metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(ethane-1,2-di­amine-κ2N,N′)cobalt(III) carbonate iodide tetra­hydrate

aDepartment of Chemistry, Georgetown University, 620 Michigan Av. NE, Washington, DC 20064, USA, bDepartment of Chemistry, Howard University, 525 College St. NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 10 August 2010; accepted 17 August 2010; online 21 August 2010)

The title compound, [Co(C2H8N2)3](CO3)I·4H2O, crystallizes with a [Co(en)3]3+ cation (en is ethane-1,2-diamine), CO32− and I anions and four water mol­ecules in the asymmetric unit. In the cation, the three rings formed by the ethyl­enediamine units and the CoIII metal ion are in slightly distorted twist conformations. Numerous O—H⋯O, N—H⋯O, N—H⋯I and O—H⋯I inter­molecular hydrogen bonds between the cation and two anions in concert with the four water mol­ecules dominate the crystal packing and create a supra­molecular infinite three-dimensional framework.

Related literature

For background to double salts, see: Dvorkin et al. (1989[Dvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Sinkevich, A. V. (1989). Dokl. Acad. Nauk Ukr. SSR, Ser. B, 10, 31-34.], 1991[Dvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Simonov, Y. A. (1991). Ukr. Khim. Zh. 57, 5-8.]); Farago et al. (1967[Farago, M. E., James, J. M. & Trew, V. C. G. (1967). J. Chem. Soc. A, 5, 728-729.]). Brewer & Butcher (2009[Brewer, G. & Butcher, R. J. (2009). 238th National ACS Meeting, Aug. 16-20. Washinton, DC, USA.]). For the synthesis, see: Broomhead et al. (1960[Broomhead, J. A., Dwyer, F. P. & Hogarth, J. W. (1960). Inorganic Synthesis, Vol. 6, pp. 186-188. New York: McGraw-Hill.]). For hydrolysis of cyanate to give carbonate at elevated temperatures, see: Seifer & Tarasova (1982[Seifer, G. B. & Tarasova, Z. A. (1982). Zh. Neorg. Khim. 27, 1587-1589.]); Seifer et al. (1981[Seifer, G. B., Chumaevskii, N. A., Minaeva, N. A. & Tarasova, Z. A. (1981). Zh. Neorg. Khim. 27, 1731-1735.]); Piazzesi et al. (2007[Piazzesi, G., Nicosia, D., Devedas, M., Kroecher, O., Elsener, M. & Wokaun, A. (2007). Catal. Lett. 115, 33-39.]). For thermodynamics of the outer sphere solution inter­action of [Co(en)3]3+ with the carbonate ion, see: Mironov et al. (1973[Mironov, V. E., Ragulin, G. K., Solov'ev, Y. B., Fadeev, V. M. & Kolobov, N. P. (1973). Zh. Fiz. Khim. 47, 530-532.], 1976[Mironov, V. E., Pyartman, A. K. & Kolobov, N. P. (1976). Zh. Fiz. Khim. 50, 1967-1970.]). For related structures containing the [Co(en)3]3+ cation, see: Brouty et al. (1976[Brouty, C., Spinat, P., Whuler, A. & Herpin, P. (1976). Acta Cryst. B32, 2153-2159.]); Liu et al. (1995[Liu, Y.-H., Fronczek, F. R., Watkins, S. F., Shaffer, G. W. & Musselman, R. L. (1995). Acta Cryst. C51, 1992-1994.]); Lappin et al. (1993[Lappin, A. G., Haller, K. J., Warren, R. M. L. & Tatehata, A. (1993). Inorg. Chem. 32, 4498-4504.]); Mizuta et al. (1988[Mizuta, T., Tada, T., Kushi, Y. & Yoneda, H. (1988). Inorg. Chem., 27, 3836-3841.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H8N2)3](CO3)I·4H2O

  • Mr = 498.22

  • Orthorhombic, P n a 21

  • a = 16.6907 (2) Å

  • b = 8.7031 (1) Å

  • c = 12.5718 (2) Å

  • V = 1826.19 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.67 mm−1

  • T = 123 K

  • 0.52 × 0.46 × 0.35 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.737, Tmax = 1.000

  • 25329 measured reflections

  • 7440 independent reflections

  • 6109 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.048

  • S = 0.97

  • 7440 reflections

  • 224 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3466 Friedel pairs

  • Flack parameter: 0.034 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯O3Si 0.92 1.90 2.7625 (19) 155
N11—H11B⋯Iii 0.92 3.08 3.8409 (14) 141
N12—H12A⋯O2Siii 0.92 1.93 2.8042 (19) 158
N12—H12B⋯O1W 0.92 2.27 3.020 (2) 138
N21—H21A⋯O1Si 0.92 2.10 2.9891 (18) 161
N21—H21B⋯I 0.92 2.80 3.6165 (13) 149
N22—H22A⋯O2W 0.92 2.06 2.970 (2) 172
N22—H22B⋯O3S 0.92 1.91 2.8104 (19) 166
N31—H31A⋯O3W 0.92 2.01 2.907 (2) 165
N31—H31B⋯O2S 0.92 1.92 2.821 (2) 165
N32—H32A⋯O1Siii 0.92 2.12 2.9760 (18) 155
N32—H32A⋯O2Siii 0.92 2.61 3.146 (2) 117
N32—H32B⋯Iii 0.92 2.80 3.6456 (13) 153
O1W—H1W1⋯O4Wiv 0.81 (2) 2.19 (3) 2.892 (3) 146 (4)
O1W—H1W2⋯O3Wv 0.79 (2) 2.07 (2) 2.805 (3) 156 (3)
O2W—H2W1⋯O1Siii 0.79 (2) 1.90 (2) 2.6775 (17) 170 (2)
O2W—H2W2⋯O1W 0.81 (2) 2.21 (2) 2.881 (2) 141 (2)
O3W—H3W1⋯O1Si 0.82 (2) 1.90 (2) 2.6982 (17) 163 (2)
O3W—H3W2⋯O4Wii 0.80 (2) 2.03 (2) 2.811 (2) 169 (2)
O4W—H4W1⋯Ivi 0.82 (2) 2.67 (2) 3.4897 (18) 176 (3)
O4W—H4W2⋯O2W 0.82 (2) 1.93 (2) 2.728 (2) 164 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, -y+2, z-{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (vi) [-x+1, -y+2, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

[Ni(en)3]2+ and [Zn(en)3]2+ react with MX (M = K or NH4, X = SCN– or SeCN–) to form double salts, [Ni(en)3](SCN)2.NH4(SCN) (Dvorkin et al., 1991) and [Ni(en)3](SeCN)2.K(SeCN) (Farago et al., 1967) or [Zn(en)3](SCN)2.K(SCN) (Dvorkin et al., 1989). Structural studies of these thiocyanate double salts reveal a linear polymeric anion, [(M(SCN)3)2-]n. The reaction of [Co(en)3]3+ with potassium cyanate (Brewer & Butcher, 2009) was conducted to determine if the [(K(OCN)3)2-]n ion could be formed and isolated as its salt with the [Co(en)3]3+ cation. Analysis of the reaction product by single-crystal diffraction revealed the [Co(en)3]3+ cation and carbonate and iodide ions. This suggests hydroysis of cyanate as it is the only source of a carbon atom in the reaction mixture other than the ethylenediamine ligand, (i.e., [Co(en)3](I)3 + KOCN + 2H2O [Co(en)3](CO3)(I).4H2O + NH4I + KI). The hydrolysis of cyanate to give carbonate has been observed with nickel (Seifer & Tarasova, 1982) and yttrium (Seifer et al., 1981) at elevated temperatures. In addition HNCO (Piazzesi et al., 2007) was hydrolyzed at elevated temperatures in the presence of solid catalysts. However, the present reaction takes place at room temperature. The thermodynamics of the outer sphere solution interaction of [Co(en)3]3+ with the carbonate ion (added as a carbonate salt) have been reported (Mironov, et al., 1973, 1976). Similar structures containing the [Co(en)3]3+ cation have been reported (Brouty et al. 1976; Liu et al., 1995). Additional related structures have been also been reported (Lappin, et al., 1993; Mizuta et al., 1988). Hence in continuation with our studies of the potential catalytic role of [Co(en)3]3+ in the hydrolysis of amides and urea and the relationship to urease this new tris(ethane-1,2-diamine-K2 N,N')cobalt(III) carbonate iodide tetrahydrate compound is synthesized and its crystal structure is reported.

The title compound crystallizes with a [Co(en)3]3+ cation, (CO3)2- and I- anions and four water molecules in the asymmetric unit (Fig. 1). In the cation the three rings formed by the ethylenediamine units and Co3+metal ion are in slightly distorted twist conformations with C11—C12, C21—C22 and C31—C32 being twisted within rings 1 (Co/N11/C11/C12/N12), 2 (Co/N21/C21/C22/N22) and 3 (Co/N31/C31/C32/N32), respectively. Numerous O–H···O, N–H···H, N–H···I and O–H···I intermolecular hydrogen bonds (Table 1) between the cation and two anions in concert with the four water molecules dominate the crystal packing and create a supramolecular infinite three-dimensional framework that extends throughout the crystalline lattice (Fig. 2).

Related literature top

For background to double salts, see: Dvorkin et al. (1989, 1991); Farago et al. (1967). Brewer & Butcher (2009); For the synthesis, see Broomhead et al. (1960). For hydrolysis of cyanate to give carbonate at elevated temperatures, see: Seifer et al. (1982, 1981); Piazzesi et al. (2007). For thermodynamics of the outer sphere solution interaction of [Co(en)3]3+ with the carbonate ion, see: Mironov, et al. (1973, 1976). For related structures containing the [Co(en)3]3+ cation, see: Brouty et al. (1976); Liu et al. (1995); Lappin et al. (1993); Mizuta et al. (1988).

Experimental top

[Co(en)3]I3 was prepared as described previously (Broomhead et al., 1960). [Co(en)3]I3 was reacted with an excess of KOCN in water. The red blockish crystals were removed a week later by filtration.

Refinement top

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H = 0.92 Å, and C—H = 0.99 Å and with Uiso(H) = 1.17–1.20 Ueq(N) and Uiso(H) = 1.19–1.21 Ueq(C). H atoms on the water molecules were located by Fourier maps, and refined isotropically with O-H restrained to 0.82 (2)Å and H..H restrained to 1.297 (2)Å and Uiso(H) = 1.50 Ueq(O).

Structure description top

[Ni(en)3]2+ and [Zn(en)3]2+ react with MX (M = K or NH4, X = SCN– or SeCN–) to form double salts, [Ni(en)3](SCN)2.NH4(SCN) (Dvorkin et al., 1991) and [Ni(en)3](SeCN)2.K(SeCN) (Farago et al., 1967) or [Zn(en)3](SCN)2.K(SCN) (Dvorkin et al., 1989). Structural studies of these thiocyanate double salts reveal a linear polymeric anion, [(M(SCN)3)2-]n. The reaction of [Co(en)3]3+ with potassium cyanate (Brewer & Butcher, 2009) was conducted to determine if the [(K(OCN)3)2-]n ion could be formed and isolated as its salt with the [Co(en)3]3+ cation. Analysis of the reaction product by single-crystal diffraction revealed the [Co(en)3]3+ cation and carbonate and iodide ions. This suggests hydroysis of cyanate as it is the only source of a carbon atom in the reaction mixture other than the ethylenediamine ligand, (i.e., [Co(en)3](I)3 + KOCN + 2H2O [Co(en)3](CO3)(I).4H2O + NH4I + KI). The hydrolysis of cyanate to give carbonate has been observed with nickel (Seifer & Tarasova, 1982) and yttrium (Seifer et al., 1981) at elevated temperatures. In addition HNCO (Piazzesi et al., 2007) was hydrolyzed at elevated temperatures in the presence of solid catalysts. However, the present reaction takes place at room temperature. The thermodynamics of the outer sphere solution interaction of [Co(en)3]3+ with the carbonate ion (added as a carbonate salt) have been reported (Mironov, et al., 1973, 1976). Similar structures containing the [Co(en)3]3+ cation have been reported (Brouty et al. 1976; Liu et al., 1995). Additional related structures have been also been reported (Lappin, et al., 1993; Mizuta et al., 1988). Hence in continuation with our studies of the potential catalytic role of [Co(en)3]3+ in the hydrolysis of amides and urea and the relationship to urease this new tris(ethane-1,2-diamine-K2 N,N')cobalt(III) carbonate iodide tetrahydrate compound is synthesized and its crystal structure is reported.

The title compound crystallizes with a [Co(en)3]3+ cation, (CO3)2- and I- anions and four water molecules in the asymmetric unit (Fig. 1). In the cation the three rings formed by the ethylenediamine units and Co3+metal ion are in slightly distorted twist conformations with C11—C12, C21—C22 and C31—C32 being twisted within rings 1 (Co/N11/C11/C12/N12), 2 (Co/N21/C21/C22/N22) and 3 (Co/N31/C31/C32/N32), respectively. Numerous O–H···O, N–H···H, N–H···I and O–H···I intermolecular hydrogen bonds (Table 1) between the cation and two anions in concert with the four water molecules dominate the crystal packing and create a supramolecular infinite three-dimensional framework that extends throughout the crystalline lattice (Fig. 2).

For background to double salts, see: Dvorkin et al. (1989, 1991); Farago et al. (1967). Brewer & Butcher (2009); For the synthesis, see Broomhead et al. (1960). For hydrolysis of cyanate to give carbonate at elevated temperatures, see: Seifer et al. (1982, 1981); Piazzesi et al. (2007). For thermodynamics of the outer sphere solution interaction of [Co(en)3]3+ with the carbonate ion, see: Mironov, et al. (1973, 1976). For related structures containing the [Co(en)3]3+ cation, see: Brouty et al. (1976); Liu et al. (1995); Lappin et al. (1993); Mizuta et al. (1988).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of C7H32CoIN6O7, showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate O–H···O, N–H···H, N–H···I and O–H···I intermolecular hydrogen bonds (Table 1) in the asymmetric unit.
[Figure 2] Fig. 2. Packing diagram of the C7H32CoIN6O7 viewed down the b axis. Dashed lines indicate O–H···O, N–H···H, N–H···I and O–H···I intermolecular hydrogen bond interactions (Table 1).
Tris(ethane-1,2-diamine-κ2N,N')cobalt(III) carbonate iodide tetrahydrate top
Crystal data top
[Co(C2H8N2)3](CO3)I·4H2OF(000) = 1008
Mr = 498.22Dx = 1.812 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 14059 reflections
a = 16.6907 (2) Åθ = 4.6–34.7°
b = 8.7031 (1) ŵ = 2.67 mm1
c = 12.5718 (2) ÅT = 123 K
V = 1826.19 (4) Å3Chunk, orange
Z = 40.52 × 0.46 × 0.35 mm
Data collection top
Oxford Diffraction Gemini R
diffractometer
7440 independent reflections
Radiation source: Enhance (Mo) X-ray Source6109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 34.9°, θmin = 4.6°
φ and ω scansh = 2626
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1313
Tmin = 0.737, Tmax = 1.000l = 2019
25329 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0247P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.004
S = 0.97Δρmax = 0.50 e Å3
7440 reflectionsΔρmin = 0.52 e Å3
224 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.0039 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 3466 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.034 (8)
Crystal data top
[Co(C2H8N2)3](CO3)I·4H2OV = 1826.19 (4) Å3
Mr = 498.22Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.6907 (2) ŵ = 2.67 mm1
b = 8.7031 (1) ÅT = 123 K
c = 12.5718 (2) Å0.52 × 0.46 × 0.35 mm
Data collection top
Oxford Diffraction Gemini R
diffractometer
7440 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
6109 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 1.000Rint = 0.028
25329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048Δρmax = 0.50 e Å3
S = 0.97Δρmin = 0.52 e Å3
7440 reflectionsAbsolute structure: Flack (1983), 3466 Friedel pairs
224 parametersAbsolute structure parameter: 0.034 (8)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.253677 (10)0.80188 (2)0.618078 (18)0.01164 (4)
N110.18624 (8)0.71681 (17)0.50344 (11)0.0151 (3)
H11A0.19330.61210.49950.018*
H11B0.13310.73580.51790.018*
N120.31791 (8)0.89092 (17)0.50246 (11)0.0158 (3)
H12A0.30660.99390.49570.019*
H12B0.37160.88050.51740.019*
N210.31973 (7)0.61537 (14)0.62246 (13)0.0166 (2)
H21A0.28750.52970.62130.020*
H21B0.35290.61210.56410.020*
N220.32782 (8)0.88267 (16)0.72458 (11)0.0153 (3)
H22A0.34440.97940.70500.018*
H22B0.30230.89000.78920.018*
N310.18243 (8)0.71917 (17)0.72761 (12)0.0153 (3)
H31A0.16570.62240.70830.018*
H31B0.20970.71140.79100.018*
N320.18705 (7)0.98751 (14)0.62582 (13)0.0161 (2)
H32A0.21901.07360.62390.019*
H32B0.15260.99090.56870.019*
C110.20837 (10)0.7882 (2)0.40106 (13)0.0185 (3)
H11C0.18110.88850.39280.022*
H11D0.19250.72100.34120.022*
C120.29845 (10)0.8098 (2)0.40232 (13)0.0189 (3)
H12C0.32590.70910.39980.023*
H12D0.31580.87140.34020.023*
C210.36832 (10)0.6175 (2)0.72172 (14)0.0226 (4)
H21C0.41380.54490.71600.027*
H21D0.33500.58770.78360.027*
C220.39832 (9)0.7795 (2)0.73421 (14)0.0222 (3)
H22C0.42410.79270.80450.027*
H22D0.43820.80350.67830.027*
C310.11178 (10)0.8214 (2)0.74117 (14)0.0218 (3)
H31C0.08840.80800.81300.026*
H31D0.07020.79650.68770.026*
C320.14064 (10)0.9841 (2)0.72663 (17)0.0218 (3)
H32C0.09461.05550.72250.026*
H32D0.17501.01510.78710.026*
O1S0.25421 (6)0.80615 (15)1.08978 (9)0.0194 (2)
O2S0.23978 (8)0.67827 (14)0.93676 (10)0.0232 (3)
O3S0.27443 (8)0.92499 (15)0.93456 (10)0.0244 (3)
C1S0.25620 (8)0.80301 (18)0.98495 (13)0.0159 (3)
O1W0.48655 (10)1.0158 (3)0.4929 (2)0.0495 (6)
H1W10.4953 (16)1.003 (5)0.4303 (16)0.074*
H1W20.5264 (15)1.041 (4)0.522 (2)0.074*
O2W0.38714 (8)1.18109 (17)0.64128 (11)0.0285 (3)
H2W10.3484 (10)1.228 (3)0.625 (2)0.043*
H2W20.4135 (11)1.177 (3)0.5871 (16)0.043*
O3W0.10686 (8)0.44224 (16)0.64602 (12)0.0281 (3)
H3W10.1450 (11)0.385 (3)0.635 (2)0.042*
H3W20.0811 (12)0.406 (3)0.6930 (17)0.042*
O4W0.49798 (8)1.1631 (2)0.80022 (14)0.0363 (4)
H4W10.4993 (11)1.238 (3)0.839 (3)0.054*
H4W20.4597 (13)1.180 (3)0.7605 (19)0.054*
I0.500266 (6)0.526338 (14)0.47581 (2)0.02884 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.01398 (8)0.01044 (7)0.01049 (7)0.00031 (6)0.00016 (8)0.00020 (9)
N110.0174 (6)0.0146 (7)0.0132 (6)0.0009 (5)0.0016 (5)0.0011 (5)
N120.0166 (6)0.0155 (7)0.0152 (6)0.0000 (5)0.0015 (4)0.0001 (5)
N210.0190 (5)0.0138 (6)0.0170 (6)0.0029 (4)0.0011 (6)0.0012 (6)
N220.0173 (6)0.0136 (7)0.0151 (6)0.0006 (5)0.0001 (5)0.0009 (5)
N310.0202 (6)0.0118 (7)0.0139 (6)0.0018 (5)0.0007 (5)0.0002 (5)
N320.0184 (5)0.0151 (6)0.0149 (6)0.0000 (4)0.0004 (6)0.0007 (5)
C110.0239 (8)0.0189 (8)0.0125 (7)0.0003 (6)0.0022 (6)0.0009 (6)
C120.0246 (8)0.0210 (9)0.0111 (7)0.0010 (6)0.0032 (6)0.0012 (6)
C210.0249 (8)0.0232 (10)0.0199 (8)0.0072 (7)0.0038 (7)0.0039 (6)
C220.0178 (7)0.0265 (9)0.0223 (8)0.0036 (7)0.0060 (6)0.0027 (7)
C310.0193 (7)0.0263 (9)0.0197 (8)0.0011 (6)0.0058 (6)0.0005 (7)
C320.0232 (7)0.0226 (9)0.0195 (7)0.0065 (7)0.0042 (8)0.0033 (6)
O1S0.0242 (5)0.0213 (6)0.0129 (5)0.0016 (4)0.0006 (4)0.0013 (4)
O2S0.0389 (7)0.0136 (6)0.0172 (6)0.0040 (5)0.0030 (5)0.0013 (4)
O3S0.0428 (7)0.0138 (6)0.0166 (5)0.0044 (5)0.0023 (5)0.0001 (5)
C1S0.0195 (6)0.0146 (6)0.0136 (6)0.0023 (5)0.0001 (7)0.0005 (7)
O1W0.0317 (8)0.0663 (12)0.0506 (18)0.0069 (7)0.0049 (8)0.0220 (10)
O2W0.0264 (6)0.0335 (8)0.0257 (7)0.0008 (5)0.0022 (5)0.0036 (6)
O3W0.0262 (6)0.0259 (7)0.0321 (8)0.0011 (5)0.0036 (5)0.0006 (6)
O4W0.0326 (8)0.0494 (10)0.0269 (7)0.0031 (6)0.0040 (6)0.0047 (7)
I0.02008 (5)0.04341 (7)0.02305 (5)0.00295 (5)0.00117 (4)0.00428 (9)
Geometric parameters (Å, º) top
Co—N221.9541 (14)C11—H11C0.9900
Co—N311.9566 (14)C11—H11D0.9900
Co—N211.9630 (12)C12—H12C0.9900
Co—N321.9637 (12)C12—H12D0.9900
Co—N121.9654 (14)C21—C221.505 (3)
Co—N111.9729 (14)C21—H21C0.9900
N11—C111.476 (2)C21—H21D0.9900
N11—H11A0.9200C22—H22C0.9900
N11—H11B0.9201C22—H22D0.9900
N12—C121.479 (2)C31—C321.507 (3)
N12—H12A0.9200C31—H31C0.9900
N12—H12B0.9200C31—H31D0.9900
N21—C211.488 (2)C32—H32C0.9900
N21—H21A0.9201C32—H32D0.9900
N21—H21B0.9200O1S—C1S1.3186 (19)
N22—C221.485 (2)O2S—C1S1.273 (2)
N22—H22A0.9201O3S—C1S1.273 (2)
N22—H22B0.9200O1W—H1W10.808 (18)
N31—C311.487 (2)O1W—H1W20.788 (17)
N31—H31A0.9199O2W—H2W10.791 (15)
N31—H31B0.9201O2W—H2W20.811 (15)
N32—C321.486 (2)O3W—H3W10.820 (15)
N32—H32A0.9200O3W—H3W20.795 (15)
N32—H32B0.9201O4W—H4W10.818 (17)
C11—C121.515 (2)O4W—H4W20.824 (16)
N22—Co—N3192.01 (6)Co—N32—H32A109.9
N22—Co—N2185.56 (6)C32—N32—H32B109.9
N31—Co—N2190.99 (6)Co—N32—H32B109.9
N22—Co—N3291.64 (6)H32A—N32—H32B108.3
N31—Co—N3285.62 (6)N11—C11—C12106.94 (12)
N21—Co—N32175.53 (8)N11—C11—H11C110.3
N22—Co—N1291.11 (5)C12—C11—H11C110.3
N31—Co—N12175.62 (6)N11—C11—H11D110.3
N21—Co—N1292.32 (6)C12—C11—H11D110.3
N32—Co—N1291.21 (6)H11C—C11—H11D108.6
N22—Co—N11175.48 (6)N12—C12—C11106.62 (13)
N31—Co—N1191.68 (5)N12—C12—H12C110.4
N21—Co—N1191.75 (6)C11—C12—H12C110.4
N32—Co—N1191.25 (6)N12—C12—H12D110.4
N12—Co—N1185.35 (6)C11—C12—H12D110.4
C11—N11—Co109.64 (10)H12C—C12—H12D108.6
C11—N11—H11A109.7N21—C21—C22106.28 (14)
Co—N11—H11A109.7N21—C21—H21C110.5
C11—N11—H11B109.7C22—C21—H21C110.5
Co—N11—H11B109.7N21—C21—H21D110.5
H11A—N11—H11B108.2C22—C21—H21D110.5
C12—N12—Co108.75 (10)H21C—C21—H21D108.7
C12—N12—H12A109.9N22—C22—C21107.12 (13)
Co—N12—H12A109.9N22—C22—H22C110.3
C12—N12—H12B109.9C21—C22—H22C110.3
Co—N12—H12B109.9N22—C22—H22D110.3
H12A—N12—H12B108.3C21—C22—H22D110.3
C21—N21—Co108.63 (11)H22C—C22—H22D108.5
C21—N21—H21A110.0N31—C31—C32107.14 (13)
Co—N21—H21A110.0N31—C31—H31C110.3
C21—N21—H21B110.0C32—C31—H31C110.3
Co—N21—H21B110.0N31—C31—H31D110.3
H21A—N21—H21B108.3C32—C31—H31D110.3
C22—N22—Co109.88 (10)H31C—C31—H31D108.5
C22—N22—H22A109.7N32—C32—C31106.79 (15)
Co—N22—H22A109.7N32—C32—H32C110.4
C22—N22—H22B109.7C31—C32—H32C110.4
Co—N22—H22B109.7N32—C32—H32D110.4
H22A—N22—H22B108.2C31—C32—H32D110.4
C31—N31—Co110.04 (11)H32C—C32—H32D108.6
C31—N31—H31A109.7O2S—C1S—O3S121.71 (16)
Co—N31—H31A109.7O2S—C1S—O1S119.20 (15)
C31—N31—H31B109.7O3S—C1S—O1S119.08 (15)
Co—N31—H31B109.7H1W1—O1W—H1W2109 (2)
H31A—N31—H31B108.2H2W1—O2W—H2W2104 (2)
C32—N32—Co108.74 (11)H3W1—O3W—H3W2108 (2)
C32—N32—H32A109.9H4W1—O4W—H4W2104 (2)
N31—Co—N11—C11165.33 (12)N21—Co—N31—C31172.33 (12)
N21—Co—N11—C11103.63 (11)N32—Co—N31—C3110.59 (11)
N32—Co—N11—C1179.67 (11)N11—Co—N31—C3180.54 (12)
N12—Co—N11—C1111.44 (11)N22—Co—N32—C3274.29 (11)
N22—Co—N12—C12159.63 (11)N31—Co—N32—C3217.60 (11)
N21—Co—N12—C1274.03 (11)N12—Co—N32—C32165.44 (11)
N32—Co—N12—C12108.70 (11)N11—Co—N32—C32109.19 (11)
N11—Co—N12—C1217.54 (11)Co—N11—C11—C1237.13 (14)
N22—Co—N21—C2117.86 (11)Co—N12—C12—C1141.99 (14)
N31—Co—N21—C2174.07 (11)N11—C11—C12—N1251.59 (16)
N12—Co—N21—C21108.80 (11)Co—N21—C21—C2242.12 (15)
N11—Co—N21—C21165.78 (11)Co—N22—C22—C2136.80 (16)
N31—Co—N22—C22101.65 (11)N21—C21—C22—N2251.17 (17)
N21—Co—N22—C2210.81 (11)Co—N31—C31—C3236.00 (17)
N32—Co—N22—C22172.68 (11)Co—N32—C32—C3141.51 (15)
N12—Co—N22—C2281.43 (11)N31—C31—C32—N3250.28 (18)
N22—Co—N31—C31102.08 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O3Si0.921.902.7625 (19)155
N11—H11B···Iii0.923.083.8409 (14)141
N12—H12A···O2Siii0.921.932.8042 (19)158
N12—H12B···O1W0.922.273.020 (2)138
N21—H21A···O1Si0.922.102.9891 (18)161
N21—H21B···I0.922.803.6165 (13)149
N22—H22A···O2W0.922.062.970 (2)172
N22—H22B···O3S0.921.912.8104 (19)166
N31—H31A···O3W0.922.012.907 (2)165
N31—H31B···O2S0.921.922.821 (2)165
N32—H32A···O1Siii0.922.122.9760 (18)155
N32—H32A···O2Siii0.922.613.146 (2)117
N32—H32B···Iii0.922.803.6456 (13)153
O1W—H1W1···O4Wiv0.81 (2)2.19 (3)2.892 (3)146 (4)
O1W—H1W2···O3Wv0.79 (2)2.07 (2)2.805 (3)156 (3)
O2W—H2W1···O1Siii0.79 (2)1.90 (2)2.6775 (17)170 (2)
O2W—H2W2···O1W0.81 (2)2.21 (2)2.881 (2)141 (2)
O3W—H3W1···O1Si0.82 (2)1.90 (2)2.6982 (17)163 (2)
O3W—H3W2···O4Wii0.80 (2)2.03 (2)2.811 (2)169 (2)
O4W—H4W1···Ivi0.82 (2)2.67 (2)3.4897 (18)176 (3)
O4W—H4W2···O2W0.82 (2)1.93 (2)2.728 (2)164 (3)
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y+2, z1/2; (v) x+1/2, y+3/2, z; (vi) x+1, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C2H8N2)3](CO3)I·4H2O
Mr498.22
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)123
a, b, c (Å)16.6907 (2), 8.7031 (1), 12.5718 (2)
V3)1826.19 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.67
Crystal size (mm)0.52 × 0.46 × 0.35
Data collection
DiffractometerOxford Diffraction Gemini R
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.737, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25329, 7440, 6109
Rint0.028
(sin θ/λ)max1)0.804
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.048, 0.97
No. of reflections7440
No. of parameters224
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.52
Absolute structureFlack (1983), 3466 Friedel pairs
Absolute structure parameter0.034 (8)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O3Si0.921.902.7625 (19)155.3
N11—H11B···Iii0.923.083.8409 (14)141.3
N12—H12A···O2Siii0.921.932.8042 (19)158.1
N12—H12B···O1W0.922.273.020 (2)138.0
N21—H21A···O1Si0.922.102.9891 (18)161.1
N21—H21B···I0.922.803.6165 (13)148.6
N22—H22A···O2W0.922.062.970 (2)171.7
N22—H22B···O3S0.921.912.8104 (19)165.7
N31—H31A···O3W0.922.012.907 (2)165.0
N31—H31B···O2S0.921.922.821 (2)165.1
N32—H32A···O1Siii0.922.122.9760 (18)155.1
N32—H32A···O2Siii0.922.613.146 (2)117.4
N32—H32B···Iii0.922.803.6456 (13)152.9
O1W—H1W1···O4Wiv0.808 (18)2.19 (3)2.892 (3)146 (4)
O1W—H1W2···O3Wv0.788 (17)2.066 (19)2.805 (3)156 (3)
O2W—H2W1···O1Siii0.791 (15)1.896 (15)2.6775 (17)170 (2)
O2W—H2W2···O1W0.811 (15)2.206 (19)2.881 (2)141 (2)
O3W—H3W1···O1Si0.820 (15)1.904 (15)2.6982 (17)163 (2)
O3W—H3W2···O4Wii0.795 (15)2.026 (15)2.811 (2)169 (2)
O4W—H4W1···Ivi0.818 (17)2.673 (17)3.4897 (18)176 (3)
O4W—H4W2···O2W0.824 (16)1.927 (17)2.728 (2)164 (3)
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y+2, z1/2; (v) x+1/2, y+3/2, z; (vi) x+1, y+2, z+1/2.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBrewer, G. & Butcher, R. J. (2009). 238th National ACS Meeting, Aug. 16–20. Washinton, DC, USA.  Google Scholar
First citationBroomhead, J. A., Dwyer, F. P. & Hogarth, J. W. (1960). Inorganic Synthesis, Vol. 6, pp. 186–188. New York: McGraw–Hill.  Google Scholar
First citationBrouty, C., Spinat, P., Whuler, A. & Herpin, P. (1976). Acta Cryst. B32, 2153–2159.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Simonov, Y. A. (1991). Ukr. Khim. Zh. 57, 5–8.  CAS Google Scholar
First citationDvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Sinkevich, A. V. (1989). Dokl. Acad. Nauk Ukr. SSR, Ser. B, 10, 31–34.  Google Scholar
First citationFarago, M. E., James, J. M. & Trew, V. C. G. (1967). J. Chem. Soc. A, 5, 728–729.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLappin, A. G., Haller, K. J., Warren, R. M. L. & Tatehata, A. (1993). Inorg. Chem. 32, 4498–4504.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, Y.-H., Fronczek, F. R., Watkins, S. F., Shaffer, G. W. & Musselman, R. L. (1995). Acta Cryst. C51, 1992–1994.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMironov, V. E., Pyartman, A. K. & Kolobov, N. P. (1976). Zh. Fiz. Khim. 50, 1967–1970.  CAS Google Scholar
First citationMironov, V. E., Ragulin, G. K., Solov'ev, Y. B., Fadeev, V. M. & Kolobov, N. P. (1973). Zh. Fiz. Khim. 47, 530–532.  CAS Google Scholar
First citationMizuta, T., Tada, T., Kushi, Y. & Yoneda, H. (1988). Inorg. Chem., 27, 3836–3841.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPiazzesi, G., Nicosia, D., Devedas, M., Kroecher, O., Elsener, M. & Wokaun, A. (2007). Catal. Lett. 115, 33–39.  Web of Science CrossRef CAS Google Scholar
First citationSeifer, G. B., Chumaevskii, N. A., Minaeva, N. A. & Tarasova, Z. A. (1981). Zh. Neorg. Khim. 27, 1731–1735.  Google Scholar
First citationSeifer, G. B. & Tarasova, Z. A. (1982). Zh. Neorg. Khim. 27, 1587–1589.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds