5226 (2)0.1498 (2)1.00257 (18)0.0241 (7)
H290.51030.19901.05740.029*
C300.6229 (2)0.1082 (2)0.98128 (18)0.0230 (7)
H300.67900.12771.02210.028*
C310.6426 (2)0.0383 (2)0.90106 (18)0.0216 (6)
H310.71300.01110.88630.026*
C320.5599 (2)0.0074 (2)0.84167 (17)0.0179 (6)
H320.57370.04060.78640.021*
N1'0.08049 (17)0.29382 (16)0.65163 (13)0.0123 (5)
C2'0.0090 (2)0.35294 (19)0.60986 (16)0.0125 (5)
S3'0.10350 (6)0.44093 (5)0.66450 (4)0.01738 (14)
C4'0.0142 (2)0.3993 (2)0.74905 (17)0.0155 (6)
C5'0.0825 (2)0.3214 (2)0.73020 (16)0.0132 (5)
C6'0.1713 (2)0.2840 (2)0.78538 (17)0.0182 (6)
H6'0.23780.23150.77340.022*
C7'0.1597 (2)0.3254 (2)0.85796 (18)0.0232 (7)
H7'0.21980.30130.89580.028*
C8'0.0621 (3)0.4016 (2)0.87686 (18)0.0243 (7)
H8'0.05640.42790.92750.029*
C9'0.0265 (2)0.4394 (2)0.82311 (17)0.0219 (6)
H9'0.09350.49090.83610.026*
C10'0.0148 (2)0.34173 (19)0.52221 (16)0.0124 (5)
C11'0.0796 (2)0.26639 (19)0.49410 (16)0.0111 (5)
C12'0.0820 (2)0.2557 (2)0.40818 (17)0.0163 (6)
H12'0.14270.20530.38600.020*
C13'0.0031 (2)0.3177 (2)0.35466 (17)0.0179 (6)
H13'0.00180.30970.29630.021*
C14'0.0948 (2)0.3908 (2)0.38492 (17)0.0167 (6)
H14'0.15220.43240.34770.020*
C15'0.1017 (2)0.4026 (2)0.46962 (17)0.0160 (6)
H15'0.16460.45140.49180.019*
C970.7155 (2)0.3134 (2)0.88203 (17)0.0221 (6)
D970.66060.24660.88970.026*
Cl10.67186 (6)0.41646 (6)0.96693 (5)0.02871 (17)
Cl20.70766 (6)0.32965 (6)0.77698 (4)0.02763 (17)
Cl30.86049 (6)0.30466 (6)0.89109 (5)0.02593 (16)
C980.3809 (3)0.3533 (3)0.7609 (2)0.0494 (11)
D980.35740.41010.70990.059*
Cl40.52591 (11)0.34664 (11)0.75553 (8)0.1027 (6)
Cl50.28516 (11)0.23563 (9)0.75073 (7)0.0721 (3)
Cl60.36850 (8)0.38391 (8)0.85894 (7)0.0564 (3)
C990.2676 (2)0.2928 (2)0.85817 (19)0.0258 (7)
D990.27190.21730.84560.031*
Cl70.23359 (9)0.31505 (9)0.76311 (6)0.0599 (3)
Cl80.40549 (7)0.36806 (7)0.88483 (6)0.0412 (2)
Cl90.15616 (7)0.31749 (7)0.94744 (6)0.0427 (2)
C960.9372 (5)0.0481 (5)1.0020 (4)0.0311 (15)*0.50
H960.88930.07311.05410.037*0.50
Cl101.0842 (4)0.0597 (5)0.9970 (5)0.0593 (16)0.50
Cl110.88004 (16)0.12749 (14)0.90568 (11)0.0413 (4)0.50
Cl120.9281 (5)0.0812 (5)1.0147 (5)0.0587 (15)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir0.00954 (5)0.00903 (5)0.01150 (5)0.00029 (4)0.00206 (3)0.00174 (3)
N10.0096 (11)0.0124 (12)0.0118 (11)0.0018 (9)0.0041 (8)0.0014 (9)
C20.0079 (12)0.0131 (14)0.0127 (12)0.0000 (10)0.0030 (10)0.0035 (10)
S30.0124 (3)0.0138 (3)0.0148 (3)0.0027 (3)0.0001 (2)0.0048 (3)
C40.0093 (13)0.0142 (14)0.0118 (13)0.0036 (11)0.0032 (10)0.0022 (11)
C50.0106 (12)0.0110 (13)0.0140 (13)0.0014 (10)0.0058 (10)0.0026 (10)
C60.0126 (13)0.0160 (15)0.0157 (13)0.0022 (11)0.0009 (10)0.0039 (11)
C70.0161 (14)0.0141 (14)0.0183 (14)0.0055 (11)0.0026 (11)0.0031 (11)
C80.0175 (14)0.0126 (14)0.0171 (14)0.0005 (11)0.0064 (11)0.0052 (11)
C90.0102 (13)0.0142 (14)0.0162 (13)0.0002 (11)0.0041 (10)0.0043 (11)
C100.0113 (12)0.0094 (13)0.0141 (13)0.0006 (10)0.0062 (10)0.0003 (10)
C110.0102 (13)0.0113 (14)0.0145 (13)0.0015 (10)0.0062 (10)0.0034 (11)
C120.0111 (13)0.0120 (14)0.0198 (14)0.0023 (11)0.0056 (11)0.0046 (11)
C130.0152 (14)0.0124 (14)0.0278 (16)0.0010 (11)0.0079 (12)0.0056 (12)
C140.0139 (14)0.0172 (15)0.0229 (15)0.0078 (12)0.0013 (11)0.0008 (12)
C150.0121 (13)0.0195 (15)0.0151 (13)0.0030 (11)0.0013 (10)0.0010 (11)
N160.0091 (10)0.0112 (12)0.0142 (11)0.0020 (9)0.0030 (8)0.0033 (9)
N170.0112 (11)0.0144 (12)0.0144 (11)0.0015 (9)0.0033 (9)0.0062 (9)
C180.0166 (13)0.0122 (14)0.0125 (13)0.0016 (11)0.0018 (10)0.0043 (11)
N190.0159 (11)0.0134 (12)0.0132 (11)0.0006 (9)0.0023 (9)0.0016 (9)
C200.0129 (13)0.0098 (13)0.0122 (13)0.0011 (10)0.0004 (10)0.0020 (10)
C210.0124 (13)0.0122 (14)0.0149 (13)0.0008 (11)0.0005 (10)0.0047 (11)
N220.0123 (11)0.0110 (12)0.0148 (11)0.0015 (9)0.0006 (9)0.0044 (9)
C230.0133 (13)0.0137 (14)0.0188 (14)0.0011 (11)0.0052 (11)0.0031 (11)
C240.0134 (14)0.0198 (16)0.0331 (17)0.0036 (12)0.0044 (12)0.0033 (13)
C250.0159 (14)0.0174 (16)0.0298 (17)0.0075 (12)0.0031 (12)0.0011 (13)
C260.0180 (14)0.0153 (15)0.0178 (14)0.0011 (12)0.0002 (11)0.0014 (11)
C270.0200 (14)0.0130 (14)0.0141 (13)0.0022 (11)0.0057 (11)0.0068 (11)
C280.0217 (15)0.0174 (15)0.0163 (14)0.0026 (12)0.0047 (11)0.0045 (12)
C290.0315 (17)0.0180 (16)0.0161 (14)0.0074 (13)0.0057 (12)0.0021 (12)
C300.0261 (16)0.0193 (16)0.0231 (15)0.0105 (13)0.0155 (13)0.0092 (13)
C310.0182 (14)0.0223 (17)0.0263 (16)0.0028 (12)0.0081 (12)0.0115 (13)
C320.0222 (15)0.0150 (15)0.0167 (14)0.0003 (12)0.0067 (11)0.0043 (11)
N1'0.0127 (11)0.0096 (11)0.0132 (11)0.0025 (9)0.0010 (9)0.0005 (9)
C2'0.0109 (12)0.0105 (14)0.0154 (13)0.0043 (10)0.0005 (10)0.0007 (10)
S3'0.0144 (3)0.0143 (4)0.0223 (4)0.0022 (3)0.0028 (3)0.0069 (3)
C4'0.0177 (14)0.0125 (15)0.0155 (14)0.0033 (11)0.0014 (11)0.0022 (11)
C5'0.0140 (13)0.0104 (14)0.0144 (13)0.0033 (11)0.0012 (10)0.0029 (11)
C6'0.0216 (15)0.0134 (15)0.0169 (14)0.0019 (11)0.0044 (11)0.0028 (11)
C7'0.0289 (16)0.0206 (16)0.0191 (15)0.0032 (13)0.0100 (12)0.0056 (12)
C8'0.0368 (18)0.0206 (16)0.0166 (14)0.0039 (14)0.0036 (13)0.0080 (12)
C9'0.0265 (16)0.0157 (15)0.0213 (15)0.0021 (12)0.0004 (12)0.0082 (12)
C10'0.0119 (13)0.0093 (13)0.0170 (13)0.0064 (10)0.0013 (10)0.0014 (10)
C11'0.0093 (12)0.0095 (13)0.0150 (13)0.0045 (10)0.0021 (10)0.0012 (10)
C12'0.0143 (13)0.0155 (15)0.0181 (14)0.0043 (11)0.0002 (11)0.0023 (11)
C13'0.0183 (14)0.0216 (16)0.0132 (13)0.0077 (12)0.0035 (11)0.0007 (11)
C14'0.0151 (14)0.0139 (14)0.0212 (14)0.0049 (11)0.0096 (11)0.0019 (11)
C15'0.0126 (13)0.0114 (14)0.0222 (14)0.0012 (11)0.0035 (11)0.0013 (11)
C970.0251 (16)0.0190 (16)0.0178 (14)0.0001 (13)0.0009 (12)0.0026 (12)
Cl10.0313 (4)0.0276 (4)0.0228 (4)0.0093 (3)0.0032 (3)0.0041 (3)
Cl20.0270 (4)0.0354 (5)0.0185 (4)0.0021 (3)0.0046 (3)0.0058 (3)
Cl30.0289 (4)0.0236 (4)0.0264 (4)0.0078 (3)0.0048 (3)0.0048 (3)
C980.050 (2)0.062 (3)0.038 (2)0.035 (2)0.0144 (18)0.0116 (19)
Cl40.0817 (9)0.1328 (12)0.0878 (9)0.0809 (9)0.0533 (7)0.0629 (8)
Cl50.1107 (9)0.0559 (7)0.0643 (7)0.0447 (7)0.0182 (6)0.0335 (6)
Cl60.0527 (6)0.0587 (7)0.0685 (7)0.0135 (5)0.0029 (5)0.0381 (6)
C990.0222 (16)0.0226 (17)0.0308 (17)0.0056 (13)0.0076 (13)0.0003 (13)
Cl70.0526 (6)0.0868 (8)0.0485 (6)0.0014 (6)0.0201 (5)0.0343 (6)
Cl80.0207 (4)0.0381 (5)0.0544 (5)0.0053 (4)0.0109 (4)0.0093 (4)
Cl90.0332 (5)0.0363 (5)0.0422 (5)0.0023 (4)0.0037 (4)0.0035 (4)
Cl100.0186 (13)0.119 (5)0.053 (2)0.0228 (19)0.0042 (13)0.040 (3)
Cl110.0549 (11)0.0361 (10)0.0335 (9)0.0055 (8)0.0084 (8)0.0106 (8)
Cl120.080 (3)0.0339 (14)0.058 (2)0.0109 (16)0.0000 (19)0.0114 (14)
Geometric parameters (Å, º) top
Ir—C112.014 (3)C28—C291.392 (3)
Ir—C11'2.022 (2)C28—H280.9500
Ir—N1'2.060 (2)C29—C301.375 (4)
Ir—N12.064 (2)C29—H290.9500
Ir—N162.1264 (19)C30—C311.378 (4)
Ir—N222.160 (2)C30—H300.9500
N1—C21.323 (3)C31—C321.390 (3)
N1—C51.407 (3)C31—H310.9500
C2—C101.447 (3)C32—H320.9500
C2—S31.720 (3)N1'—C2'1.322 (3)
S3—C41.744 (3)N1'—C5'1.400 (3)
C4—C91.398 (3)C2'—C10'1.453 (3)
C4—C51.398 (3)C2'—S3'1.724 (3)
C5—C61.399 (3)S3'—C4'1.742 (3)
C6—C71.382 (3)C4'—C9'1.393 (4)
C6—H60.9500C4'—C5'1.401 (3)
C7—C81.398 (3)C5'—C6'1.397 (3)
C7—H70.9500C6'—C7'1.384 (4)
C8—C91.377 (3)C6'—H6'0.9500
C8—H80.9500C7'—C8'1.394 (4)
C9—H90.9500C7'—H7'0.9500
C10—C151.397 (3)C8'—C9'1.380 (4)
C10—C111.412 (3)C8'—H8'0.9500
C11—C121.405 (3)C9'—H9'0.9500
C12—C131.385 (4)C10'—C15'1.395 (3)
C12—H120.9500C10'—C11'1.411 (3)
C13—C141.387 (4)C11'—C12'1.402 (3)
C13—H130.9500C12'—C13'1.394 (3)
C14—C151.379 (4)C12'—H12'0.9500
C14—H140.9500C13'—C14'1.388 (4)
C15—H150.9500C13'—H13'0.9500
N16—C201.333 (3)C14'—C15'1.379 (4)
N16—N171.365 (3)C14'—H14'0.9500
N17—C181.341 (3)C15'—H15'0.9500
C18—N191.352 (3)C97—Cl11.755 (3)
C18—C271.486 (3)C97—Cl21.759 (3)
N19—C201.345 (3)C97—Cl31.771 (3)
C20—C211.447 (3)C97—D971.0000
C21—N221.370 (3)C98—Cl51.745 (4)
C21—C261.387 (3)C98—Cl41.747 (3)
N22—C231.345 (3)C98—Cl61.752 (4)
C23—C241.377 (4)C98—D981.0000
C23—H230.9500C99—Cl71.746 (3)
C24—C251.382 (4)C99—Cl81.750 (3)
C24—H240.9500C99—Cl91.757 (3)
C25—C261.387 (3)C99—D991.0000
C25—H250.9500C96—Cl121.737 (8)
C26—H260.9500C96—Cl111.752 (6)
C27—C281.390 (3)C96—Cl101.758 (7)
C27—C321.396 (4)C96—H961.0000
C11—Ir—C11'88.18 (9)C21—C26—H26120.3
C11—Ir—N1'94.17 (9)C28—C27—C32119.5 (2)
C11'—Ir—N1'79.98 (9)C28—C27—C18120.0 (2)
C11—Ir—N179.54 (9)C32—C27—C18120.4 (2)
C11'—Ir—N192.98 (9)C27—C28—C29120.1 (3)
N1'—Ir—N1170.77 (8)C27—C28—H28120.0
C11—Ir—N16102.78 (8)C29—C28—H28120.0
C11'—Ir—N16168.90 (8)C30—C29—C28120.0 (3)
N1'—Ir—N1697.25 (8)C30—C29—H29120.0
N1—Ir—N1690.77 (8)C28—C29—H29120.0
C11—Ir—N22178.49 (9)C29—C30—C31120.4 (2)
C11'—Ir—N2293.05 (8)C29—C30—H30119.8
N1'—Ir—N2286.91 (8)C31—C30—H30119.8
N1—Ir—N2299.51 (8)C30—C31—C32120.3 (3)
N16—Ir—N2276.03 (8)C30—C31—H31119.9
C2—N1—C5110.8 (2)C32—C31—H31119.9
C2—N1—Ir114.19 (17)C31—C32—C27119.7 (3)
C5—N1—Ir134.97 (17)C31—C32—H32120.1
N1—C2—C10117.8 (2)C27—C32—H32120.1
N1—C2—S3115.97 (19)C2'—N1'—C5'111.6 (2)
C10—C2—S3126.14 (19)C2'—N1'—Ir113.96 (16)
C2—S3—C489.36 (12)C5'—N1'—Ir134.48 (16)
C9—C4—C5121.9 (2)N1'—C2'—C10'117.8 (2)
C9—C4—S3127.7 (2)N1'—C2'—S3'115.30 (18)
C5—C4—S3110.37 (19)C10'—C2'—S3'126.80 (19)
C4—C5—C6119.5 (2)C2'—S3'—C4'89.47 (12)
C4—C5—N1113.5 (2)C9'—C4'—C5'121.9 (2)
C6—C5—N1127.1 (2)C9'—C4'—S3'127.6 (2)
C7—C6—C5118.6 (2)C5'—C4'—S3'110.33 (19)
C7—C6—H6120.7C6'—C5'—N1'127.0 (2)
C5—C6—H6120.7C6'—C5'—C4'119.7 (2)
C6—C7—C8121.3 (2)N1'—C5'—C4'113.2 (2)
C6—C7—H7119.3C7'—C6'—C5'118.2 (2)
C8—C7—H7119.3C7'—C6'—H6'120.9
C9—C8—C7121.0 (2)C5'—C6'—H6'120.9
C9—C8—H8119.5C6'—C7'—C8'121.6 (2)
C7—C8—H8119.5C6'—C7'—H7'119.2
C8—C9—C4117.7 (2)C8'—C7'—H7'119.2
C8—C9—H9121.1C9'—C8'—C7'121.0 (3)
C4—C9—H9121.1C9'—C8'—H8'119.5
C15—C10—C11122.7 (2)C7'—C8'—H8'119.5
C15—C10—C2124.8 (2)C8'—C9'—C4'117.6 (3)
C11—C10—C2112.4 (2)C8'—C9'—H9'121.2
C12—C11—C10116.1 (2)C4'—C9'—H9'121.2
C12—C11—Ir128.7 (2)C15'—C10'—C11'123.4 (2)
C10—C11—Ir115.08 (18)C15'—C10'—C2'123.5 (2)
C13—C12—C11120.9 (2)C11'—C10'—C2'113.0 (2)
C13—C12—H12119.6C12'—C11'—C10'115.6 (2)
C11—C12—H12119.6C12'—C11'—Ir129.8 (2)
C12—C13—C14121.8 (3)C10'—C11'—Ir114.42 (17)
C12—C13—H13119.1C13'—C12'—C11'121.2 (3)
C14—C13—H13119.1C13'—C12'—H12'119.4
C15—C14—C13119.0 (2)C11'—C12'—H12'119.4
C15—C14—H14120.5C14'—C13'—C12'121.3 (2)
C13—C14—H14120.5C14'—C13'—H13'119.3
C14—C15—C10119.4 (2)C12'—C13'—H13'119.3
C14—C15—H15120.3C15'—C14'—C13'119.3 (2)
C10—C15—H15120.3C15'—C14'—H14'120.3
C20—N16—N17107.33 (19)C13'—C14'—H14'120.3
C20—N16—Ir115.60 (15)C14'—C15'—C10'119.0 (2)
N17—N16—Ir137.07 (16)C14'—C15'—H15'120.5
C18—N17—N16103.6 (2)C10'—C15'—H15'120.5
N17—C18—N19114.9 (2)Cl1—C97—Cl2111.48 (16)
N17—C18—C27121.6 (2)Cl1—C97—Cl3109.43 (14)
N19—C18—C27123.5 (2)Cl2—C97—Cl3110.84 (15)
C20—N19—C18100.8 (2)Cl1—C97—D97108.3
N16—C20—N19113.2 (2)Cl2—C97—D97108.3
N16—C20—C21118.9 (2)Cl3—C97—D97108.3
N19—C20—C21127.9 (2)Cl5—C98—Cl4110.2 (2)
N22—C21—C26121.2 (2)Cl5—C98—Cl6110.47 (18)
N22—C21—C20113.6 (2)Cl4—C98—Cl6111.8 (2)
C26—C21—C20125.2 (2)Cl5—C98—D98108.1
C23—N22—C21118.4 (2)Cl4—C98—D98108.1
C23—N22—Ir125.73 (17)Cl6—C98—D98108.1
C21—N22—Ir115.91 (16)Cl7—C99—Cl8110.99 (17)
N22—C23—C24122.7 (2)Cl7—C99—Cl9110.85 (15)
N22—C23—H23118.6Cl8—C99—Cl9111.02 (15)
C24—C23—H23118.6Cl7—C99—D99107.9
C23—C24—C25119.2 (2)Cl8—C99—D99107.9
C23—C24—H24120.4Cl9—C99—D99107.9
C25—C24—H24120.4Cl12—C96—Cl11110.5 (4)
C24—C25—C26119.1 (3)Cl12—C96—Cl10111.1 (4)
C24—C25—H25120.4Cl11—C96—Cl10109.3 (4)
C26—C25—H25120.4Cl12—C96—H96108.6
C25—C26—C21119.4 (2)Cl11—C96—H96108.6
C25—C26—H26120.3Cl10—C96—H96108.6
C11—Ir—N1—C26.33 (16)C11'—Ir—N22—C232.0 (2)
C11'—Ir—N1—C281.27 (17)N1'—Ir—N22—C2381.8 (2)
N16—Ir—N1—C2109.18 (16)N1—Ir—N22—C2391.5 (2)
N22—Ir—N1—C2174.86 (16)N16—Ir—N22—C23179.9 (2)
C11—Ir—N1—C5173.0 (2)C11'—Ir—N22—C21178.67 (18)
C11'—Ir—N1—C599.5 (2)N1'—Ir—N22—C2198.88 (18)
N16—Ir—N1—C570.1 (2)N1—Ir—N22—C2187.79 (18)
N22—Ir—N1—C55.9 (2)N16—Ir—N22—C210.63 (17)
C5—N1—C2—C10176.80 (19)C21—N22—C23—C241.3 (4)
Ir—N1—C2—C102.7 (3)Ir—N22—C23—C24178.0 (2)
C5—N1—C2—S30.3 (2)N22—C23—C24—C250.1 (4)
Ir—N1—C2—S3179.74 (10)C23—C24—C25—C261.2 (4)
N1—C2—S3—C40.48 (18)C24—C25—C26—C211.3 (4)
C10—C2—S3—C4176.3 (2)N22—C21—C26—C250.1 (4)
C2—S3—C4—C9179.1 (2)C20—C21—C26—C25177.9 (3)
C2—S3—C4—C50.53 (18)N17—C18—C27—C28170.1 (2)
C9—C4—C5—C60.4 (3)N19—C18—C27—C288.5 (4)
S3—C4—C5—C6179.93 (17)N17—C18—C27—C326.5 (4)
C9—C4—C5—N1179.1 (2)N19—C18—C27—C32174.9 (2)
S3—C4—C5—N10.5 (2)C32—C27—C28—C291.8 (4)
C2—N1—C5—C40.2 (3)C18—C27—C28—C29174.8 (2)
Ir—N1—C5—C4179.15 (16)C27—C28—C29—C300.3 (4)
C2—N1—C5—C6179.7 (2)C28—C29—C30—C311.3 (4)
Ir—N1—C5—C60.4 (4)C29—C30—C31—C321.4 (4)
C4—C5—C6—C70.2 (3)C30—C31—C32—C270.1 (4)
N1—C5—C6—C7179.3 (2)C28—C27—C32—C311.7 (4)
C5—C6—C7—C80.1 (4)C18—C27—C32—C31174.9 (2)
C6—C7—C8—C90.1 (4)C11—Ir—N1'—C2'95.28 (18)
C7—C8—C9—C40.3 (3)C11'—Ir—N1'—C2'7.87 (17)
C5—C4—C9—C80.5 (3)N16—Ir—N1'—C2'161.26 (17)
S3—C4—C9—C8179.98 (18)N22—Ir—N1'—C2'85.78 (17)
N1—C2—C10—C15178.6 (2)C11—Ir—N1'—C5'84.3 (2)
S3—C2—C10—C154.7 (3)C11'—Ir—N1'—C5'171.7 (2)
N1—C2—C10—C114.8 (3)N16—Ir—N1'—C5'19.2 (2)
S3—C2—C10—C11171.96 (17)N22—Ir—N1'—C5'94.6 (2)
C15—C10—C11—C123.5 (3)C5'—N1'—C2'—C10'173.0 (2)
C2—C10—C11—C12173.2 (2)Ir—N1'—C2'—C10'6.6 (3)
C15—C10—C11—Ir173.17 (18)C5'—N1'—C2'—S3'3.8 (3)
C2—C10—C11—Ir10.1 (3)Ir—N1'—C2'—S3'176.50 (11)
C11'—Ir—C11—C1291.8 (2)N1'—C2'—S3'—C4'2.0 (2)
N1'—Ir—C11—C1212.0 (2)C10'—C2'—S3'—C4'174.5 (2)
N1—Ir—C11—C12174.8 (2)C2'—S3'—C4'—C9'175.7 (3)
N16—Ir—C11—C1286.4 (2)C2'—S3'—C4'—C5'0.3 (2)
C11'—Ir—C11—C1084.38 (18)C2'—N1'—C5'—C6'172.2 (2)
N1'—Ir—C11—C10164.20 (17)Ir—N1'—C5'—C6'7.4 (4)
N1—Ir—C11—C108.99 (17)C2'—N1'—C5'—C4'4.0 (3)
N16—Ir—C11—C1097.39 (18)Ir—N1'—C5'—C4'176.37 (18)
C10—C11—C12—C133.3 (3)C9'—C4'—C5'—C6'1.7 (4)
Ir—C11—C12—C13172.88 (18)S3'—C4'—C5'—C6'174.0 (2)
C11—C12—C13—C140.7 (4)C9'—C4'—C5'—N1'178.2 (2)
C12—C13—C14—C151.9 (4)S3'—C4'—C5'—N1'2.5 (3)
C13—C14—C15—C101.7 (4)N1'—C5'—C6'—C7'176.5 (3)
C11—C10—C15—C141.1 (4)C4'—C5'—C6'—C7'0.5 (4)
C2—C10—C15—C14175.2 (2)C5'—C6'—C7'—C8'0.7 (4)
C11—Ir—N16—C20177.88 (18)C6'—C7'—C8'—C9'0.6 (4)
N1'—Ir—N16—C2086.15 (18)C7'—C8'—C9'—C4'0.5 (4)
N1—Ir—N16—C2098.43 (18)C5'—C4'—C9'—C8'1.7 (4)
N22—Ir—N16—C201.18 (18)S3'—C4'—C9'—C8'173.2 (2)
C11—Ir—N16—N171.8 (2)N1'—C2'—C10'—C15'177.1 (2)
N1'—Ir—N16—N1794.2 (2)S3'—C2'—C10'—C15'0.6 (4)
N1—Ir—N16—N1781.2 (2)N1'—C2'—C10'—C11'0.1 (3)
N22—Ir—N16—N17179.2 (2)S3'—C2'—C10'—C11'176.57 (18)
C20—N16—N17—C180.3 (3)C15'—C10'—C11'—C12'0.2 (4)
Ir—N16—N17—C18179.34 (19)C2'—C10'—C11'—C12'177.0 (2)
N16—N17—C18—N190.1 (3)C15'—C10'—C11'—Ir176.18 (19)
N16—N17—C18—C27178.8 (2)C2'—C10'—C11'—Ir6.6 (3)
N17—C18—N19—C200.2 (3)C11—Ir—C11'—C12'81.9 (2)
C27—C18—N19—C20178.5 (2)N1'—Ir—C11'—C12'176.5 (2)
N17—N16—C20—N190.5 (3)N1—Ir—C11'—C12'2.5 (2)
Ir—N16—C20—N19179.27 (16)N22—Ir—C11'—C12'97.2 (2)
N17—N16—C20—C21178.6 (2)C11—Ir—C11'—C10'102.35 (19)
Ir—N16—C20—C211.6 (3)N1'—Ir—C11'—C10'7.78 (17)
C18—N19—C20—N160.4 (3)N1—Ir—C11'—C10'178.23 (18)
C18—N19—C20—C21178.6 (3)N22—Ir—C11'—C10'78.53 (18)
N16—C20—C21—N221.0 (3)C10'—C11'—C12'—C13'1.1 (4)
N19—C20—C21—N22180.0 (2)Ir—C11'—C12'—C13'176.80 (19)
N16—C20—C21—C26179.2 (2)C11'—C12'—C13'—C14'1.3 (4)
N19—C20—C21—C261.8 (4)C12'—C13'—C14'—C15'0.1 (4)
C26—C21—N22—C231.2 (4)C13'—C14'—C15'—C10'1.1 (4)
C20—C21—N22—C23179.4 (2)C11'—C10'—C15'—C14'1.3 (4)
C26—C21—N22—Ir178.2 (2)C2'—C10'—C15'—C14'175.6 (2)
C20—C21—N22—Ir0.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C27–C32 ring.
D—H···AD—HH···AD···AD—H···A
C99—D99···N191.002.183.180 (4)175
C98—D98···S31.003.043.660 (3)121
C97—D97···Cg1.002.503.50173

Experimental details

Crystal data
Chemical formula[Ir(C13H9N4)(C13H8NS)2]·3.5CDCl3
Mr1254.78
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.7521 (4), 13.5592 (4), 15.8373 (4)
α, β, γ (°)74.045 (3), 79.247 (3), 76.002 (3)
V3)2334.80 (12)
Z2
Radiation typeMo Kα
µ (mm1)3.59
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur, Eos
Absorption correctionMulti-scan
CrysAlis PRO, Oxford Diffraction (2010).
Tmin, Tmax0.902, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
94997, 13407, 10433
Rint0.058
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.047, 0.88
No. of reflections13407
No. of parameters572
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.88, 1.70

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C27–C32 ring.
D—H···AD—HH···AD···AD—H···A
C99—D99···N191.002.183.180 (4)175
C98—D98···S3'1.003.043.660 (3)121
C97—D97···Cg1.002.503.50173
 

Acknowledgements

The authors thank the Bundesministerium für Bildung und Forschung (BMBF 01 BD 0687) for financial support.

References

First citationGrushin, V. V., Herron, N., LeCloux, D. D., Marshall, W. J., Petrov, V. A. & Wang, Y. (2001). Chem. Commun. pp. 1494–1495.  Web of Science CSD CrossRef Google Scholar
First citationHolder, E., Langeveld, B. M. W. & Schubert, U. S. (2005). Adv. Mater. 17, 1109–1121.  Web of Science CrossRef CAS Google Scholar
First citationJones, P. G., Debeaux, M., Weinkauf, A., Hopf, H., Kowalsky, W. & Johannes, H.-H. (2010). Acta Cryst. E66, m66–m67.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKappaun, S., Slugovc, C. & List, E. J. W. (2008). Int. J. Mol. Sci. 9, 1527–1547.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKwon, T.-H., Cho, H. S., Kim, M. K., Kim, J.-W., Kim, J.-J., Lee, K. H., Park, S. J., Shin, I.-S., Kim, H., Shin, D. M., Chung, Y. K. & Hong, J.-I. (2005). Organometallics, 24, 1578–1585.  Web of Science CSD CrossRef CAS Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Limited, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc. Madison, Wisconsin, USA.  Google Scholar
First citationTamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377–7387.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYou, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438–12439.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds