organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-iso­propyl­amino-6-methyl-8-oxo-3-phenyl-3H,8H-furo[2,3-d][1,2,4]triazolo[1,5-a]pyrimidine-7-carboxyl­ate

aDepartment of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China, and bDepartment of Anesthesiology, Taihe Hospital of Hubei Medical University, Shiyan 442000, People's Republic of China
*Correspondence e-mail: liqing8801@163.com, ylwang6686@yahoo.com.cn

(Received 10 August 2010; accepted 13 August 2010; online 25 August 2010)

In the title compound, C20H21N5O4, the ring system containing the three fused rings is essentially planar (r.m.s. deviation for all 12 non-H atoms = 0.041 Å). The phenyl ring makes a dihedral angle of 54.41 (6)° with this ring system. The isopropyl group is disordered over two positions, with site-occupancy factors of 0.753 (9) and 0.247 (9). The structure is mainly stabilized by weak inter­molecular N—H⋯O and intra­molecular C—H⋯O hydrogen-bonding inter­actions and ππ inter­actions, with inter­planar distances of 3.415 (1) Å between adjacent furan ring centroids and 3.420 (1) Å between the benzene and pyrimidinone rings.

Related literature

For the crystal structures of other fused pyrimidinone derivatives and related literature, see: Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]); Hu et al. (2005[Hu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o3266-o3268.], 2006[Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457-o1459.], 2007[Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838.], 2008[Hu, Y.-G., Zhu, Z.-R. & Chen, Y.-L. (2008). Acta Cryst. E64, o321-o322.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N5O4

  • Mr = 395.42

  • Orthorhombic, F d d 2

  • a = 19.9810 (11) Å

  • b = 37.3673 (19) Å

  • c = 10.7181 (6) Å

  • V = 8002.5 (7) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.991

  • 21970 measured reflections

  • 2074 independent reflections

  • 1883 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.09

  • 2074 reflections

  • 290 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.86 (3) 2.21 (2) 2.978 (4) 148 (3)
C17—H17A⋯O3 0.96 2.49 3.132 (7) 124
Symmetry code: (i) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Fused pyrimidine compounds are valued not only for their rich and varied chemistry, but also for many important biological properties. On the other hand, heterocycles containing triazoles nucleus also exhibit various biological activities.

The introduction of an triazole ring to the furopyrimidine system is expected to influence the biological activities significantly. As a part of our ongoing investigations on the preparation of derivatives of heterocyclic compounds (Ding et al., (2004), Hu et al., 2005, 2006, 2007, 2008), we have synthesized and structurally characterized characterized the title compound, and here we wish to report an X-ray crystal structure of it(Fig. 1).

In the molecule, the bond lengths and angles are unexceptional. In the title compound the ring system containing the three fused rings is essentially planar (r.m.s. deviation for all 12 non-H atoms 0.041 Å). The phenyl ring makes a dihedral angles of 54.41 (06)° with this ring system. The isopropyl group in molecule is disordered over two positions, with site occupancy factors 0.753 (9) and 0.247 (9); The structure is mainly stabilized by intermolecular weak N—H···O and intramolecular C—H···O hydrogen bonding interactions (Table 1) and π-π interactions with interplanar distances of 3.537Å between adjacent furan ring centroids (symmetry code: -x, -y, z) and 3.681Å between phenyl and pyrimidinone rings (symmetry code: 1/4 + x,1/4 - y,1/4 + z).

Related literature top

For the crystal structures of other fused pyrimidinone derivatives and related literature, see: Ding et al. (2004); Hu et al. (2005, 2006, 2007, 2008).

Experimental top

The title compound was obtained in excellent yield via aza-Wittig reaction. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:2 v/v) at room temperature.

Refinement top

In the absence of anomalous scatterers, 2307 Friedel pairs were merged. All H atoms were located in difference maps and treated as riding atoms, with C—H = 0.93 Å, Uiso = 1.2Ueq (C) for Csp2, C—H = 0.98 Å, Uiso = 1.2Ueq (C) for CH, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2, C—H = 0.96 Å, Uiso = 1.5Ueq (C) for CH3. The coordinates of the H atom bonded to N were refined with Uiso = 1.2Ueq(N) and the N—H distance restrained to 0.86 (1) Å. The bond distances and 1–3 distances in the disordered groups were restrained to be equal within an effective e.s.d. of 0.01 Å.

Structure description top

Fused pyrimidine compounds are valued not only for their rich and varied chemistry, but also for many important biological properties. On the other hand, heterocycles containing triazoles nucleus also exhibit various biological activities.

The introduction of an triazole ring to the furopyrimidine system is expected to influence the biological activities significantly. As a part of our ongoing investigations on the preparation of derivatives of heterocyclic compounds (Ding et al., (2004), Hu et al., 2005, 2006, 2007, 2008), we have synthesized and structurally characterized characterized the title compound, and here we wish to report an X-ray crystal structure of it(Fig. 1).

In the molecule, the bond lengths and angles are unexceptional. In the title compound the ring system containing the three fused rings is essentially planar (r.m.s. deviation for all 12 non-H atoms 0.041 Å). The phenyl ring makes a dihedral angles of 54.41 (06)° with this ring system. The isopropyl group in molecule is disordered over two positions, with site occupancy factors 0.753 (9) and 0.247 (9); The structure is mainly stabilized by intermolecular weak N—H···O and intramolecular C—H···O hydrogen bonding interactions (Table 1) and π-π interactions with interplanar distances of 3.537Å between adjacent furan ring centroids (symmetry code: -x, -y, z) and 3.681Å between phenyl and pyrimidinone rings (symmetry code: 1/4 + x,1/4 - y,1/4 + z).

For the crystal structures of other fused pyrimidinone derivatives and related literature, see: Ding et al. (2004); Hu et al. (2005, 2006, 2007, 2008).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme.
Ethyl 2-isopropylamino-6-methyl-8-oxo-3-phenyl-3H,8H- furo[2,3-d][1,2,4]triazolo[1,5-a]pyrimidine-7-carboxylate top
Crystal data top
C20H21N5O4F(000) = 3328
Mr = 395.42Dx = 1.313 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 3861 reflections
a = 19.9810 (11) Åθ = 2.2–20.8°
b = 37.3673 (19) ŵ = 0.09 mm1
c = 10.7181 (6) ÅT = 295 K
V = 8002.5 (7) Å3Block, purple
Z = 160.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2074 independent reflections
Radiation source: fine-focus sealed tube1883 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2524
Tmin = 0.981, Tmax = 0.991k = 4447
21970 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0601P)2 + 2.4148P]
where P = (Fo2 + 2Fc2)/3
2074 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.14 e Å3
5 restraintsΔρmin = 0.11 e Å3
Crystal data top
C20H21N5O4V = 8002.5 (7) Å3
Mr = 395.42Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 19.9810 (11) ŵ = 0.09 mm1
b = 37.3673 (19) ÅT = 295 K
c = 10.7181 (6) Å0.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2074 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1883 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.991Rint = 0.042
21970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0435 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.14 e Å3
2074 reflectionsΔρmin = 0.11 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.25088 (16)0.07862 (8)0.2745 (4)0.0618 (8)
H10.26340.06940.19740.074*
C20.29491 (17)0.07774 (9)0.3748 (4)0.0743 (11)
H20.33780.06850.36400.089*
C30.2759 (2)0.09026 (10)0.4890 (4)0.0829 (12)
H30.30520.08890.55620.099*
C40.2140 (2)0.10476 (12)0.5044 (4)0.0831 (11)
H40.20110.11330.58220.100*
C50.17048 (18)0.10680 (10)0.4059 (3)0.0678 (9)
H50.12870.11730.41670.081*
C60.18834 (15)0.09340 (8)0.2912 (3)0.0520 (7)
C70.07894 (14)0.07677 (7)0.1978 (3)0.0487 (6)
C80.14928 (15)0.10258 (7)0.0675 (3)0.0517 (7)
C90.21415 (19)0.12881 (12)0.1012 (4)0.0790 (11)
H9A0.19730.10930.15370.095*0.76
H9B0.17200.12950.14790.095*0.24
C100.1741 (3)0.16260 (18)0.1310 (7)0.107 (2)0.76
H10A0.12760.15840.11490.160*0.76
H10B0.18010.16870.21730.160*0.76
H10C0.18960.18190.07960.160*0.76
C110.2851 (3)0.1340 (3)0.1290 (7)0.137 (3)0.76
H11A0.30320.15190.07450.205*0.76
H11B0.29010.14160.21410.205*0.76
H11C0.30860.11180.11680.205*0.76
C11'0.2599 (11)0.1007 (4)0.153 (2)0.125 (8)0.24
H11D0.29960.09950.10230.188*0.24
H11E0.27180.10670.23670.188*0.24
H11F0.23760.07800.15140.188*0.24
C10'0.2513 (12)0.1649 (3)0.110 (3)0.187 (17)0.24
H10D0.22120.18400.08810.281*0.24
H10E0.26740.16840.19320.281*0.24
H10F0.28850.16490.05280.281*0.24
C120.00778 (15)0.06210 (8)0.0432 (3)0.0575 (8)
C130.03791 (14)0.04496 (8)0.1483 (3)0.0592 (8)
C140.00908 (14)0.04888 (8)0.2641 (3)0.0549 (7)
C150.09993 (16)0.02527 (8)0.1723 (4)0.0680 (10)
C160.10362 (17)0.02052 (9)0.2962 (4)0.0715 (10)
C170.1520 (2)0.00305 (13)0.3833 (5)0.0982 (14)
H17A0.18640.00870.33600.147*
H17B0.17190.02090.43610.147*
H17C0.12890.01420.43360.147*
C180.1456 (2)0.00781 (11)0.0816 (5)0.0832 (12)
C190.1552 (3)0.01350 (12)0.1254 (6)0.1117 (18)
H19A0.19460.00060.14520.134*
H19B0.16970.03700.09760.134*
C200.1128 (4)0.0169 (2)0.2349 (7)0.158 (3)
H20A0.09850.00640.26140.237*
H20B0.13750.02820.30090.237*
H20C0.07430.03120.21470.237*
N10.14054 (11)0.09293 (6)0.1915 (2)0.0506 (6)
N20.05524 (11)0.07635 (6)0.0793 (2)0.0511 (6)
N30.09879 (12)0.09351 (6)0.0029 (2)0.0538 (6)
N40.20563 (14)0.11862 (8)0.0286 (3)0.0636 (7)
H4A0.2249 (17)0.1327 (8)0.081 (3)0.076*
N50.04897 (13)0.06436 (7)0.2978 (2)0.0568 (6)
O10.02832 (11)0.06660 (6)0.0623 (2)0.0728 (7)
O20.04849 (11)0.03475 (6)0.3546 (2)0.0695 (6)
O30.20042 (15)0.00291 (9)0.1061 (4)0.1254 (13)
O40.11678 (14)0.00387 (7)0.0285 (3)0.0887 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0516 (17)0.0511 (16)0.083 (2)0.0037 (13)0.0061 (16)0.0058 (16)
C20.0521 (19)0.0555 (18)0.115 (3)0.0055 (15)0.021 (2)0.016 (2)
C30.088 (3)0.073 (2)0.088 (3)0.015 (2)0.043 (2)0.015 (2)
C40.094 (3)0.091 (3)0.065 (2)0.010 (2)0.020 (2)0.0011 (19)
C50.063 (2)0.079 (2)0.062 (2)0.0057 (16)0.0053 (17)0.0026 (16)
C60.0479 (16)0.0494 (15)0.0587 (17)0.0094 (13)0.0064 (13)0.0071 (13)
C70.0428 (15)0.0493 (15)0.0540 (16)0.0008 (12)0.0032 (14)0.0011 (13)
C80.0534 (17)0.0475 (15)0.0542 (17)0.0004 (13)0.0045 (14)0.0061 (13)
C90.081 (2)0.098 (3)0.0576 (19)0.019 (2)0.0117 (18)0.0011 (19)
C100.120 (5)0.113 (5)0.088 (4)0.002 (4)0.018 (4)0.035 (4)
C110.089 (4)0.226 (10)0.096 (5)0.018 (6)0.039 (4)0.026 (6)
C11'0.18 (2)0.093 (14)0.105 (15)0.018 (15)0.062 (16)0.013 (12)
C10'0.26 (4)0.110 (17)0.19 (3)0.06 (2)0.16 (3)0.081 (19)
C120.0508 (17)0.0457 (16)0.076 (2)0.0031 (13)0.0168 (16)0.0029 (15)
C130.0449 (17)0.0515 (17)0.081 (2)0.0002 (13)0.0078 (16)0.0001 (16)
C140.0446 (15)0.0510 (16)0.0692 (19)0.0032 (13)0.0058 (14)0.0018 (14)
C150.0450 (18)0.0517 (18)0.107 (3)0.0007 (14)0.0087 (18)0.0031 (18)
C160.0485 (18)0.0585 (19)0.108 (3)0.0056 (14)0.0049 (18)0.0043 (19)
C170.074 (3)0.091 (3)0.130 (4)0.023 (2)0.029 (3)0.012 (3)
C180.058 (2)0.061 (2)0.131 (4)0.0096 (17)0.028 (2)0.021 (2)
C190.120 (4)0.063 (2)0.152 (5)0.015 (2)0.081 (4)0.011 (3)
C200.194 (7)0.151 (5)0.129 (5)0.003 (5)0.057 (5)0.036 (5)
N10.0410 (12)0.0554 (13)0.0552 (13)0.0055 (10)0.0011 (11)0.0000 (11)
N20.0470 (13)0.0505 (13)0.0558 (14)0.0007 (10)0.0048 (11)0.0009 (11)
N30.0586 (15)0.0519 (13)0.0509 (13)0.0039 (11)0.0029 (12)0.0036 (11)
N40.0601 (16)0.0739 (17)0.0566 (16)0.0145 (14)0.0082 (13)0.0032 (13)
N50.0484 (14)0.0619 (15)0.0601 (14)0.0057 (11)0.0008 (12)0.0012 (12)
O10.0743 (15)0.0658 (13)0.0783 (16)0.0078 (11)0.0312 (13)0.0074 (12)
O20.0551 (13)0.0702 (14)0.0832 (15)0.0106 (11)0.0130 (12)0.0042 (12)
O30.0740 (18)0.139 (3)0.163 (3)0.0538 (19)0.031 (2)0.036 (3)
O40.0692 (16)0.0697 (16)0.127 (3)0.0056 (13)0.0370 (18)0.0125 (16)
Geometric parameters (Å, º) top
C1—C61.378 (4)C11'—H11D0.9600
C1—C21.389 (5)C11'—H11E0.9600
C1—H10.9300C11'—H11F0.9600
C2—C31.364 (7)C10'—H10D0.9600
C2—H20.9300C10'—H10E0.9600
C3—C41.361 (6)C10'—H10F0.9600
C3—H30.9300C12—O11.215 (4)
C4—C51.370 (5)C12—N21.421 (4)
C4—H40.9300C12—C131.429 (5)
C5—C61.374 (5)C13—C141.376 (5)
C5—H50.9300C13—C151.464 (5)
C6—N11.434 (4)C14—N51.345 (4)
C7—N51.312 (4)C14—O21.357 (4)
C7—N21.355 (4)C15—C161.342 (6)
C7—N11.373 (3)C15—C181.483 (6)
C8—N31.305 (4)C16—O21.374 (4)
C8—N41.342 (4)C16—C171.494 (6)
C8—N11.387 (4)C17—H17A0.9600
C9—N41.452 (5)C17—H17B0.9600
C9—C111.461 (7)C17—H17C0.9600
C9—C11'1.496 (11)C18—O31.196 (5)
C9—C101.528 (7)C18—O41.321 (6)
C9—C10'1.543 (11)C19—O41.446 (5)
C9—H9A0.9800C19—C201.454 (9)
C9—H9B0.9800C19—H19A0.9700
C10—H9B1.2497C19—H19B0.9700
C10—H10A0.9600C20—H20A0.9600
C10—H10B0.9600C20—H20B0.9600
C10—H10C0.9600C20—H20C0.9600
C11—H11A0.9600N2—N31.394 (3)
C11—H11B0.9600N4—H4A0.86 (3)
C11—H11C0.9600
C6—C1—C2118.9 (3)C9—C10'—H10E109.5
C6—C1—H1120.6H10D—C10'—H10E109.5
C2—C1—H1120.6C9—C10'—H10F109.5
C3—C2—C1120.7 (3)H10D—C10'—H10F109.5
C3—C2—H2119.7H10E—C10'—H10F109.5
C1—C2—H2119.7O1—C12—N2120.1 (3)
C4—C3—C2119.9 (4)O1—C12—C13130.8 (3)
C4—C3—H3120.1N2—C12—C13109.1 (3)
C2—C3—H3120.1C14—C13—C12119.1 (3)
C3—C4—C5120.4 (4)C14—C13—C15104.5 (3)
C3—C4—H4119.8C12—C13—C15136.1 (3)
C5—C4—H4119.8N5—C14—O2118.4 (3)
C4—C5—C6120.3 (4)N5—C14—C13130.4 (3)
C4—C5—H5119.9O2—C14—C13111.1 (3)
C6—C5—H5119.9C16—C15—C13106.7 (3)
C5—C6—C1119.9 (3)C16—C15—C18123.8 (4)
C5—C6—N1119.9 (3)C13—C15—C18128.8 (4)
C1—C6—N1120.1 (3)C15—C16—O2110.9 (3)
N5—C7—N2127.0 (3)C15—C16—C17135.3 (4)
N5—C7—N1127.2 (3)O2—C16—C17113.8 (4)
N2—C7—N1105.8 (2)C16—C17—H17A109.5
N3—C8—N4125.8 (3)C16—C17—H17B109.5
N3—C8—N1112.9 (2)H17A—C17—H17B109.5
N4—C8—N1121.3 (3)C16—C17—H17C109.5
N4—C9—C11110.1 (4)H17A—C17—H17C109.5
N4—C9—C11'103.9 (10)H17B—C17—H17C109.5
N4—C9—C10110.8 (4)O3—C18—O4123.9 (5)
C11—C9—C10110.8 (6)O3—C18—C15124.5 (5)
C11'—C9—C10145.3 (10)O4—C18—C15111.5 (3)
N4—C9—C10'110.0 (11)O4—C19—C20108.0 (5)
C11'—C9—C10'107.3 (9)O4—C19—H19A110.1
N4—C9—H9A108.3C20—C19—H19A110.1
C11—C9—H9A108.3O4—C19—H19B110.1
C10—C9—H9A108.3C20—C19—H19B110.1
C10'—C9—H9A141.5H19A—C19—H19B108.4
N4—C9—H9B113.3C19—C20—H20A109.5
C11—C9—H9B136.6C19—C20—H20B109.5
C11'—C9—H9B110.9H20A—C20—H20B109.5
C10'—C9—H9B111.1C19—C20—H20C109.5
C9—C10—H10A109.5H20A—C20—H20C109.5
C9—C10—H10B109.5H20B—C20—H20C109.5
H9B—C10—H10B95.8C7—N1—C8105.9 (2)
C9—C10—H10C109.5C7—N1—C6124.5 (2)
H9B—C10—H10C147.0C8—N1—C6128.8 (2)
C9—C11—H11A109.5C7—N2—N3111.6 (2)
C9—C11—H11B109.5C7—N2—C12124.7 (3)
C9—C11—H11C109.5N3—N2—C12123.6 (2)
C9—C11'—H11D109.5C8—N3—N2103.7 (2)
C9—C11'—H11E109.5C8—N4—C9120.9 (3)
H11D—C11'—H11E109.5C8—N4—H4A116 (3)
C9—C11'—H11F109.5C9—N4—H4A114 (3)
H11D—C11'—H11F109.5C7—N5—C14109.0 (3)
H11E—C11'—H11F109.5C14—O2—C16106.8 (3)
C9—C10'—H10D109.5C18—O4—C19117.4 (4)
C6—C1—C2—C32.1 (5)N4—C8—N1—C68.7 (5)
C1—C2—C3—C42.0 (5)C5—C6—N1—C756.1 (4)
C2—C3—C4—C50.2 (6)C1—C6—N1—C7120.2 (3)
C3—C4—C5—C61.6 (6)C5—C6—N1—C8135.5 (3)
C4—C5—C6—C11.5 (5)C1—C6—N1—C848.2 (4)
C4—C5—C6—N1174.8 (3)N5—C7—N2—N3176.9 (3)
C2—C1—C6—C50.3 (5)N1—C7—N2—N33.0 (3)
C2—C1—C6—N1176.6 (3)N5—C7—N2—C120.2 (5)
O1—C12—C13—C14168.6 (3)N1—C7—N2—C12179.6 (2)
N2—C12—C13—C148.9 (4)O1—C12—N2—C7171.4 (3)
O1—C12—C13—C153.6 (6)C13—C12—N2—C76.5 (4)
N2—C12—C13—C15178.8 (3)O1—C12—N2—N34.9 (4)
C12—C13—C14—N56.7 (5)C13—C12—N2—N3177.2 (2)
C15—C13—C14—N5178.9 (3)N4—C8—N3—N2177.0 (3)
C12—C13—C14—O2172.3 (3)N1—C8—N3—N21.2 (3)
C15—C13—C14—O22.2 (3)C7—N2—N3—C82.6 (3)
C14—C13—C15—C162.1 (4)C12—N2—N3—C8179.3 (2)
C12—C13—C15—C16170.9 (4)N3—C8—N4—C92.3 (5)
C14—C13—C15—C18168.0 (3)N1—C8—N4—C9179.6 (3)
C12—C13—C15—C1819.0 (6)C11—C9—N4—C8160.5 (6)
C13—C15—C16—O21.3 (4)C11'—C9—N4—C8103.2 (11)
C18—C15—C16—O2169.4 (3)C10—C9—N4—C876.5 (5)
C13—C15—C16—C17179.8 (4)C10'—C9—N4—C8142.2 (10)
C18—C15—C16—C179.1 (7)N2—C7—N5—C143.4 (4)
C16—C15—C18—O323.7 (6)N1—C7—N5—C14176.8 (3)
C13—C15—C18—O3167.7 (4)O2—C14—N5—C7179.0 (3)
C16—C15—C18—O4153.1 (4)C13—C14—N5—C70.1 (5)
C13—C15—C18—O415.5 (5)N5—C14—O2—C16179.5 (3)
N5—C7—N1—C8177.7 (3)C13—C14—O2—C161.4 (3)
N2—C7—N1—C82.1 (3)C15—C16—O2—C140.0 (4)
N5—C7—N1—C611.6 (5)C17—C16—O2—C14178.9 (3)
N2—C7—N1—C6168.6 (2)O3—C18—O4—C192.0 (6)
N3—C8—N1—C70.5 (3)C15—C18—O4—C19178.8 (3)
N4—C8—N1—C7178.8 (3)C20—C19—O4—C18176.6 (4)
N3—C8—N1—C6169.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.86 (3)2.21 (2)2.978 (4)148 (3)
C17—H17A···O30.962.493.132 (7)124
Symmetry code: (i) x+1/4, y+1/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC20H21N5O4
Mr395.42
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)295
a, b, c (Å)19.9810 (11), 37.3673 (19), 10.7181 (6)
V3)8002.5 (7)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.981, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
21970, 2074, 1883
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.09
No. of reflections2074
No. of parameters290
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.11

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.86 (3)2.21 (2)2.978 (4)148 (3)
C17—H17A···O30.962.493.132 (7)124.3
Symmetry code: (i) x+1/4, y+1/4, z+1/4.
 

Acknowledgements

The authors are grateful to Dr Y. G. Hu (Institute of Medicinal Chemistry, Hubei Medical University, Shiyan, China) for help with synthesis and analysis. This work was supported by the Education Commission of Hubei Province of China (grant No. B20102107) and Shiyan Municipal Science and Technology Bureau (grant No. 2010-037s).

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o3266–o3268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836–o1838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457–o1459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y.-G., Zhu, Z.-R. & Chen, Y.-L. (2008). Acta Cryst. E64, o321–o322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds