metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ3-4-carb­­oxy­pyridine-3-carboxyl­ato-κ3N:O3:O4)(tri­phenyl­phosphine-κP)silver(I)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 August 2010; accepted 18 August 2010; online 25 August 2010)

In the title 1:1 silver(I) 4-carb­oxy­pyridine-3-carboxyl­ate adduct with triphenyl­phosphine, [Ag(C7H4NO4)(C18H15P)]n, the carboxyl­ate anion bridges the phosphine-coordinated Ag atoms through its N and O atoms, generating a coordination polymer forming layers in the bc plane. The Ag atom exists in a distorted tetra­hedral geometry. The H atom of the carboxyl­ate is midway between two O atoms of the two carboxyl groups, thus forming a strong intra­molecular hydrogen bond.

Related literature

For the synthesis of the silver reactant used in the synthesis, see: Hanna & Ng (1999[Hanna, J. V. & Ng, S. W. (1999). Acta Cryst. C55, IUC9900031.]); Ng & Othman (1997[Ng, S. W. & Othman, A. H. (1997). Acta Cryst. C53, 1396-1400.]). For a related structure, see: Drew et al. (1971[Drew, M. G. B., Matthews, R. W. & Walton, R. A. (1971). J. Chem. Soc. A, pp. 2959-2962.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C7H4NO4)(C18H15P)]

  • Mr = 536.25

  • Monoclinic, P 21 /c

  • a = 14.2472 (7) Å

  • b = 10.2431 (5) Å

  • c = 16.3146 (8) Å

  • β = 115.206 (1)°

  • V = 2154.18 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.712, Tmax = 0.859

  • 13432 measured reflections

  • 4942 independent reflections

  • 4587 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.055

  • S = 1.05

  • 4942 reflections

  • 293 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have used bis(silver acetate.2triphenylphosphine) monohydrate sesquiethanol (Hanna & Ng, 1999; Ng & Othman, 1997) as a template in the synthesis of triphenylphosphine adducts of other silver carboxylates; the silver carboxylates themselves cannot be synthesized directly by the reaction of a silver salt with the carboxylate anion as the reaction invariably leads to the formation of some insoluble gray material.

The crystal structure of the silver(II) derivative of the monobasic 3-carboxypyridyl-4-carboxylate anion was reported a long time ago (Drew et al., 1971); the silver atom is N,O-chelated by two anions in an approximate square-planar enviroment.

The silver(I) 3-carboxypyridyl-4-carboxylate–triphenylphosphine adduct (Scheme I) exists as a polymeric compound (Fig. 1) in which the anion bridges adjacent silver atoms through one carboxyl group and the pyridyl N atom (Fig. 2). The diffraction measurements are of a sufficiently high quality for the acid H atom to be refined; the refinement places this atom mid-way between the O atoms of the two carboxyl O atoms, at a distance of 1.20 (4) Å. The O···H···O interaction is an intramolecular hydrogen bond. The pyridyl ring and the carboxyl –CO2 unit that is engaged in Ag coordination enclose a dihedral angle of 14.3 (2) ° whereas the free carboxyl group encloses a dihedral angle of 15.2 (3) ° with the pyridyl ring; such minimal twist probably locks the acid H atom in its place.

Related literature top

For the synthesis of the silver reactant used in the synthesis, see: Hanna & Ng (1999); Ng & Othman (1997). For a related structure, see: Drew et al. (1971).

Experimental top

Silver acetate (1 mmol, 0.17 g) and triphenylphosphine (2 mmol, 0.53 g) were heated in ethanol (50 ml) until the reactants dissolved completely. Gray insoluble material was removed by filtration and the solvent removed to yield bis(silver acetate.2triphenylphosphine) monohydrate sesquiethanol (Hanna & Ng, 1999; Ng & Othman, 1997).

The adduct (0.5 mmol, 0.69 g) and 3,4-pyridinedicarboxylic acid (1 mmol, 0.17 g) were placed in a convection tube; the tube was filled with a 1:1 methanol/ethanol mixture and kept at 333 K. Colorless crystals were collected after 3 days (m.p. > 550 K).

Refinement top

Hydrogen atoms bonded to C were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The carboxylic H-atom was freely refined.

Structure description top

We have used bis(silver acetate.2triphenylphosphine) monohydrate sesquiethanol (Hanna & Ng, 1999; Ng & Othman, 1997) as a template in the synthesis of triphenylphosphine adducts of other silver carboxylates; the silver carboxylates themselves cannot be synthesized directly by the reaction of a silver salt with the carboxylate anion as the reaction invariably leads to the formation of some insoluble gray material.

The crystal structure of the silver(II) derivative of the monobasic 3-carboxypyridyl-4-carboxylate anion was reported a long time ago (Drew et al., 1971); the silver atom is N,O-chelated by two anions in an approximate square-planar enviroment.

The silver(I) 3-carboxypyridyl-4-carboxylate–triphenylphosphine adduct (Scheme I) exists as a polymeric compound (Fig. 1) in which the anion bridges adjacent silver atoms through one carboxyl group and the pyridyl N atom (Fig. 2). The diffraction measurements are of a sufficiently high quality for the acid H atom to be refined; the refinement places this atom mid-way between the O atoms of the two carboxyl O atoms, at a distance of 1.20 (4) Å. The O···H···O interaction is an intramolecular hydrogen bond. The pyridyl ring and the carboxyl –CO2 unit that is engaged in Ag coordination enclose a dihedral angle of 14.3 (2) ° whereas the free carboxyl group encloses a dihedral angle of 15.2 (3) ° with the pyridyl ring; such minimal twist probably locks the acid H atom in its place.

For the synthesis of the silver reactant used in the synthesis, see: Hanna & Ng (1999); Ng & Othman (1997). For a related structure, see: Drew et al. (1971).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of a portion of the title polymer; ellipsoids are drawn at the 70% probability level and H atoms are of arbitrary radius. Symmetry transformations are given in Table 1.: i = 1 - x, 1 - y, 1 - z; ii = 3/2 - x, y - 1/2, 3/2 - z.
Poly[(µ3-4-carboxypyridine-3-carboxylato- κ3N:O3:O4)(triphenylphosphine-κP)silver(I)] top
Crystal data top
[Ag(C7H4NO4)(C18H15P)]F(000) = 1080
Mr = 536.25Dx = 1.653 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9293 reflections
a = 14.2472 (7) Åθ = 2.4–28.3°
b = 10.2431 (5) ŵ = 1.04 mm1
c = 16.3146 (8) ÅT = 100 K
β = 115.206 (1)°Block, colorless
V = 2154.18 (18) Å30.35 × 0.30 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4942 independent reflections
Radiation source: fine-focus sealed tube4587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.712, Tmax = 0.859k = 1013
13432 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0292P)2 + 1.0816P]
where P = (Fo2 + 2Fc2)/3
4942 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ag(C7H4NO4)(C18H15P)]V = 2154.18 (18) Å3
Mr = 536.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2472 (7) ŵ = 1.04 mm1
b = 10.2431 (5) ÅT = 100 K
c = 16.3146 (8) Å0.35 × 0.30 × 0.15 mm
β = 115.206 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4942 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4587 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.859Rint = 0.019
13432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.43 e Å3
4942 reflectionsΔρmin = 0.48 e Å3
293 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.618798 (9)0.207715 (12)0.474714 (8)0.01345 (5)
P10.76750 (3)0.10818 (4)0.47440 (3)0.01115 (8)
O10.62846 (9)0.44669 (12)0.47885 (7)0.0165 (2)
O20.69543 (9)0.48204 (12)0.38079 (8)0.0166 (2)
O30.53857 (9)0.75596 (13)0.16600 (8)0.0193 (2)
O40.66107 (9)0.61847 (12)0.25149 (8)0.0178 (2)
H40.679 (3)0.554 (4)0.318 (2)0.095 (12)*
N10.46880 (10)0.77905 (13)0.43864 (10)0.0148 (3)
C10.78294 (12)0.06194 (15)0.50936 (10)0.0127 (3)
C20.73968 (12)0.10399 (16)0.56721 (11)0.0146 (3)
H20.69940.04530.58420.018*
C30.75513 (13)0.23085 (17)0.60006 (11)0.0160 (3)
H30.72600.25870.63980.019*
C40.81319 (13)0.31702 (16)0.57480 (11)0.0158 (3)
H4A0.82460.40360.59790.019*
C50.85461 (14)0.27720 (17)0.51589 (12)0.0175 (3)
H50.89300.33720.49770.021*
C60.84020 (13)0.14963 (17)0.48331 (11)0.0166 (3)
H60.86930.12230.44340.020*
C70.77577 (12)0.10772 (15)0.36598 (10)0.0122 (3)
C80.69787 (12)0.04132 (16)0.29445 (11)0.0159 (3)
H80.64620.00530.30470.019*
C90.69546 (13)0.04295 (17)0.20850 (11)0.0176 (3)
H90.64300.00360.16040.021*
C100.76977 (13)0.11260 (17)0.19307 (11)0.0189 (3)
H100.76700.11570.13390.023*
C110.84788 (14)0.17757 (18)0.26345 (12)0.0211 (4)
H110.89920.22410.25270.025*
C120.85148 (13)0.17507 (17)0.35027 (11)0.0173 (3)
H120.90550.21930.39860.021*
C130.88689 (12)0.18607 (16)0.55374 (11)0.0132 (3)
C140.89652 (13)0.32173 (17)0.54761 (11)0.0155 (3)
H140.84190.37040.50290.019*
C150.98636 (13)0.38491 (17)0.60728 (11)0.0185 (3)
H150.99340.47650.60240.022*
C161.06569 (13)0.31447 (18)0.67385 (12)0.0191 (3)
H161.12670.35780.71450.023*
C171.05556 (13)0.18084 (18)0.68081 (11)0.0186 (3)
H171.10960.13280.72660.022*
C180.96635 (12)0.11650 (17)0.62095 (11)0.0158 (3)
H180.95980.02490.62610.019*
C190.63603 (11)0.51340 (15)0.41887 (10)0.0127 (3)
C200.57237 (11)0.63798 (15)0.39057 (10)0.0119 (3)
C210.52976 (12)0.67522 (16)0.44994 (11)0.0130 (3)
H210.54530.62280.50220.016*
C220.44636 (13)0.85140 (18)0.36360 (12)0.0191 (3)
H220.40280.92560.35360.023*
C230.48410 (13)0.82197 (17)0.30104 (12)0.0177 (3)
H230.46570.87550.24890.021*
C240.54897 (12)0.71481 (15)0.31276 (11)0.0124 (3)
C250.58450 (12)0.69438 (16)0.23706 (11)0.0140 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01300 (7)0.01372 (7)0.01545 (7)0.00322 (4)0.00782 (5)0.00133 (4)
P10.01137 (17)0.01234 (19)0.01010 (18)0.00181 (14)0.00492 (15)0.00062 (14)
O10.0218 (6)0.0127 (6)0.0151 (6)0.0016 (4)0.0081 (5)0.0017 (4)
O20.0175 (5)0.0186 (6)0.0147 (5)0.0052 (5)0.0077 (5)0.0007 (5)
O30.0168 (6)0.0290 (7)0.0106 (5)0.0030 (5)0.0043 (5)0.0032 (5)
O40.0212 (6)0.0192 (6)0.0168 (6)0.0025 (5)0.0118 (5)0.0012 (5)
N10.0136 (6)0.0163 (7)0.0156 (7)0.0025 (5)0.0074 (5)0.0031 (5)
C10.0123 (7)0.0135 (7)0.0110 (7)0.0007 (6)0.0037 (6)0.0004 (6)
C20.0143 (7)0.0170 (8)0.0134 (7)0.0018 (6)0.0067 (6)0.0013 (6)
C30.0154 (7)0.0197 (8)0.0124 (7)0.0016 (6)0.0056 (6)0.0011 (6)
C40.0160 (7)0.0136 (8)0.0139 (7)0.0004 (6)0.0026 (6)0.0007 (6)
C50.0184 (8)0.0162 (8)0.0188 (8)0.0035 (6)0.0088 (7)0.0010 (6)
C60.0182 (8)0.0166 (8)0.0175 (8)0.0024 (6)0.0101 (7)0.0019 (6)
C70.0133 (7)0.0138 (8)0.0103 (7)0.0041 (6)0.0057 (6)0.0021 (6)
C80.0131 (7)0.0181 (8)0.0155 (8)0.0009 (6)0.0053 (6)0.0005 (6)
C90.0172 (7)0.0191 (8)0.0123 (7)0.0038 (6)0.0023 (6)0.0025 (6)
C100.0262 (8)0.0205 (9)0.0119 (7)0.0066 (7)0.0097 (7)0.0016 (6)
C110.0255 (9)0.0229 (9)0.0202 (9)0.0037 (7)0.0148 (7)0.0001 (7)
C120.0178 (8)0.0188 (8)0.0153 (8)0.0036 (6)0.0070 (6)0.0026 (6)
C130.0127 (7)0.0176 (8)0.0101 (7)0.0018 (6)0.0056 (6)0.0011 (6)
C140.0152 (7)0.0158 (8)0.0141 (7)0.0027 (6)0.0047 (6)0.0004 (6)
C150.0186 (8)0.0180 (8)0.0188 (8)0.0004 (6)0.0078 (7)0.0018 (7)
C160.0158 (8)0.0246 (9)0.0146 (8)0.0008 (7)0.0041 (6)0.0043 (7)
C170.0161 (8)0.0245 (9)0.0128 (8)0.0057 (7)0.0037 (6)0.0006 (6)
C180.0161 (7)0.0177 (8)0.0139 (7)0.0044 (6)0.0066 (6)0.0011 (6)
C190.0109 (7)0.0133 (8)0.0098 (7)0.0009 (6)0.0007 (6)0.0026 (6)
C200.0092 (6)0.0132 (7)0.0114 (7)0.0010 (6)0.0027 (6)0.0005 (6)
C210.0117 (7)0.0143 (7)0.0119 (7)0.0008 (6)0.0041 (6)0.0016 (6)
C220.0178 (8)0.0194 (9)0.0227 (8)0.0071 (7)0.0113 (7)0.0076 (7)
C230.0161 (8)0.0213 (9)0.0165 (8)0.0038 (6)0.0078 (6)0.0083 (7)
C240.0098 (7)0.0156 (8)0.0108 (7)0.0023 (6)0.0035 (6)0.0005 (6)
C250.0133 (7)0.0179 (8)0.0110 (7)0.0063 (6)0.0054 (6)0.0031 (6)
Geometric parameters (Å, º) top
Ag1—P12.3531 (4)C8—C91.388 (2)
Ag1—O12.451 (1)C8—H80.9500
Ag1—O3i2.481 (1)C9—C101.386 (2)
Ag1—N1ii2.253 (1)C9—H90.9500
P1—C11.8175 (16)C10—C111.383 (3)
P1—C71.8222 (15)C10—H100.9500
P1—C131.8248 (17)C11—C121.396 (2)
O1—C191.2353 (19)C11—H110.9500
O2—C191.2858 (18)C12—H120.9500
O3—C251.235 (2)C13—C181.391 (2)
O3—Ag1iii2.4814 (12)C13—C141.404 (2)
O4—C251.277 (2)C14—C151.394 (2)
O4—H41.20 (4)C14—H140.9500
N1—C211.335 (2)C15—C161.390 (2)
N1—C221.348 (2)C15—H150.9500
N1—Ag1ii2.2531 (13)C16—C171.386 (2)
C1—C61.396 (2)C16—H160.9500
C1—C21.397 (2)C17—C181.395 (2)
C2—C31.387 (2)C17—H170.9500
C2—H20.9500C18—H180.9500
C3—C41.387 (2)C19—C201.519 (2)
C3—H30.9500C20—C211.397 (2)
C4—C51.386 (2)C20—C241.408 (2)
C4—H4A0.9500C21—H210.9500
C5—C61.392 (2)C22—C231.374 (2)
C5—H50.9500C22—H220.9500
C6—H60.9500C23—C241.395 (2)
C7—C121.393 (2)C23—H230.9500
C7—C81.398 (2)C24—C251.536 (2)
P1—Ag1—O1113.12 (3)C9—C10—H10119.9
P1—Ag1—O3i122.95 (3)C10—C11—C12120.18 (16)
P1—Ag1—N1ii140.10 (4)C10—C11—H11119.9
O1—Ag1—O3i81.06 (4)C12—C11—H11119.9
O1—Ag1—N1ii87.84 (4)C7—C12—C11119.94 (16)
O3i—Ag1—N1ii92.57 (4)C7—C12—H12120.0
C1—P1—C7104.65 (7)C11—C12—H12120.0
C1—P1—C13104.18 (7)C18—C13—C14119.46 (15)
C7—P1—C13105.28 (7)C18—C13—P1122.35 (13)
C1—P1—Ag1113.79 (5)C14—C13—P1118.16 (12)
C7—P1—Ag1115.70 (5)C15—C14—C13119.88 (15)
C13—P1—Ag1112.16 (5)C15—C14—H14120.1
C19—O1—Ag1123.60 (10)C13—C14—H14120.1
C25—O3—Ag1iii132.51 (11)C16—C15—C14120.26 (16)
C25—O4—H4110.1 (17)C16—C15—H15119.9
C21—N1—C22116.87 (14)C14—C15—H15119.9
C21—N1—Ag1ii117.57 (10)C17—C16—C15119.88 (16)
C22—N1—Ag1ii123.80 (11)C17—C16—H16120.1
C6—C1—C2119.38 (15)C15—C16—H16120.1
C6—C1—P1121.99 (12)C16—C17—C18120.31 (16)
C2—C1—P1118.58 (12)C16—C17—H17119.8
C3—C2—C1120.45 (14)C18—C17—H17119.8
C3—C2—H2119.8C13—C18—C17120.19 (16)
C1—C2—H2119.8C13—C18—H18119.9
C2—C3—C4119.87 (15)C17—C18—H18119.9
C2—C3—H3120.1O1—C19—O2122.82 (15)
C4—C3—H3120.1O1—C19—C20117.60 (13)
C5—C4—C3120.17 (16)O2—C19—C20119.58 (14)
C5—C4—H4A119.9C21—C20—C24117.80 (14)
C3—C4—H4A119.9C21—C20—C19113.46 (13)
C4—C5—C6120.25 (15)C24—C20—C19128.70 (14)
C4—C5—H5119.9N1—C21—C20124.81 (14)
C6—C5—H5119.9N1—C21—H21117.6
C5—C6—C1119.86 (15)C20—C21—H21117.6
C5—C6—H6120.1N1—C22—C23122.51 (15)
C1—C6—H6120.1N1—C22—H22118.7
C12—C7—C8119.29 (14)C23—C22—H22118.7
C12—C7—P1123.54 (12)C22—C23—C24121.11 (15)
C8—C7—P1117.08 (11)C22—C23—H23119.4
C9—C8—C7120.46 (15)C24—C23—H23119.4
C9—C8—H8119.8C23—C24—C20116.89 (14)
C7—C8—H8119.8C23—C24—C25115.03 (14)
C10—C9—C8119.84 (15)C20—C24—C25128.06 (14)
C10—C9—H9120.1O3—C25—O4123.62 (15)
C8—C9—H9120.1O3—C25—C24117.47 (14)
C11—C10—C9120.26 (15)O4—C25—C24118.88 (14)
C11—C10—H10119.9
N1ii—Ag1—P1—C143.84 (8)C1—P1—C13—C181.57 (15)
O1—Ag1—P1—C1160.37 (6)C7—P1—C13—C18108.28 (14)
O3i—Ag1—P1—C1105.31 (7)Ag1—P1—C13—C18125.08 (12)
N1ii—Ag1—P1—C7165.10 (8)C1—P1—C13—C14176.52 (12)
O1—Ag1—P1—C778.37 (7)C7—P1—C13—C1473.64 (14)
O3i—Ag1—P1—C715.96 (7)Ag1—P1—C13—C1453.00 (13)
N1ii—Ag1—P1—C1374.11 (8)C18—C13—C14—C151.6 (2)
O1—Ag1—P1—C1342.42 (6)P1—C13—C14—C15179.71 (12)
O3i—Ag1—P1—C13136.75 (7)C13—C14—C15—C161.1 (2)
N1ii—Ag1—O1—C19153.23 (12)C14—C15—C16—C170.1 (3)
P1—Ag1—O1—C1961.82 (12)C15—C16—C17—C180.4 (3)
O3i—Ag1—O1—C1960.29 (12)C14—C13—C18—C171.0 (2)
C7—P1—C1—C628.81 (15)P1—C13—C18—C17179.09 (12)
C13—P1—C1—C681.49 (14)C16—C17—C18—C130.1 (2)
Ag1—P1—C1—C6156.05 (12)Ag1—O1—C19—O241.8 (2)
C7—P1—C1—C2153.99 (12)Ag1—O1—C19—C20138.75 (11)
C13—P1—C1—C295.70 (13)O1—C19—C20—C2112.9 (2)
Ag1—P1—C1—C226.75 (14)O2—C19—C20—C21166.63 (14)
C6—C1—C2—C31.3 (2)O1—C19—C20—C24164.64 (15)
P1—C1—C2—C3175.96 (12)O2—C19—C20—C2415.9 (2)
C1—C2—C3—C40.5 (2)C22—N1—C21—C200.8 (2)
C2—C3—C4—C50.9 (2)Ag1ii—N1—C21—C20166.32 (12)
C3—C4—C5—C61.5 (3)C24—C20—C21—N10.4 (2)
C4—C5—C6—C10.7 (3)C19—C20—C21—N1178.22 (14)
C2—C1—C6—C50.7 (2)C21—N1—C22—C230.4 (3)
P1—C1—C6—C5176.45 (13)Ag1ii—N1—C22—C23164.87 (13)
C1—P1—C7—C12119.18 (14)N1—C22—C23—C240.5 (3)
C13—P1—C7—C129.67 (16)C22—C23—C24—C200.9 (2)
Ag1—P1—C7—C12114.76 (13)C22—C23—C24—C25179.83 (15)
C1—P1—C7—C864.36 (13)C21—C20—C24—C230.4 (2)
C13—P1—C7—C8173.86 (12)C19—C20—C24—C23176.96 (15)
Ag1—P1—C7—C861.70 (13)C21—C20—C24—C25179.24 (14)
C12—C7—C8—C90.4 (2)C19—C20—C24—C251.8 (3)
P1—C7—C8—C9176.25 (12)Ag1iii—O3—C25—O493.68 (18)
C7—C8—C9—C101.0 (2)Ag1iii—O3—C25—C2488.43 (17)
C8—C9—C10—C111.7 (3)C23—C24—C25—O313.6 (2)
C9—C10—C11—C121.0 (3)C20—C24—C25—O3165.22 (15)
C8—C7—C12—C111.1 (2)C23—C24—C25—O4164.40 (15)
P1—C7—C12—C11175.27 (13)C20—C24—C25—O416.8 (2)
C10—C11—C12—C70.5 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O21.20 (4)1.20 (4)2.401 (2)176 (4)

Experimental details

Crystal data
Chemical formula[Ag(C7H4NO4)(C18H15P)]
Mr536.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.2472 (7), 10.2431 (5), 16.3146 (8)
β (°) 115.206 (1)
V3)2154.18 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.35 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.712, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
13432, 4942, 4587
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.055, 1.05
No. of reflections4942
No. of parameters293
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, M. G. B., Matthews, R. W. & Walton, R. A. (1971). J. Chem. Soc. A, pp. 2959–2962.  CSD CrossRef Web of Science Google Scholar
First citationHanna, J. V. & Ng, S. W. (1999). Acta Cryst. C55, IUC9900031.  CrossRef IUCr Journals Google Scholar
First citationNg, S. W. & Othman, A. H. (1997). Acta Cryst. C53, 1396–1400.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds